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1. INTRODUCTION 

For arbitrary positive integer «, numbers of the form Dn = {an-pn)l{a-fJ) are called the 
Lucas numbers, where a and fi are distinct roots of the polynomial f(z) = z2 -Lz + M, and L 
and Mare integers that are nonzero. The Lucas sequence (D): Dh D2, D3,... is called real when 
a and ft are real. Throughout this paper, we assume that L and M are coprime. Each Dn is an 
integer. A prime p is called a primitive divisor of Dn ifp divides Dn but does not divide Dm for 
0<m<n. Carmichael [2] calls it a characteristic factor and Ward [9] an intrinsic divisor. As 
Durst [4] observed, in the study of primitive divisors, it suffices to take L>0. Therefore, we 
assume L > 0 in this paper. 

In 1913, Carmichael [2] established the following. 

Theorem 1 (Carmichael): If a and /} are real and n & 1,2,6, then Dn contains at least one primi-
tive divisor except when « = 12, L = \ M = -l, 

In 1974, Schinzel [6] proved that if the roots off are complex and their quotient is not a root 
of unity and if n is sufficiently large then the w* term in the associated Lucas sequence has a 
primitive divisor. In 1976, Stewart [7] proved that if n - 5 or n > 6 there are only finitely many 
Lucas sequences that do not have a primitive divisor, and they may be determined. In 1995, 
Voutier [8] determined all the exceptional Lucas sequences with n at most 30. Finally, Bilu, 
Hanrot, and Voutier [1] have recently shown that there are no other exceptional sequences that 
do not have a primitive divisor for the w* term with n larger than 30. 

The aim of this paper is to give an elementary and simple proof of Theorem 1. To prove that 
Theorem 1 is true for all real Lucas sequences, it is sufficient to discuss the two special sequences, 
namely, the Fibonacci sequence and the so-called Fermat sequence. 

2* A SUFFICIENT CONDITION THAT Dn HAS A PRIMITIVE DIVISOR 

Let n > 1 be an integer. Following Ward [9], we call the numbers 

\<>r<>n 
(r,n)=l 

the cyclotomic numbers associated with the Lucas sequence, where a, fi are the roots of the 
polynomial f(z) = z2-Lz + M and the product is extended over all positive integers less than n 
and prime to n. Each Qn is an integer, and Dn = Hd\n Qm where the product is extended over all 
divisors d of n. Hence, p is a primitive divisor of Dn if and only lip is a primitive divisor of Qn. 

Lemma 1 below was shown by several authors (Carmichael, Durst, Ward, and others). 
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Lemma 1: Let/? be prime and let k be the least positive value of the index i such that/? divides 
Dr If n ^ 1,2,6 and if/? divides Qn and some Qm with 0<m<n, then /?2 does not divide gw and 
n~prk with r >1. 

Now suppose that n has a prime-power factorization n = p*lp2
2..*Pil, where Pi,p2,---,Pi a r e 

distinct primes and £1? e2,...,el are positive integers. Lemma 1 leads us to the following lemma 
(cf. Halton [5], Ward [9]). 

Lemma 2: Let n & 1,2,6. A sufficient condition that Dn contains at least one primitive divisor is 
that \Qn\>plp2--Pi-

Proof: We prove the contraposition. Suppose that Dn has no primitive divisors. lip is an 
arbitrary prime factor of Qn, thenp divides some Qm with 0<m<n. Therefore, p divides n and 
p2 does not divide Q,. Hence, Qn divides PiP2...ph so \Qn\ < p\P2—Pi- • 

Our proof of CarmichaePs theorem is based on the following. 

Theorem 2: If n * 1,2,6 and if both the rfi1 cyclotornic number associated with z2 - z -1 and that 
associated with z2-3z + 2 are greater than the product of all prime factors of n, then, for every 
real Lucas sequence, Dn contains at least one primitive divisor. 

