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1. INTRODUCTION 
The modified Dickson polynomials 

[nil] f .\ 

were defined and studied by P. Fllipponi In the case a-\ in [1], where several identities and con-
gruences were established. In this note we generalize some of those theorems and present some 
new properties of these polynomials. One basic result is Proposition 2 in [1] which states that if/? 
is an odd prime and k is an integer, then 

Zp(k,l) = (k\p) (mod/0, (1-2) 
where (k \p) is the Legendre symbol The generalization is as follows. 

Theorem 1: Ifp is an odd prime, a and k are integers, and m and r are positive integers, then 

[l, ifwiseven, 

z
mpr (*, a) = HJk) • Zmprl (*, a) (mod pr), 

where Hm^ \(k\p\ ifwisodd. 

We will deduce this from a corresponding congruence for these polynomials in the polyno-
mial ring Z[y, a], and present a few applications thereof in the next section. We give an analogous 
definition of modified Dickson polynomials of the second kind and give some identities, recur-
rences, and congruences for them in Section 3. We conclude by describing a compositeness test 
based on. Theorem 1 in the last section. 

2. CONGRUENCES FOR MODIFIED DICKSON POLYNOMIALS 

The (usual) Dickson polynomials Dn(x, a) are defined for n > 0 by 

D„(x, a) = ' f ]-^(n ~ A(-ayx"-2J (2.1) 
;=0¥ l J V J J 

(cf. [2]), with the convention that D0(x, a) = 2. They may also be defined as the expansion coef-
ficients of the rational differential form 

i^ = -£/)„(*, a ) r ^ , (2.2) 

where P(T) = 1-xT + aT2 (see [5], eq. (1.6)), and they satisfy the functional equation 
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By comparing (1.1) and (2.1), we see that as polynomials in>> and a, 

7( \ \Dnlym>a\ ifraiseven, 
[y V2Dn{y ,a\ ifwisodd 

(cf. [1], eq. (1.2)). We have the following congruence for the polynomials Z„(y, a). 

Theorem 2: Ifp is an odd prime and m, r are positive integers, then the congruence 

V C * * ) 3 Hm'Zmpr-*(yP,<*P) (mod/fZ[y,a]) 
holds in the polynomial ring Z[y, a], where 

f l, if/wiseven, 

Proof: In Theorem 2 of [5] we showed that the congruence 
Dmfr{x,d)^Dmpr.x(xP,aP) (mod//Z[y,a]) (2.5) 

holds in the polynomial ring I\y, a]. Replacing the indeterminate x with yvi yields 
D

mff(yl/2>a)^D
mp'->(ypl2>aP) (modprZ[ym,a]), (2.6) 

where yp/2 is defined to be (yl/2)p. By (2.4), this gives the result for even m, since both sides of 
the congruence (2.6) lie in Z[y, a] in that case. For odd m, we divide both sides of (2.6) by ym 

to obtain the congruence 

y-V2Dmpr(yi,2,a)^y^/2-(y-P'2Dmpr.,(y'"2,a'')) (modprZ[y,a]), (2.7) 
both sides of which now lie in Z[y, a]. Comparison with (2.4) now gives the result for odd in. 

Theorem 1 may be obtained directly from this as follows. 

Proof of Theorem 1: Let a, k be integers and consider them as elements of the ring 1LP of 
/?-adic integers. For an element uofZp, the Teichmuller representative u of u is defined to be the 
unique solution to xp - x which is congruent to u modulo pZp; it is also given by thep-adic limit 
u = limr_>00 upr. Observing that dp = d, kp = k, and £(/7-1)/2 = (k\p), we evaluate the polynomial 
congruence of Theorem 2aiy = k,a = dto obtain 

Zmf{k,a) = Hm{.k).Zm^(k,a) (mod//Zp), (2.8) 
where Hm{k) is as defined in the statement of the theorem. 

