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1. INTRODUCTION 

The following identity is well known: 

# i + # = J w 0-i) 
Recently, Melham [6] proved the generalization 

Fn+k+l + Fn-k - F2k+lF2n+l (l 2 ) 

for all integers n and k9 and he also proved 

At+*+l+ At-* ~ ^2£+1^2/H-l° (1-3) 
Formula (1.2) appears to be a special case of the more general formula 

F?H-irJ-1F? = F*.jF*, 0.4) 

which appears without proof in [3, p. 59]. Obviously, (1.4) implies (1.2); we will show later in 
the paper that (1.2) also implies (1.4). Our main purpose, however, is to extend (1.4) to the gen-
eralized Fibonacci sequence {wn} = {wn(a9 b; p, q)} defined by 

wQ = a9 wx = b; wn = pwn_x-qwn_2 (n>2), (1.5) 

where a, b9 p9 and q are arbitrary complex numbers, with q^O. The numbers wn have been 
studied by Horadam (see, e.g., [4]), and some special cases were investigated by Lucas [5]. 
Obviously the definition can be extended to include negative subscripts; that is, for n = 1,2,3,..., 
define w_n = (pw_n+l-w_n+2)/q. A useful and interesting special case is {un} = {wn(0,1; p, q)}; 
that is, 

iio = 0, uy = 1; un = pun_x - qun_2. (1.6) 

One of the results in the present paper is 

w2
n - qn-J'wj = Mn_j(bwn+J - qaw^.^), (1.7) 

which is valid for arbitrary a, b9 p9 q9 and for all integers n and/ Formula (1.7) contains (1.1)-
(1.4) as special cases. In fact, we will prove a more general result (Theorem 3.1 below) that con-
tains (1.7) as a special case. 

2* A BASIC IDENTITY 

The following formula is essential for the proof of (1.7). 

Theorem 2J: For arbitrary a9 b9 p9 q9 and for all integers m and n9 HVm+i= wm+iun+i "WJ^m 
where wk and % are defined by (1.5) and (1.6), respectively. 
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Proof: We will first motivate Theorem 2.1 by showing how it can be derived, without prior 
knowledge, by a combinatorial argument, if we put some restrictions on a, b, p, q, and the sub-
scripts. We will then verify the theorem by means of Binet formulas, and all the restrictions will 
be removed. We note that there has been some recent interest in proving Fibonacci identities by 
means of combinatorial arguments [1]. 

Assume p > 0, -q > 0, a > 0, b > ap, and suppose we have a sequence of towns labeled X9 0, 
1, 2, 3, ... . Starting at town X9 a driver wants to reach town n under the following conditions: 
(1) There are exactly a different routes from town X to town 0; (2) There are exactly h different 
routes from town X to town 1 (including through town 0); (3) If k > 1, the driver cannot go 
directly from town X to town k; (4) Once town k has been reached, for any k > 0, there are only 
two ways to continue—the driver can go to town k + linp different ways, or he can bypass town 
k +1 and go directly to town k + 2 in -q different ways. Let rn be the number of different routes 
from town Jf to town n. Then r0=a,rl=b, and for n > 1, rn = prn_x - qrn_2. Thus, rn = wn, and it 
is clear that the number of ways to go from town k to town k +n, for k > 0, is wn+l(0,1; p9 q) = 

If the driver reaches town m+n + \9 there are two cases: 
Case 1. The driver goes through town m + l. She can reach town m +1 in wm+l ways, and 

then she can continue to town m+n +1 in ww+1 ways. 
Case 2. The driver bypasses town m + l. She can reach town m in wm ways, and then there 

are -q ways to reach town m + l. From town m + 2, the driver can continue to town m + n + l in 
un ways. 

Therefore, the number of different routes from town X to town m+n + l is 

and Theorem 2.1 is true with the given restrictions on a, b, p, q9 and the subscripts. By a remark-
able theorem of Bruckman and Rabinowitz [2], if an identity involving generalized Fibonacci num-
bers is true for all positive subscripts, it is true for all nonpositive subscripts as well. Thus, the 
identity is true for all n and m. 

Now we can remove all restrictions on a, b, p, and q by looking at the Binet forms of wn and 
un. Let a and fi be the roots of x2 - px + q = 0. Then ap = q9 and the Binet forms are (for some 
constants Al9 A^, Bl9 B2): 

wn = Atan+A2p\ un = ^ ^ , \£a*09 (2.1) 
a — p 

wn = Bxan + B2na\ un = na"-\ if a = /?. (2.2) 

If each of the numbers in Theorem 2.1 is replaced by its Binet form (2.1) or (2.2), we can verify 
that Theorem 2.1 is valid with no restrictions on a, h9 p9 or q. This completes the proof. D 

We note that the actual values of Ai9 Al9 Bl9 B2 are not needed in the above proof. However, 
for completeness we give the values here: 

Tfa*fi, then At = ^ § and ^ = H£z* jf a = fi, thee Bt=a and B2 =tz£E^ H* l a-p a-p a 
We also note that Theorem 2.1 can be proved by induction on n. 
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Corollary 2.1: For arbitrary a, h, p, q, and all integers w, wn = hun - qaun_x. 

Proof; In Theorem 2.1, replace m by 0, and replace n by (n -1). • 

3. THE MAIN RESULT 

In this section we assume that wn = wn(a,b;p,q) is defined by (1.5), and we assume that 
vn = wn(c> d> p, q) for arbitrary c and d. That is, 

v0 = c, Vj = d, and vn = p v ^ -gvw_2. (3.1) 

Theorem 3.1: For arbitrary a, A, c, J, p, q, and for all integers m, n, k, 

where vj9 wj9 and Uj are defined by (3.1), (1.5), and (1.6), respectively. 