Now assume that n is an integer greater than 2 and that a and fi are real, that is, I? - AM is 
positive. As Ward observed, 

Q,(a,fi) =X\(a-?P){a-CrP) (1) 

= U((cc+fi)2-am + Cr + C% (2) 
where C,-e2mln and the products are extended over all posjtive integers less than nil and prime 
ton. Since a -\-p~L and aj3 = M, by putting 0r = 2 + gr + £~r, we have 

Qn = Qn(a^) = Il(L2-M0ry (3) 

Fix an arbitrary n > 2. Then Qn can be considered as the function of variables L and M. We shall 
discuss for what values ofZ and M the 71th cyclotornic number Qn has its least value. 

Lemma 3: Let /1 > 2 be an arbitrary fixed integer. If a and J3 are real, then gw has its least value 
either when L = 1 and M = -1 or when Z = 3 and M = 2. 

Proof: Take an arbitrary #r and fix it. Since n > 2, we have 0 < 0r < 4. Thus, if M < 0, we 
have L2 - M0r >l + 0r, with equality holding only in the case L = 1, M = - 1 . When M > 0, con-
sider the cases M = 1, M > 1. In the first case we have L > 3, so that 

Z 2 - M 0 r > 9 - 0 r > 9 - 2 l 9 r . 

Now assume M > 1. Then, since L2 > 4M+1, we have 

Z 2 - M ^ r > 4 M + l - M i 9 r = 9 - 2 ^ r + ( M - 2 ) ( 4 - ^ r ) > 9 - 2 ^ r 

with equality holding only in the case M = 2, L.= 3. Hence, by formula (3), we have completed 
the proof. D 

Combining Lemma 2 with Lemma 3, we complete the proof of Theorem 2. 
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3, CAMMICHAELfS THEOREM 
We call the Lucas sequence generated by z2~z-l the Fibonacci sequence and that gener-

ated by z 2 -3z + 2 the Fermat sequence.- Theorem 2 implies that to prove Carmichael's theorem 
it is sufficient to discuss the Fibonacci sequence and the Fermat sequence. 

Now we suppose that n has a prime-power factorization n = p*lp*2 ...p?, and let <b„(x) 
denote the /2th cyclotomic polynomial 

Lemma 4: Ifn>2 and if a is real with \a\ < 1/2, then ®„(a) > 1 - \a\ - \a\2. 

Proof: We have 

d\n 

where ju denotes the Mobius function and the product is extended over all divisors d ofn. Since 
\a\ < 1/2 and Q.-aM)*d> > 1 - \a\"/d, 

0„(a)>n( l - | a | ' )>( l - | a | ) ( l - | a | 2 - | a | 3 - | a | 4 —•) 
1=1 

UI2 \ 
= ( l - | a | ) 1 

l - | a | = l - | a | - | a |2 

Here we have used the fact that if 0< x< 1 and 0<y < 1 then (1 -x) ( l -y ) > 1 - x - y . We have 
thus proved the lemma. D 

Theorem 3: If n & 1,2,6,12, then the /1th term of the Fibonacci sequence contains at least one 
primitive divisor. 

Proof: Assume n>2. We shall determine for what n the inequality \Qn\>P\P2.../*/ is satis-
fied, where Qn is the n^ cyclotomic number associated with the Fibonacci sequence. The roots of 
the polynomial z2-z-l are a = (1 +V5)/2 and fl = ( 1 - S ) I 2 . Since \fi/a\ = ( 3 - S ) I 2 < 1/2, 
Lemma 4 gives 

®n{f}la)>l-\pia\-\pia\2^2S-4>2l5. 
In addition, since a > 3 /2 , we have 

Qn(a, ft) = a^®n(J$la) > (2 /5)(3 /2)*">, 

where ^(/i) denotes the Euler function: ^(fi) = ri-=i P?~l{Pi ~ 1). Thus, |g„ | > /y?2.../?/ is true for 
n satisfying 

(2/5)(3/2)^>Plp2...Pl. (4) 

We first suppose px > 7 without loss of generality. Then (2/5)(3/2)^(/?l) > 2px is true, and conse-
quently (2 /5)(312)^n) > PiP2-Pi' Here we have used the fact that if x, y are real with x > y > 3 
and if m is integral with m> 2 then x^"1 > my. We next suppose p*1 = 24

? 33
? 52, or 72 without 

loss of generality. Therefore, (2/5)(3/2)*rf> >2px is true, and consequently (2/5)(3/2)^(w) > 
PiPi-' Pi - Hence, inequality (4) is true unless n is of the form 

n = 2a3b5c7d, (5) 
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where 0 < a < 3, 0<b<2, 0 < c < 1, and 0 < <i < 1. By substituting (5) into (4), we verify that 
inequality (4) is true for w * 1,2,3,4,5,6,7,8,9,10,12,14,15,18,30. However, by direct compu-
tation, we have 

a=i, a=2, a=3, a=* &=<*, 
a=13, a=7, a=17, a0=n, a2=6, 
fi4 = 29, a3 = 61, ft8 = 19, fto = 31. 