Now, from the second statement of Theorem 3 given in [5], applied with / = 1, n -1, and 
K = Qp(Jk), it follows that 

Dmf{k"\a) ^ Dmf{k"\a) (modnpr€)K) (2.9) 

for all r, where {n) is the maximal ideal in the ring of integers £>K of the field K. For m even, 
comparison of (2.8) and (2.9) yields 

Dmf{k*2,a) = DmrX{kV2,d) (mod*?/-1©*), (2.10) 
but both sides of this congruence are integers, so it must hold modulo prZ. In this case the 
theorem then follows by comparison with (2.4). 
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Ifm is odd and k * 0, multiplying both sides of (2.8) by km yields 

D^(P\a)^(k\pyDm^(km,a) (modprQK). (2.11) 

Comparison with (2.9) shows that 

Dmif{kv\a)^{k\pyDm^{km,a) (mod^O*), (2.12) 

and then dividing by kin yields 

^mpAKa)^{k\PyZmpr.x{Kd) (mod^Cfc), (2.13) 

but again both sides of this congruence are integers, so it holds modulo prZ, proving the theorem 
in that case. 

Finally, when k = 0 and n is odd, we have the identity Z„(0, a) - {-dfn~l)l2 -n (cf. [1], eq. 
(2.7)), so that Zmpr(0, a) = 0 (mod pr) when m is odd. Combining this with (2.9), we see that in 
this case we also have 

Zmpr(k,a) = Hm(k).Zm^{k,a) (modnprl€>K), (2.14) 

but again both sides are integers, proving the theorem. 

Remarks: Perhaps the most interesting feature of these theorems is that while the "special ele-
ment" Hm depends on y and on the parity of m, it does not depend on a. For example, taking 
m = 1, r = 1 in Theorem 1 and observing that Zx(y, a) = l yields 

Zp(k,a) = (k\p) (mod/i), (2.15) 

of which Filipponi's result (1.2) is a special case; indeed it is evident from (1.1) that Zp(k,a) = 
£(/>-i)/2 (mocjp) for au a i n Section 4 below we propose a compositeness test based on (2.15). 

One also obtains interesting congruences by combining Theorem 1 above with Filipponi's 
multiplication formula ([1], eq. (3.6)). For example, for n even the h - 3 case of Filipponi's result 
is the identity 

Z3„ = 43-3Z„ (2.16) 

(cf. [1], eq. (3.5)), where Z„ = Z„(k,l). Putting n = m-3r with m even, from Theorem 1.1 we 
obtain Z3t1 = Zn (mod 3r+1); combining this with (2.16) yields Zn(Z2

n - 4 ) = 0 (mod 3r+1). It fol-
lows that, if n is even and divisible by 3r, then Zn is congruent to either - 2 , 0, or 2 modulo 3r+1. 
A similar but slightly more complicated result holds for n odd. Many other such results may be 
obtained similarly. 

We conclude this section with a generating form and recurrence for the Zn(y,a), which 
provides an efficient means for generating the sequence and for obtaining identities. 

Theorem 3: For n > 0 the polynomials Zn(y, a) may be obtained as the expansion coefficients of 
the rational differential form 

T7(v ^rndT A\-{2a-y)T-at1-2a2Ti)dT 
h ] T l + (2a-^+a2r4 

Consequently, the sequence Zn = Z„(y,a) is given by the recurrence Z0 = 2, Zx = \, Z2=y-2a, 
Z3 = y-3a, and Z„+2 = (y-2a)Z„-a2Z„_2. 
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Proof: Use (2.4) to write the power series 

fXr-1 = ̂ -1/2£ W 2 , aKT"-1+(-T)"-1) 
»=i ^„=i ( 2 1 7 ) 

+7lA(y1/2,«)(r-,-(-r)"-1) 

as the sum of an even function of T and an odd function of T. Then from (2.2) we obtain 

-pn(y,")rf=l[(i+y-»2)§$Hi-y-V2)§^), (2.18) 

where P(T) = l-yl/2T+aT2. Expanding and simplifying (2.18) yields the first statement of the 
theorem. The recurrence follows by multiplying both sides by \ + {2a-y)T2 +a2T4 and equating 
coefficients of T^dT. 

