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1. INTRODUCTION 

The/?-adic order, vp(r), of r is the exponent of the highest power of a prime/? which divides 
r. We characterize the/?-adic order vp(Fn) of the F„ sequence using multisection identities. The 
method of multisection is a helpful tool in discovering and proving divisibility properties. Here it 
leads to invariants of the modulo p2 Fibonacci generating function for p ^ 5. The proof relies on 
some simple results on the periodic structure of the series Fn. 

The periodic properties of the Fibonacci and Lucas numbers have been extensively studied 
(e.g., [13]). (For a general discussion of the modulo m periodicity of integer sequences, see [8].) 
The smallest positive index n such that Fn = 0 (mod/?) is called the rank of apparition (or rank of 
appearance, or Fibonacci entry-point) of prime/? and is denoted by n(p). The notion of rank of 
apparition n(m) can be extended to arbitrary modulus m>2. The order of/? in i^(p) will be 
denoted by e = e(p) = vp(Fn(py) > 1. Interested readers might consult [6] and [9] for a list of rele-
vant references on the properties of vp(F„). 

The main focus of this paper is the multisection based derivation of some important divisi-
bility properties of Fn (Theorem A) and Ln (Theorem D). A result similar to Theorem A was 
obtained by Halton [4]. This latter approach expresses the/?-adic order of generalized binomial 
coefficients in terms of the number of "carries." Theorem A can be generalized to include other 
linear recurrent sequences and a proof without using generating functions was given in Exercise 
3.2.2.11 of [6], The latter approach is implicitly based on multisections. 

The generating functions of the Fibonacci and Lucas numbers are 

f(x) = fdFnx"= x
 2 and h(x) = fiLj*= 2 X

 2, 
M=n I X X M_A 1 X X 

respectively. In this paper the general coefficients of these generating functions will be deter-
mined by multisection identities, as we prove 

Theorem A [9]: For all n > 0, we have 
[0, i fwsi ,2 (mod3), 
|l, if/ is 3 (mod 6), 
3, if/is 6 (mod 12), 

\y2(n) + 2 if n = 0 (mod 12), 
"2tf;H 

_ \Vp(n) + e(p), if w s 0 (mod n(p)\ 
' p V * W ~(0 , ifw#0 (modzi(/?)), 

The cases p = 2 and p = 5 are discussed in Sections 2 and 3, respectively. The general case 
is completed in Section 4. The case of p = 2 has been discussed in [5] using a different approach. 
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The multisection based technique offers a simplified treatment of this case. We extend the 
method to the Lucas numbers in Section 5. 

By the w-section of a power series g(x) = T^=0anxn we mean the extraction of the sum of 
terms atxl in which / is divisible by m. We use the resulting power series gm(x) = H<^=0amnxmn in 
its modified form gm(xllm) = H™=0amnxn and call it the ^-section as well. The corresponding se-
quence {^mJn=o of coefficients is referred to as the m-sectioe of the sequence {aj*=0. The 
notion of m-section can be generalized to form a sum of terms with index / ranging over a fixed 
congruence class of integers modulo m. It will be used in Sections 2 and 5. There are various 
general multisection identities (cf. [10, p. 131] or [1, p. 84]), and they can be helpful in proving 
divisibility patterns (e.g., [2]). The #f-section of the Fibonacci sequence leads to the form 

]?0
Fm"x" = i-Lmxf(-irxi- (1) 

The denominators are referred to as Lucas factors. For other applications of Lucas factors, see 
nil. 

The present proof of Theorem A is based on a multisection invariant. In fact, we will see in 
(5), (13), and (14) that x / ( l - x ) 2 or x/(l + x)2 is an invariant of the properly sected Fibonacci 
generating function taken mod p2 for every prime p & 5. The power ofp can be improved easily. 

We shall need some facts on the location of zeros in the series {Fn mod#w}w 0̂. 
Theorem B (Theorem 3 in [13]): The terms for which Fn = 0 (mod m) have subscripts that form 
a simple arithmetic progression. That is, for some positive integer d = d(m) and for x = 0, 1, 2, 
...,n = x-d gives al! n with Fn = 0 (mod/?) unless / is a multiple of «(p). 