Proof: We first show the theorem is true for all integers k > 0 by using induction on k. The 
case k = 0 is trivial; if k = 1, then by the corollary to Theorem 2.1, 

^+l**W ~ <PmWn = V^+iCK+l " 00*0 " tfVw(H " ^ „ - i ) 
= *0W4i+l - # V O - 9»(vin+lHi - WV-l ) 

with the last equality following from Theorem 2.1. Since ux = 1, we see that Theorem 3.1 is true 
for& = l. Assume Theorem 3.1 is true for k = 0,1,..., j . Then 

vm+J+lwn+J+l - qJ+lvmwn = (vm+J+lwn+J+l - qvm+Jwn+J) + (qvm+Jwn+J - qJ+lvmwn) 

= (bvm+n+2j+l - I™**!*!]) + WjQWmtn+J ~ W^+y- l ) (32) 

Now in Theorem 2.1, if we first replace n hyj and then replace m by m+n+j, we have 

Vm+n+2j+l + <Fn*n+jUj = Vn*n*j+luJ+\ , (3.3) 

and if we first replace n by j and then replace m by m+« + y - 1 , we have 
+ gvwfw+,_1^ = v ^ / i ^ . (3.4) 

Substituting (3.3) and (3.4) into (3.2), we have 
vm+J+lwn+J+l - qi+lvmwn = uJ+l(hvm^J+l - qavm+n+Jl 

and Theorem 3.1 is valid for k = j + 1. By induction, Theorem 3.1 is valid for all k > 0 and all 
integers m and n. 

We now want to show Theorem 3.1 is valid for all integers k. Clearly u_x - -q~l, and it is 
easy to prove by induction that u_k = -q~kuk for all integers k. In Theorem 3.1, replace m by 
m-k and replace n by n-k to get 

V „ ~qkvm-kWn-k = vk(hvm+n_k - q a v ^ ^ X 
so that 

and we see that Theorem 3.1 is valid for all integers k. This completes the proof. • 
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Corollary 3.1: For arbitrary a, ft, c, rf, p, qr, and for all integers n andy, 

where v ,̂ w^, and % are defined by (3.1), (1.5), and (1.6), respectively. 

Proof: First rewrite Theorem 3.1 by replacing both m and n by / In the resulting equation, 
replace k by (n - j) to obtain Corollary 3.1. D 

Corollary 3.2: For all integers n andy, 

Lfn + (-irJ+%FJ = Ln+JF^j9 (3.5) 

4F, + (-lr'tyV = 4-A/. (3.6) 
Proof: Equation (3.5) follows from Corollary 3.1, when vn = Ln and wn = F„. Formula (3.6) 

follows from (3.5): replacey by -y , and use L_j = (-ly'Z-, F.y = (-l)y+1i^-. D 

Corollary 33: For arbitrary a, ft, /?, q9 and for all integers n andy, 
w2 _ ?^yw2 = ^(bw^j - qawn+H), 

where wfc and % are defined by (1.5) and (1.6), respectively. 

Proof: In Corollary 3.1, let vk - wk for all integers k. D 

Corollary 3*4: For all integers ft andy, 
ir2 + (_ir;-i/72=ir_./r+.) 

Z2„ + (-ir>-1Z5 = 5Fn_yFn+y. 
In the final corollary, which follows directly from Theorem 3.1, we let Gn = wn(c,d; 1,-1), 

with c and t/ arbitrary. That is 
G0 = c, Gx = </, and Gw = G ^ + Gn_2 (3.7) 

for all ft. For example, Gn = Fn if c = 0, d = 1, and Gn = Z,n if c = 2, tf = 1. 

Corollary 3.5: For all integers #», «, and ̂ , 
< W w + (-l)*+1GmF„ = ^ G ^ , 

where Gn is defined by (3.7) for all w. 

4* EQUIVALENCE OF (1.2) AND (1.4)' 

The following theorem generalizes Mdhairfs results (1.2) and (1.3), and it proves that (1.2) 
and (1.4) are equivalent. 

Theorem 4.1: For arbitrary a, b, p, q, and for all integers n and k, 

w^+k - q2kwlk = M2k(hw2n - qaw2n_l\ (4.2) 

where Wj and Uj are defined by (1.5) and (1.6), respectively; also, (4.1) and (4.2) are equivalent. 
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Proof: It is clear that (4.1) and (4.2) together are equivalent to Corollary 3.3, so (4.1) and 
(4.2) are valid formulas. To see that (4.1) and (4.2) are equivalent to each other, we first assume 
that (4.1) holds for all integers n and k. From Corollary 3.3, we have 

9*Lk = wl+k+i-bwin+ik+i+qcwin+ik- (4-3) 
Subtracting q2k+lw2.k from both sides of (4.3) yields 

q A k - q2k™2n-k) = (vLk+1 - q2k+lwn-k) " *W>2II+2*+1 + <!™2n*2k 

= U2k+i(bw2n+i ~ ̂ 2 w ) " bw2n+2k+l + qaw2n+2k 

= - *0*W2fc + l " ^2k+lW2n+l) + qaiPln+Vt ~ ^2k+l^2n) 

= qhu2kw2n-q2au2kw2n_l, 

with the last equality following from Theorem 2.1. Thus, since q * 0, 
wLk - %2kwn-k = U2k(bw2n " WM>2n-l)> 

and (4.1) implies (4.2). The proof that (4.2) implies (4.1) is entirely similar. D 
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