3. MODIFIED DICKSON POLYNOMIALS OF THE SECOND KIND 

The Dickson polynomials of the second kind En(x, a) are defined for n > 0 by 

En(x,a) = ^ I w J\(-nVr»-V ;»(*>-«)= 1 1 " / J ( - a y * " " 2 ' (3-1) 

(cf. [2]). They may also be defined as the expansion coefficients of the rational differential form 

-^-=^E„(x,a)rdT, (3.2) 

where P(T) = 1-xT+aT2 ([5], eq. (4.4)). By way of analogy with (1.1) we define the modified 
Dickson polynomials of the second kind Yn(y, a) by 

[nil]/ _ . \ 

YnM = I ^jJJ(-ayy[n,2]-J. (3.3) 

Comparison of (3.1) and (3.3) shows that as polynomials iny and a, 

En(yl/2, a), ifn is even, 
y-ll2En(yll2,a\ ifrcisodd. 

From this definition, we deduce the following generating form for the polynomials Yn(y, a). 

y.ov«H Z'tl ' <3-4> 

Theorem 4: The polynomials Yn(y,a) may be obtained as the expansion coefficients of the 
rational differential form 

to" l + (2a-y)P+a2p-

Consequently, the sequence Yn = Y„(y,a) is given by the recurrence Y0 = l, ^ = 1, Y2=y-a, 
Y, = y-2a, and Yn+2 = (y-2a)Y„-a%_2. 
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Proof: Use (3.4) to write the power series ^Y^a)!* as the sum of an even function of J 
and an odd function of T. Then from (3.2) we obtain 

pn(y,a)rdT^[(l+y-^)^Hl-y-V2)^), (3.5) 

where P(T) = l-yl/2T+aT2. Expanding and simplifying (3.5) yields the first statement of the 
theorem. The recurrence follows by multiplying both sides by l + (2a- y)T2 +a2T4 and equating 
coefficients of VdT. 

The generating functions for Yn and Zn may be used directly to deduce several identities relat-
ing them to Dn and En, some of which we record here. 

Theorem 5: In the polynomial ring Z[y, a] we have the identities 

0 Y2m-\(y,a) = Em-\iy -2a>al) for m > 0, 
(U) Z2m(y,a) = Dm(y-2a,a2) for^i>0? 

(Hi) Y2m(y,a) + Z2^l(y,a) = 2Em(y-2a,a2) - forw>0? 

(iv) Y2m(y,a)-Z2m+l(y,a) = 2aEm_l(y-2a,a2) forw>0. 

Proof: For (iii), use Theorems 3 and 4 and equation (3.2) to write 

Y <7« + Zn+\)T"dT = — ^ ^ =-j-+(odd function of T) dT 

= 2 Z ^ ( y ~ 2a> a2)T2mdT+(odd function of T)dT. 
m=0 

(3.6) 

Equating coefficients of T2mdT gives the result. The other parts are obtained similarly. 

Remarks: Replacing y with y2 in (ii) and using (2.4) yields the n - 2 case of the familiar compo-
sition formula 

Dmniy,a) = Dm{Dniy,a),a") (3.7) 

for the usual Dickson polynomials. An analogous formula 

E7^.fr,a) = yEnt_l{D2(y,a\al) (3.8) 

is obtained in a like manner from (i). Similar composition formulas for E2m and D2m+l may be 
obtained by combining (iii) and (iv) and replacing y with y2. 

Another set of identities relating the polynomials Yn and Zn may be derived from the 
observation that the characteristic polynomial l + (2a-y)T2 +a2lA is invariant under the trans-
formation a h-» -a, y h-» y - 4a, as follows. 