Note that d(m) is exactly w(/w), and d(p*) = d(p) = n(p) for all 1 < / < e(p). It also follows 
that Fl # 0 (mod/?) unless / is a multiple of n(p). 

We denote the modulo m period of the Fibonacci series by n(m). Gauss proved that the ratio 
~^r is 1,2, or 4. In fact, we get 

Lemma C[9]: The ratio ™~~ can be characterized folly in terms of x = Fn{pyt = Fn(/7)+1 (mod/?) by 

I «(/?), iffx = 1 (mod/?), 
7r(p) = <2n(pX i f fxs-1 (mod/?), 

[4n(pX iffx2 = - l (mod/?). 

In the first case, p must have the form 10/±1 while the third case requires that p = 4/ + 1. 

We also will repeatedly use two identities (cf. (23) and (24) in [12]) for the Lucas numbers 
with arbitrary integers h > 0: 

L2h = 2(-lf + 5Fh\ (2) 

L2
h = 4(-lf + 5Fh

2. (3) 

It is worth noting that our proofs of Theorems A and D rely on three congruences for the 
Lucas numbers (cf. Lemmas 1, 2, and 3) which, in turn, can be improved significantly (cf. Lem-
mas 1 \ 2\ and 3 *) using the theorems. 
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2. THE CASE OF p = 2 

By adding together the six 6-sectionsZ^=0i^w+/x6w+/, / = 0,1,..., 5, of the generating function 
f(x), we obtain 

, , v x + x2 +2x3 + 3x4 +5x5 + 8x6 -5x7 + 3x* -2x9 +x10 -x11 

f(X) = 7 7} 
JK ' l-18x6 + x12 

which is equivalent to the recurrence relation Fn+l2 = lSFn+6-Fn, F0 = 0, Fl = l9...9. Fn = %9. 
This immediately implies that 

0, if >? = 1,2 (mod 3), 
1, ifw = 3 (mod 6), 
3, ifws6 (mod 12). 

It remains to be proven that 
v 2 ( ^ ) = v2(n)+4. (4) 

To this end, first we note that 

Lemma 1: L^ = 2 (mod22) for all k > 0. 

In fact, the modulo 4 period of Fn is 6, and this implies L6J = 2F6j+l = 2 (mod 4) for every 
integer j >0. 

By identity (1), we obtain that, for all k > 0, 

1 ^ = , j X
x + X^7rrt=t"*" (m°d22). (5) 

We have Fl2 = 144 = 24 • 9. By setting * = 0 and n = 2 in (5) it follows that F12.2 IFn=2 (mod 
22), thus v2(i^4) = v2(F12) + 1 = 5. In general, we use n - 2 and observe that 

^(^1M*+i) = v2(F1M4) + l = - = V2(F12) + * + 1 = 4 + V2(2*+1) 

follows by a simple inductive argument. We complete the proof of (4) by noting that, for n odd, 
V 2 ^ W „ ) = v2(F,Mt) holds by (5). D 

A sharper version of Lemma 1 can be derived from Theorem A (once it has been proven). 

Lemma 19: LU2k = 2 (mod 22*+6) for all * > 0. 

Proof of Lemma 1f: We note that Ll%lk = 2 (mod 2k+3) can be derived easily from the per-
iodicity of Fn, for Z12.2, = 2F12>2,+1 = 2 (mod 2*+3) as x(2l) = 12 • 2/"3, / > 1. We notice, however, 
that the sharper Z,12 = 322 = 2 (mod 26) also holds. Moreover, identity (2) yields -£12.2*+i =2 
(mod F2

22kX and we derive that LU2k+l=2 (mod (24+k)2) using Theorem A. Accordingly, we 
can replace the exponent ofp in identity (5). D 

3. THE CASE OF p = 5 

This case is a little more involved. We will find v$(F5kn), k > 1, in terms of v5(F5k) in three 
steps. In the first two, we assume that («, 5) = 1, then we deal with the case of n = 5. 
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First,, we take the 5-section of f(x) and obtain 

IV"-n^?"TT?"lv (mod5)-
which guarantees that v5(F5n) = v5(F5) if (n, 5) = 1. In the second step, we try to generalize this 
relation for indices of the form 5kn, (n, 5) = 1, k > 2. We shall need the following lemma. 

