A SIMPLE PROOF OF CARMICHAEL'S THEOREM ON PRIMITIVE DIVISORS

Minoru Yabuta
46-35 Senriokanaka Suita-si, Osaka 565-0812, Japan
(Submitted September 1999-Final Revision March 2000)

1. $\mathbb{I N T R O D U C T I O N ~}$

For arbitrary positive integer n, numbers of the form $D_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ are called the Lucas numbers, where α and β are distinct roots of the polynomial $f(z)=z^{2}-L z+M$, and L and M are integers that are nonzero. The Lucas sequence (D): $D_{1}, D_{2}, D_{3}, \ldots$ is called real when α and β are real. Throughout this paper, we assume that L and M are coprime. Each D_{n} is an integer. A prime p is called a primitive divisor of D_{n} if p divides D_{n} but does not divide D_{m} for $0<m<n$. Carmichael [2] calls it a characteristic factor and Ward [9] an intrinsic divisor. As Durst [4] observed, in the study of primitive divisors, it suffices to take $L>0$. Therefore, we assume $L>0$ in this paper.

In 1913, Carmichael [2] established the following.
Theorem 1 (Carmichael): If α and β are real and $n \neq 1,2,6$, then D_{n} contains at least one primitive divisor except when $n=12, L=1, M=-1$,

In 1974, Schinzel [6] proved that if the roots of f are complex and their quotient is not a root of unity and if n is sufficiently large then the $n^{\text {th }}$ term in the associated Lucas sequence has a primitive divisor. In 1976, Stewart [7] proved that if $n=5$ or $n>6$ there are only finitely many Lucas sequences that do not have a primitive divisor, and they may be determined. In 1995, Voutier [8] determined all the exceptional Lucas sequences with n at most 30. Finally, Bilu, Hanrot, and Voutier [1] have recently shown that there are no other exceptional sequences that do not have a primitive divisor for the $n^{\text {th }}$ term with n larger than 30 .

The aim of this paper is to give an elementary and simple proof of Theorem 1. To prove that Theorem 1 is true for all real Lucas sequences, it is sufficient to discuss the two special sequences, namely, the Fibonacci sequence and the so-called Fermat sequence.

2. A SUFFICIENT CONDITION THAT D_{n} HAS A PRIMITIVE DIVISOR

Let $n>1$ be an integer. Following Ward [9], we call the numbers

$$
Q_{1}=1, Q_{n}=Q_{n}(\alpha, \beta)=\prod_{\substack{1 \leq r \leq n \\(r, n)=1}}\left(\alpha-e^{2 \pi i r / n} \beta\right) \text { for } n \geq 2
$$

the cyclotomic numbers associated with the Lucas sequence, where α, β are the roots of the polynomial $f(z)=z^{2}-L z+M$ and the product is extended over all positive integers less than n and prime to n. Each Q_{n} is an integer, and $D_{n}=\prod_{d \mid n} Q_{n}$, where the product is extended over all divisors d of n. Hence, p is a primitive divisor of D_{n} if and only if p is a primitive divisor of Q_{n}.

Lemma 1 below was shown by several authors (Carmichael, Durst, Ward, and others).

Lemma 1: Let p be prime and let k be the least positive value of the index i such that p divides D_{i}. If $n \neq 1,2,6$ and if p divides Q_{n} and some Q_{m} with $0<m<n$, then p^{2} does not divide Q_{n} and $n=p^{r} k$ with $r \geq 1$.

Now suppose that n has a prime-power factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{l}^{e_{l}}$, where $p_{1}, p_{2}, \ldots, p_{l}$ are distinct primes and $e_{1}, e_{2}, \ldots, e_{l}$ are positive integers. Lemma 1 leads us to the following lemma (cf. Halton [5], Ward [9]).

Lemma 2: Let $n \neq 1,2,6$. A sufficient condition that D_{n} contains at least one primitive divisor is that $\left|Q_{n}\right|>p_{1} p_{2} \ldots p_{l}$.

Proof: We prove the contraposition. Suppose that D_{n} has no primitive divisors. If p is an arbitrary prime factor of Q_{n}, then p divides some Q_{m} with $0<m<n$. Therefore, p divides n and p^{2} does not divide Q_{n}. Hence, Q_{n} divides $p_{1} p_{2} \ldots p_{l}$, so $\left|Q_{n}\right| \leq p_{1} p_{2} \ldots p_{l}$.