Theorem 6: If m is a nonnegative integer we have, as identities in the polynomial ring Z[y, a], 
(i) Z2m+l(y-4a,-a)^Y2m(y,al 

(ii) Z2m(y-4a,-a) = Z2m(y,a), 
(iii) Y2m(y-4a,-a) = Z2m+l(y,aX 

(iv) Jiii+iCv - 4a> ~a) = Y2m+i(y>a) • 
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Proof: Using the generating form from Theorem 3, we compute 

f , „ , . ,™rfJ (l-(2a-y)T+aT2-2a2T3)dT 

= (-(2a-y)T-2a2T3)dT (l+a^dT 
l + (2a-7)7^+a 2 r 4 + l + (2a -y ) r 2 + a274 

(3.9) 

Noting that the even part of this form agrees with the even part of the generating form for Yn from 
Theorem 4, and the odd part of (3.9) agrees with the odd part of the generating form for Zn from 
Theorem 3, gives results (i) and (ii). Repeating the argument starting from the generating form 
for Yn from Theorem 4 gives (iii) and (iv). 

Remark: Parts (i) and (iii) of Theorem 6 are equivalent. 

Finally, we will use the results of Theorems 5 and 6 to give an analog of Theorem 1 for the 
values of the polynomials Y„. 

Theorem 7: Ifp is an odd prime, a and k are integers, and m and r are positive integers, then 

Ympr_x{k, a) s am(k) • V'-i(*' f l ) (mod pr)> 

where 
\(k(k - 4a) |p), if m is even, 
[(k - Aa \p\ if m is odd. 

Proof: First, suppose m = 2j is even. From Theorem 5(i), we have 

Ympr-1(k,a) = EJpr_1(k-Za,a2) 

for all r > 0. Using the congruence 
Ejy-i(x>a) - (x2 " 4 a I /O • E

jprl-i(x>a) (m o dPr) (3A0) 

(see [5], Cor. C; [4], Cor. l(i)) with x = k-2a and a replaced by a2 yields the result for even m. 
If iw is odd, then mpr - 1 is even for all r > 0, and from Theorem 6(i) we have Y r_x(y, a) = 

Z r (y - 4a, - a). The result in this case then follows from the odd m case of Theorem 1. 

Remarks: While it is possible to prove a polynomial congruence that holds modulo prZ[y, a] 
(analogous to Theorem 2) for the Yn, the resulting congruence is rather inelegant due to the cum-
bersome "lifting of Frobenius11 involved (cf [5], Remark A.2, p. 43). However, the "modp" case 
of this congruence may be stated rather simply: Ifp is an odd prime and m is a positive integer, 
then the congruence 

ymp-i(y^)^Gm-Ym_1(yP,a") (modPZ[y,a]) (3.11) 

holds in the polynomial ring Z[y, a], where 

G ={(yO-4a))( p-1 ) / 2 , ifmiseven, 
m K>'-4a)(p-1>/2, ifwisodd. 

38 [FEB. 



ON MODIFIED DICKSON POLYNOMIALS 

For m even, this follows from Theorem 5(1) above and from Theorem 5 in [5]; for m odd, it 
follows from Theorem 6(1) and from the odd m case of Theorem 2. In particular, the special case 
m-\ yields the congruence 

Yp_l(y,a)^(y-4af^/2 (modpZ\y9a])9 (3.12) 

and the case m = 2 yields 

Y2p^{y,a)^(y{y-4a)fP^12 (mo&pZ\y,d\). (3.13) 

4 A COMPOSITENESS TEST 

The congruence (2.15) furnishes a compositeness test which contains the usual Dickson 
polynomial test and the Solovay-Strassen test as special cases. If n is a prime then for all integers 
k and a we have 

Zn(k,a) = (k\n) (mod/i) (4.1) 

by (2.15), where (k\ri) now (and throughout this section) denotes the Jacobi symbol. If n is odd 
then in the special case in which a - 0 the congruence (4.1) becomes 

k{n-l)l2^(k\n) (mod7i), (4.2) 

which is the basis for the Solovay-Strassen test. On the other hand, suppose n is odd and k is a 
quadratic residue modulo n. Writing k = b2 (mod n) and using (2.4), we have 

bZn(k,a)^bZn(b2,a) = Dn(h,a) (mod/i), (4.3) 

whereas (k\ri) = l. So, in the case where k is a quadratic residue modulo «, the congruence (4.1) 
is equivalent to the congruence 

