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1. INTRODUCTION 

In recent times a number of authors (see [l]-[4]) have revisited the well-known results of 
Fermat and Jacobl In connection with the polygonal representation of the integers. In the papers 
cited an. alternate derivation for such formulas giving the total number of representations of an 
integer as the sum of either two triangular or square numbers was provided. These enumerations, 
which are given in terms of elementary divisor functions, were deduced as a consequence of the 
Gauss-Jacobi triple product identity. In contrast to sums of polygonal numbers, the author has 
investigated within [5] the representation of the integers as a difference of two triangular num-
bers. By use of a purely combinatorial argument, it was shown that the number of such repre-
sentations of an integer n was exactly equal to the number of odd divisors of n. In this note we 
propose to extend the methods employed in [5] to the case of squares to prove the following 
result. 

Theorem LI: The number s(n) of representations of a positive integer as a difference of the 
squares of two nonnegative integers is given by 

m = \{do (») + (-irldl(n)+l + (-Vm*1\ (1) 

where d(ri) is the total number of divisors of n and, for each / e fG,1}, 

4(II)= I i. 
d\n,d^imod2 

To facilitate the result, we shall need a preliminary definition and technical lemma. 

Definition LI: For a given n eN\{0}, a factorization n = ab, with a,b G N \ { 0 } is said to be 
nontrivial if a & 1, n. Two such factorizations, atbt = a2b2 = n, are distinct if al^a2yb2. 

The following result, which concerns counting the total number of distinct nontrivial factori-
zations, ab = n9 may be known; however, interested readers can consult [5] for a proof 

Lemntm LI: Let n be an integer greater than unity and d(n) the number of divisors of n. Then 
the total number N(n) of nontrivial distinct factorizations of n is given by 

N(n) = 

[d(n)-2 

for square #t 

for nonsquare /i, 

d(n) - 1 
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2. PROOF OF THEOREM 1.1 

Our first goal will be to determine whether, for a given n eN\{0}, there exists x, y GN such 
that n = x2 - y2. To analyze the solvability of this diophantine equation, suppose n = ab, where 
a, b &N\ {0}, and consider the following system of simultaneous linear equations 

x~y = a 
x+y = b ( 2 ) 

whose general solution is given by 

f v (a + b b-a\ 

Now, for there to exist a representation of n as a difference of two squares, one must be able to 
find a factorization ab = n for which (2) will yield a solution (x, y) in integers. 

Remark 2.1: We note that it is sufficient to consider only (2) since, if for a chosen factorization 
ab = n an integer solution pair (x, y) is found, then the corresponding representation n = x2 - y2 

is also obtained if the right-hand side of (2) is interchanged. Indeed, one finds upon solving 
x'~/ = b 
xf+yf = a 

that x' = ~f- and y' = *=£•. Thus, xf = x while y' = -y, which yields an identical difference of 
squares representation. 

We deal with the existence or otherwise of those factorizations ab = n, which gives rise to 
the integer solution pair (x, y) of (2). It is clear from the general solution of (2) that, for x to be a 
positive integer a, b must at least be chosen so that a + b is an even integer. Clearly, this can only 
be achieved if a and b are of the same parity. Furthermore, such a chose of a and b will also 
ensure that y = x~a is also an integer. With this reasoning in mind, it will be convenient to con-
sider the following cases separately. 

Cmt It n = 4k + 2, k GN. In this instance, if ab = 2(2k +1), then one cannot possibly find 
an a and b of the same parity, so no integer solution (x, y) of (2) can be found. Consequently, 
s(4*+2) = 0. 

Case 2s n*4k + 2. Clearly, n = 2m(2k + l) for some n GN\{1} and 5 G N . Considering first 
m = 0, it is immediate that all factorizations ab = 2k +1 will produce integer solutions to (2) since 
a and b are odd. Alternatively, when m>\ one can always construct, for every factorization 
cd = 2k +1, an a and b of the form (a, b) = (21 c, V*d) with i e {1,2,...., m -1} that will produce 
an integer solution of (2). Hence, for the m and k prescribed above, one can conclude that 
s(2m(2k + l))>0. 

Having determined the set of integers n which are of the form n = x2-y2, we can now 
address the problem of finding the exact number s(n) of such representations. Primarily, this will 
entail determining whether any duplication occurs between the representations generated from the 
various distinct factorizations discussed in Case 2. To this end, we need to demonstrate that if in 
Z\{0} ajbt = ajbj, with ai * aj9 bj for i * j , then one has a, +ft, *a } +bj. Suppose to the contary 
that ty+b^aj+bj, then there must exist an r GZ\{0} such that aj=af+r and bj=bj+r. 
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Substituting these equations Into the equality apt = apj9 one finds a^bj +r) = (af +r)A-. Hence, r 
must be a nonzero Integer solution of 

r(at~hj) = 0. (3) 