Our proof of Carmichael's theorem is based on the following.
Theorem 2: If $n \neq 1,2,6$ and if both the $n^{\text {th }}$ cyclotomic number associated with $z^{2}-z-1$ and that associated with $z^{2}-3 z+2$ are greater than the product of all prime factors of n, then, for every real Lucas sequence, D_{n} contains at least one primitive divisor.

Now assume that n is an integer greater than 2 and that α and β are real, that is, $L^{2}-4 M$ is positive. As Ward observed,

$$
\begin{align*}
Q_{n}(\alpha, \beta) & =\Pi\left(\alpha-\zeta^{r} \beta\right)\left(\alpha-\zeta^{-r} \beta\right) \tag{1}\\
& =\Pi\left((\alpha+\beta)^{2}-\alpha \beta\left(2+\zeta^{r}+\zeta^{r}\right)\right), \tag{2}
\end{align*}
$$

where $\zeta=e^{2 \pi i / n}$ and the products are extended over all positive integers less than $n / 2$ and prime to n. Since $\alpha+\beta=L$ and $\alpha \beta=M$, by putting $\theta_{r}=2+\zeta^{r}+\zeta^{-r}$, we have

$$
\begin{equation*}
Q_{n}=Q_{n}(\alpha, \beta)=\Pi\left(L^{2}-M \theta_{r}\right) . \tag{3}
\end{equation*}
$$

Fix an arbitrary $n>2$. Then Q_{n} can be considered as the function of variables L and M. We shall discuss for what values of L and M the $n^{\text {th }}$ cyclotomic number Q_{n} has its least value.
Lemma 3: Let $n>2$ be an arbitrary fixed integer. If α and β are real, then Q_{n} has its least value either when $L=1$ and $M=-1$ or when $L=3$ and $M=2$.

Proof: Take an arbitrary θ_{r} and fix it. Since $n>2$, we have $0<\theta_{r}<4$. Thus, if $M<0$, we have $L^{2}-M \theta_{r} \geq 1+\theta_{r}$, with equality holding only in the case $L=1, M=-1$. When $M>0$, consider the cases $M=1, M>1$. In the first case we have $L \geq 3$, so that

$$
L^{2}-M \theta_{r} \geq 9-\theta_{r}>9-2 \theta_{r} .
$$

Now assume $M>1$. Then, since $L^{2} \geq 4 M+1$, we have

$$
L^{2}-M \theta_{r} \geq 4 M+1-M \theta_{r}=9-2 \theta_{r}+(M-2)\left(4-\theta_{r}\right) \geq 9-2 \theta_{r}
$$

with equality holding only in the case $M=2, L=3$. Hence, by formula (3), we have completed the proof.

Combining Lemma 2 with Lemma 3, we complete the proof of Theorem 2.

3. CARMICHAEL'S THEOREM

We call the Lucas sequence generated by $z^{2}-z-1$ the Fibonacci sequence and that generated by $z^{2}-3 z+2$ the Fermat sequence. Theorem 2 implies that to prove Carmichael's theorem it is sufficient to discuss the Fibonacci sequence and the Fermat sequence.

Now we suppose that n has a prime-power factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{l}^{e_{1}}$, and let $\Phi_{n}(x)$ denote the $n^{\text {th }}$ cyclotomic polynomial.

Lemma 4: If $n>2$ and if a is real with $|a|<1 / 2$, then $\Phi_{n}(a) \geq 1-|a|-|a|^{2}$.
Proof: We have

$$
\Phi_{n}(a)=\prod_{d \mid n}\left(1-a^{n / d}\right)^{\mu(d)}
$$

where μ denotes the Möbius function and the product is extended over all divisors d of n. Since $|a|<1 / 2$ and $\left(1-a^{n / d}\right)^{\mu(d)} \geq 1-|a|^{n / d}$,

$$
\begin{aligned}
\Phi_{n}(a) & \geq \prod_{i=1}^{\infty}\left(1-|a|^{i}\right) \geq(1-|a|)\left(1-|a|^{2}-|a|^{3}-|a|^{4}-\cdots\right) \\
& =(1-|a|)\left(1-\frac{|a|^{2}}{1-|a|}\right)=1-|a|-|a|^{2} .
\end{aligned}
$$

Here we have used the fact that if $0 \leq x \leq 1$ and $0 \leq y \leq 1$ then $(1-x)(1-y) \geq 1-x-y$. We have thus proved the lemma.
Theorem 3: If $n \neq 1,2,6,12$, then the $n^{\text {th }}$ term of the Fibonacci sequence contains at least one primitive divisor.