Dn(h,a) = b (mod/i), (4.4) 

which is the basis of the usual Dickson polynomial compositeness test. 
If n is a prime, it is clear that (4.4) is satisfied for all integers a and b from (2.5) with m = 

r = 1 and p = n; and (4.2) is likewise satisfied for all integers k. However, if n is an odd compos-
ite number then there exist values of k with (k, ri) = 1 for which (4.2) holds; in this case, n is said 
to be a Euler pseudoprime to the base k. Furthermore, if n is an odd composite it may happen 
that (4.4) is satisfied for all integers b and a fixed integer a, in which case n is said to be a strong 
Dickson pseudoprime to the base a (cf. [2]). It is even possible that n may be a strong Dickson 
pseudoprime to every base; that is, (4.4) may hold for all integers a and b, although n is not 
prime. 

It is quite easy to see that the compositeness test we propose based on the congruence (4.1) 
admits no "strong pseudoprimes" to any given base a; in fact, if n is not prime then for any a the 
congruence (4.1) fails at least half the time, as we now record. 

Theorem 8: Let n be an odd composite integer, and let Un denote the group of units in the ring 
Z/wZ. Then for any integer a, the congruence (4.1) fails for at least half the elements kofUn. 

Proi9f: First, suppose that n is a nonsquare and write n = pem with p prime, e odd, and 
(m, p) = l. Suppose that (4.1) holds for k = b. Using the Chinese remainder theorem, choose an 
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integer c such that c = b (mod m) and (c\p) = -(b\p). It then follows that (c\ri) = -(b\n) but 
Zn(c,a) = Zn(h,d) (mod m); hence (4.1) cannot hold for k = c. Using the isomorphism Un = 
UmxUpe, we see that in fact half the integers c congruent to h modulo m have (c\p) = -(b\p). 
Therefore, in any congruence class modulo m at most half the elements k can satisfy (4.1). The 
theorem then follows in this case. 

Now suppose that n is a square and write n - p2m with/? prime. Since n is a square we have 
(k\n) = 1 for all integers k Suppose then that (4.1) holds for k = b; then evaluating the polyno-
mial congruence of Theorem 2 with r = 2 at a = a, y = b yields 

1^Z^9a)^b^^Z^(bP9aP) (mod^). (4.5) 

Now if c is any integer congruent to b modulo /?, then cp=bp (mod p2) and therefore 
Zmp(cP,aP) = Zmp(bP,aP) (mod/?2). However, if c^b (mod/?), then c(^1)/2 #M^1) /2 (mod p2) 
unless c = b (mod/?2). Thus, if c = b (mod/?) but c^b (mod p2) then (4.1) cannot hold for 
k = c. Rewriting n as n = pem' with e even and (p,mf) = l and using the isomorphism 
U„= Um, x Upe shows that more than half the integers c Glfn which are congruent to b modulo p 
are not congruent to b modulo p2. The theorem then follows in this case. 

The test described here may be implemented in time commensurate with that required for 
other well-known tests. Using the identities 

\Zn{Kdf-2a\ lin is even, 
ZjJk,a) = < (4.6) 

[kZn{k,af-2a\ if* is odd, 

and the recursion 
Zln^Ka)^Zn,lKa)Zn{Kd)-a\ (4.7) 

i n \ {^(k.^-aZ^ik^), ifwiseven, 
Zn+l(k,a) = \ (4.8) 

[kZ^k^-aZ^k^a), if^isodd, 
one may compute Zn{k,a) with O(log^i) multiplications, as outlined in Lemma 2.5 of [2] for 
Dn{k, a). The identities (4.6)-(4.8) were given in the case a - 1 in equations (3.2)-(3.4) of [1], 
and are proved for general a in the same manner. 
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