Hence, \Qn\> P\P2 -Pi holds for n * 1,2,3,5,6,12. It follows from Lemma 2 that if n ^ 1,2,3,5, 
6,12 then the /1th Fibonacci number i^ contains at least one primitive divisor. In addition, since 
Fx-\9 F2 = l, F3 = 2, F4 = 3, F5 = 5, F6 = 23, Fl2 = 24-32, the numbers F3 and F5 have a primi-
tive divisor, and Ft,F2,F6, and Fl2 do not. D 

Theorem 4: If/i * 1,2,6, then the «* term of the Fermat sequence contains at least one primitive 
divisor. 

Proof: The roots of the polynomial z2-3z + 2 are a = 2 and /? = 1. By Lemma 4, 

Qn(fi/a) > 1- |£/a | - \ft/a\2= 1/4. 
Therefore, 

a(a , )8) = a«»Qn(fi/a) > (1/4) -2*">. 

Now the inequality (l/4)-2<*(w) >(2/5)(3/2)^} is true for all n>2. As shown in the proof of 
Theorem3, the inequality (2/S)(3/2)^n) >plp2...pi is true for n* 1,2,3,4,5,6,7,8,9,10,12,14, 
15,18,30. Moreover, by direct computation, we observe that (l/4)-2^n) > PiP2-Pi is true for 
n - 7? 8,9,14,15,18,30, and furthermore, we have 

•a=7, a=s, a=3i, a=3, ao=n,a2=i3.. 
Hence, \Qn\> P\P2-Pi holds for n ^ 1,2,6. It follows from Lemma 2 that if n * 1,2,6 then the 
72th term of the Fermat sequence contains at least one primitive divisor. • 

Now we are ready to prove Carmichael's theorem. 

Proof of CarmichaeVs Theorem: As observed previously, for n ^ 1,2,3,5,6,12, both the 
72th cyclotomic number associated with the Fibonacci sequence and that associated with the 
Fermat sequence are greater than pj)2 ...pt. It follows from Theorem 2 that if n ^ 1,2, 3,5,6,12 
then Dn contains at least one primitive divisor. In addition, Q3 = L-M> 3 except when L-1, 
M = - 1 . Moreover, since Q5 = 5 and Ql2 = 6 when L = 1, M = - 1 , and Q5 = 31 and (212 - 13 
when Z = 3, M = 2, Lemma 3 gives Q5 > 5 and g12 > 6 except for the Fibonacci sequence. 

Therefore, by Lemma 2, if n * 1,2,6 then DM contains at least one primitive divisor except 
when L = 1, M - - 1 . Combining with Theorem 3, we complete the proof D 

4. APPENDIX 

In 1955, Ward [9] proved the theorem below for the Lehmer numbers defined by 

pUan-ni(a-P\ n odd, 
" \{an-pn)l{a2-l32\ weven, 
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where a and 0 are distinct roots of the polynomial z2 - 4hz + M, and L and M are coprime inte-
gers with L positive and M nonzero. Here a sufficient condition n * 6 was pointed out by Durst 
[3]. 

Theorem 5 (Ward): If a and fi are real and n * 1,2,6, then Pn contains at least one primitive 
divisor except when n = 12, L = 1, M = -1 and when n = 12, L = 5, M = 1. 

We can also give an elementary proof of this theorem. It parallels the proof of Carmichaefs 
theorem. The essential observation is that if n * 1,2,6 and if both the /1th cyclotomic number 
associated with z2 - z -1 and that associated with z2 - 4Sz +1 are greater than the product of all 
prime factors of n then, for all real Lehmer sequences, Pn contains at least one primitive divisor. 
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