Proof: Assume $n>2$. We shall determine for what n the inequality $\left|Q_{n}\right|>p_{1} p_{2} \ldots p_{l}$ is satisfied, where Q_{n} is the $n^{\text {th }}$ cyclotomic number associated with the Fibonacci sequence. The roots of the polynomial $z^{2}-z-1$ are $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Since $|\beta / \alpha|=(3-\sqrt{5}) / 2<1 / 2$, Lemma 4 gives

$$
\Phi_{n}(\beta / \alpha) \geq 1-|\beta / \alpha|-|\beta / \alpha|^{2}=2 \sqrt{5}-4>2 / 5 .
$$

In addition, since $\alpha>3 / 2$, we have

$$
Q_{n}(\alpha, \beta)=\alpha^{\phi(n)} \Phi_{n}(\beta / \alpha)>(2 / 5)(3 / 2)^{\phi(n)},
$$

where $\phi(n)$ denotes the Euler function: $\phi(n)=\prod_{i=1}^{l} p_{i}^{e_{1}-1}\left(p_{i}-1\right)$. Thus, $\left|Q_{n}\right|>p_{1} p_{2} \ldots p_{l}$ is true for n satisfying

$$
\begin{equation*}
(2 / 5)(3 / 2)^{\phi(n)}>p_{1} p_{2} \ldots p_{l} . \tag{4}
\end{equation*}
$$

We first suppose $p_{1}>7$. without loss of generality. Then $(2 / 5)(3 / 2)^{\phi\left(p_{1}\right)}>2 p_{1}$ is true, and consequently $(2 / 5)(3 / 2)^{\phi(n)}>p_{1} p_{2} \ldots p_{l}$. Here we have used the fact that if x, y are real with $x>y>3$ and if m is integral with $m>2$ then $x^{m-1}>m y$. We next suppose $p_{1}^{e_{1}}=2^{4}, 3^{3}, 5^{2}$, or 7^{2} without loss of generality. Therefore, $(2 / 5)(3 / 2)^{\phi\left(p_{1}^{q}\right)}>2 p_{1}$ is true, and consequently $(2 / 5)(3 / 2)^{\phi(n)}>$ $p_{1} p_{2} \ldots p_{l}$. Hence, inequality (4) is true unless n is of the form

$$
\begin{equation*}
n=2^{a} 3^{b} 5^{c} 7^{d} \tag{5}
\end{equation*}
$$

where $0 \leq a \leq 3,0 \leq b \leq 2,0 \leq c \leq 1$, and $0 \leq d \leq 1$. By substituting (5) into (4), we verify that inequality (4) is true for $n \neq 1,2,3,4,5,6,7,8,9,10,12,14,15,18,30$. However, by direct computation, we have

$$
\begin{array}{lllll}
Q_{2}=1, & Q_{3}=2, & Q_{4}=3, & Q_{5}=5, & Q_{6}=4 \\
Q_{7}=13, & Q_{8}=7, & Q_{9}=17, & Q_{10}=11, & Q_{12}=6, \\
Q_{14}=29, & Q_{15}=61, & Q_{18}=19, & Q_{30}=31 . &
\end{array}
$$

Hence, $\left|Q_{n}\right|>p_{1} p_{2} \ldots p_{l}$ holds for $n \neq 1,2,3,5,6,12$. It follows from Lemma 2 that if $n \neq 1,2,3,5$, 6,12 then the $n^{\text {th }}$ Fibonacci number F_{n} contains at least one primitive divisor. In addition, since $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=2^{3}, F_{12}=2^{4} \cdot 3^{2}$, the numbers F_{3} and F_{5} have a primitive divisor, and F_{1}, F_{2}, F_{6}, and F_{12} do not.

Theorem 4: If $n \neq 1,2,6$, then the $n^{\text {th }}$ term of the Fermat sequence contains at least one primitive divisor.

Proof: The roots of the polynomial $z^{2}-3 z+2$ are $\alpha=2$ and $\beta=1$. By Lemma 4,

$$
\Phi_{n}(\beta / \alpha) \geq 1-|\beta / \alpha|-|\beta / \alpha|^{2}=1 / 4
$$

Therefore,

$$
Q_{n}(\alpha, \beta)=\alpha^{\phi(n)} \Phi_{n}(\beta / \alpha)>(1 / 4) \cdot 2^{\phi(n)} .
$$