However, this Is Impossible as r = 0 Is the only possible solution of (3) since at-bj * 0; a contra-
diction. Consequently, If for two distinct factorizations atht = afij = n9 one solves (2) to produce 
corresponding Integer solutions (xj9yt) and (xj9yj)9 then we must have xi=(ai+bi)/2*(aJ + 
bj) / 2 = Xj and so yt = xt-a^Xj*~a- yj. Thus, In order to calculate s(n) for an n * 4k + 2, one 
must determine the total number of distinct factorizations discussed In Case 2. Considering when 
n is odd we have, from Lemma LI, N(ri) nontrlvlal distinct factorizations. However, as 
(a, i) = (l,w) contributes a representation, one has s(n) = N(n) + l9 which we write here using 
d(n) = d0(n) + dx(n) as 

( ~ (dQ(n) 4- dx(n)) for nonsquare n, 
(4) 

j (d0 (n) + dx (n) + 1) for square n. 

Suppose n is even, then, as was observed previously, s(n) Is equal to the total number of distinct 
factorizations atbt = n were both ^ and bt are even. Denoting the number of distinct factoriza-
tions of« = atbt with a,. and bt of opposite parity by Nf{n)9 observe that sin) must be equal to the 
difference between the number of distinct factorizations of n and N'(n)9 that Is, s{n) = N(n) + l~ 
Nf(n). To determine N'(n), consider an arbitrary factorization (ci9dt) (possibly trivial) of the 
odd number 2~mn. Now, If 2~mn Is not a perfect square, then (2mci9di) and (ci9 2mdt) must be 
distinct factorizations of n9 which cannot be duplicated by the use of an alternate factorization 
(cj9dj) of 2~mn. Thus, from Lemma 1.1, there are 2(^-w*) distinct factorizations afy =n 
having at and bt of opposite parity. Similarly, If 2"mn is a square, then (2mci9df) and (ci92mdt) 
will be distinct factorizations provided ct ^di9 and so again by Lemma 1.1 we have, counting the 
single contribution from (2mci9ct)9 precisely 2(^2~2W^--l) + l distinct factorizations afif =n with 
af and bt of opposite parity. Consequently, In any case, N'(n) = d(2~mn). Now, observing that 
d(2~mn) = dx(n) and d(n) = dQ(n) + dx(ri), we obtain, for an even n & 4k + 2, the following expres-
sion: 

f \ (dQ(n) - dx(n)) for nonsquare w, 
(5) 

j - (4)(#i) - ^(w) +1) for square n. 

Recalling that d(n) Is odd If and only if n Is a square, we find 

1 + (- f\d^>+1 |0 for nonsquare n9 

2 ) 1 for square n. 

Thus, one can combine equations (4) and (5) into a single expression Independent of the parity of 
n as indicated In (1). Finally, we show that (1) holds for n = 4k + 2. In this Instance, as n cannot 
be a square, \{l + (-l)d(rl)+l) = 0; moreover, dQ(2(2k +1)) = di(2(2* +1)), since every odd divisor 
d of n Is In one-to-one correspondence with an even divisor of w, namely, 2d. Thus, from (1), we 
find that ^(2(2* +1)) = ̂ (d0(2(2k +1)) -dt(2(2k +1))) - 0 as required. 
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Example 2.1: For a given integer n, whose prime factorization is known, one can determine all 
of the s(n) representations of n as a difference of squares from the factorizations ab~n with 
a>b>0 and a = ±b (mod 2), using (x9y) = (j2f̂ 3 - ^ . To illustrate this, we shall calculate the 
representations in the case of a square and nonsquare number. Beginning with, say n = 22 -5-7, 
we have that d^(140) = 8, 4(140) = 4, and rf(140) even, so 5(140) = | ( 8 - 4) = 2. Thus, from the 
two factorizations (a,b) e{(2-7?2-5)?(2«5-732)}5 we find that 140=:122-22, 362-342. In the 
case of w = (2-5-7)2, we have.d^(4900) = 18, 4(4900) = 9, ^(4900) odd; therefore, s(4900) = 
£(18-9 + 1) = . Thus, again from the five factorizations (a, b) e {(2 • 52 - 72,2), (2 - 52 - 7,2 • 7), 
(2-5-7,2-5-7),(2-72,2-52),(2^5'72,2-5)}, we now obtain that 4900- 12262-12242, 2502-
2402,702 ™02,742 -242,1822 -1682. 

To conclude, we present a simple application of Theorem 1.1 for counting the number of 
those partitions of an integer whose summands form a sequence of consecutive odd integers. 
Note that for an odd integer n we do not count n = 0+w as a partition of the required type as 
zero is not an odd integer. 

Corollary 2.1: If p0(n) denotes the number of partitions of a positive integer n having summands 
consisting of consecutive odd integers, then 

Proof: Recalling that the m®1 perfect square is equal to the sum of the first m odd integers, 
one sees that the representation n = x2 ~y2 gives a partition of the required form, provided that 
x-y>\. Moreover, as a consecutive square difference representation can only occur for an odd 
integer, we clearly must have p0(n) = s(n) - 1 for odd n and p0(n) = s(n) for even n. D 
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