Now the inequality $(1 / 4) \cdot 2^{\phi(n)}>(2 / 5)(3 / 2)^{\phi(n)}$ is true for all $n>2$. As shown in the proof of Theorem 3, the inequality $(\dot{2} / 5)(3 / 2)^{\phi(n)}>p_{1} p_{2} \ldots p_{l}$ is true for $n \neq 1,2,3,4,5,6,7,8,9,10,12,14$, $15,18,30$. Moreover, by direct computation, we observe that (1/4) $\cdot 2^{\phi(n)}>p_{1} p_{2} \ldots p_{l}$ is true for $n=7,8,9,14,15,18,30$, and furthermore, we have

$$
Q_{3}=7, Q_{4}=5, Q_{5}=31, Q_{6}=3, Q_{10}=11, Q_{12}=13
$$

Hence, $\left|Q_{n}\right|>p_{1} p_{2} \ldots p_{l}$ holds for $n \neq 1,2,6$. It follows from Lemma 2 that if $n \neq 1,2,6$ then the $n^{\text {th }}$ term of the Fermat sequence contains at least one primitive divisor.

Now we are ready to prove Carmichael's theorem.
Proof of Carmichael's Theorem: As observed previously, for $n \neq 1,2,3,5,6,12$, both the $n^{\text {th }}$ cyclotomic number associated with the Fibonacci sequence and that associated with the Fermat sequence are greater than $p_{1} p_{2} \ldots p_{l}$. It follows from Theorem 2 that if $n \neq 1,2,3,5,6,12$ then D_{n} contains at least one primitive divisor. In addition, $Q_{3}=L-M>3$ except when $L=1$, $M=-1$. Moreover, since $Q_{5}=5$ and $Q_{12}=6$ when $L=1, M=-1$, and $Q_{5}=31$ and $Q_{12}=13$ when $L=3, M=2$, Lemma 3 gives $Q_{5}>5$ and $Q_{12}>6$ except for the Fibonacci sequence.

Therefore, by Lemma 2, if $n \neq 1,2,6$ then D_{n} contains at least one primitive divisor except when $L=1, M=-1$. Combining with Theorem 3, we complete the proof.

4. APPENDIX

In 1955, Ward [9] proved the theorem below for the Lehmer numbers defined by

$$
P_{n}= \begin{cases}\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta), & n \text { odd } \\ \left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right), & n \text { even }\end{cases}
$$

where α and β are distinct roots of the polynomial $z^{2}-\sqrt{L} z+M$, and L and M are coprime integers with L positive and M nonzero. Here a sufficient condition $n \neq 6$ was pointed out by Durst [3].

Theorem 5 (Ward): If α and β are real and $n \neq 1,2,6$, then P_{n} contains at least one primitive divisor except when $n=12, L=1, M=-1$ and when $n=12, L=5, M=1$.

We can also give an elementary proof of this theorem. It parallels the proof of Carmichael's theorem. The essential observation is that if $n \neq 1,2,6$ and if both the $n^{\text {th }}$ cyclotomic number associated with $z^{2}-z-1$ and that associated with $z^{2}-\sqrt{5} z+1$ are greater than the product of all prime factors of n then, for all real Lehmer sequences, P_{n} contains at least one primitive divisor.

ACKNOWLEDGMENTS

I am grateful to Mr. Hajime Kajioka for his valuable advice regarding the proof of Lemma 4. In addition, I thank the anonymous referees for their useful suggestions.

REFERENCES

1. Yu Bilu, G. Hanrot, \& P. M. Voutier. "Existence of Primitive divisors of Lucas and Lehmer Numbers." J. Reine Angew. Math. (to appear).
2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n} \pm \beta^{n}$. . Ann. of Math. 15 (1913):30-70.
3. L. K. Durst. "Exceptional Real Lehmer Sequences." Pacific J. Math. 9 (1959):437-41.
4. L. K. Durst. "Exceptional Real Lucas Sequences." Pacific J. Math. 11 (1961):489-94.
5. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The Fibonacci Quarterly 4.3 (1966):217-40.
6. A. Schinzel. "Primitive Divisors of the Expression $A^{n}-B^{n}$ in Algebraic Number Fields." J. Reine Angew. Math. 268/269 (1974):27-33.
7. C. L. Stewart. "Primitive Divisors of Lucas and Lehmer Sequences." In Transcendence Theory: Advances and Applications, pp. 79-92. Ed. A. Baker \& W. Masser. New York: Academic Press, 1977.
8. P. M. Voutier. "Primitive Divisors of Lucas and Lehmer Sequences." Math. Comp. 64 (1995):869-88.
9. M. Ward. "The Intrinsic Divisors of Lehmer Numbers." Ann. of Math. 62 (1955):230-36.

AMS Classification Numbers: 11A41, 11B39