Lemma 2: L5k+\ -L5k=0 (mod 25) for k > 1. 

Proof of Lemma 2: By identity (3) we have, for * > 1, that L2
5k+l-L2

5k = 0 (modF2
k). It 

follows that 
(L5k+i - L5k)(L5k+i + L5k) = 0 (mod 25) (6) 

by Theorem B. Clearly, 
L5k+\ z=l5k = L5zzl (mod 5), (7) 

thus the factor L5k+\ + l5k cannot be a multiple of 5. Therefore, L5k+\ -L5k=0 (mod 25) by iden-
tity (6). • 

We note that v5(F25) = 2. It is true that, for * > 1, 

I V + 1 M %K n I ZZllL-lZJL 
\ •*• sk+l *ek J 1 - L5MX - x2 \~L5kX~ x2 

X X 
-(L k+i -L k) 5 + 5 1 -L5k+ix-x2 l-LskX-x2' 

The first factor is divisible by 25 according to Lemma 2. For (w, 5) = 1, we get 

i.e., v 5 ( i ^ ) = K5(iy) by induction on A > 1. 
Now we turn to the case of n = 5. For k > 1 and w = 5, we get that iy+2 /F5k+\ = /y+i I F$k 

(mod 25); therefore, 
v5(Fjk+2) = V5(F5*+I) + l = - = v5(F5) + * + l. 

by induction using v5(F25 /F5) = l. The proof of the case p = 5 is now complete. D 

Note that, once it is proven, Theorem A guarantees the much stronger lemma. 

Lemma 2':L5k+\ = L5k (mod 52k ) for k > 1. 

We note that an alternative derivation of (8) is possible by (7) but without using Lemma 2: 

1 — Lijt+iX — X I — L^k X — X n _ 0 

with Fj2) being the 2-fold convolution of the sequence Fn. The m-fold convolution of the se-
quence Fn is defined by 

Fn
(m)= Y ^F ...E , 

n Led h h im
 ? 
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which has the generating function [/OOF- Note that, by identity (7.61) on page 354 in [3], 
/*» = ̂ 5(2nFn+l-(n + l)Fn) = f(2Fn+l-Fn)-±Fn = fLn-\F». We can easily find the period of 
Fnm) by the general theory (cf. [8]) or by simple inspection. The latter approach also provides us 
with the actual elements of the period. It is clear that 100 is the modulo 25 period of nLn-Fn, 
and nLn -Fnis divisible by 25 if n is divisible by 5. It follows that 5 \F^ if 5 \n. 

4. THE GENERAL CASE 

In this section/? is a prime different from 2 and 5, and n denotes an integer for which vp(n) is 
either 0 or 1. We will use either an n(p)pk- or a 2n{p)pk -section in obtaining the required divisi-
bility properties. First, we prove 

Lemma 3: For any prime /? = 3 (mod 4), 

L f 2 (mod/?2), if K(J>)In(p) = \ 
n{p)pk [-2 (mod/?2), if7r(p)/n(p) = 2. 

Proof: Formula (3) yields that, if h > 0 is even, then L\h -L2
h = 0 (mod F%). Note that n(p) 

is even for p = 3 (mod 4) (see [13]). By setting h-n(p)pk we obtain 

(L2n{p)pk - Ln(p)pk)(L2n(p)pk + Ln(p)pk) » 0 (mod p2). (9) 

Therefore, either 
L2r,(P)pk s 4(p)P* (mod/?2) (10) 

or 
L2n(p)p* = -Lnip)pk (mod/? 2 ) , (11) 

for otherwise both L2n{p)pk - Ln{p)pk and L2n{p)pk + Ln{p)pk will be divisible by/?. This would lead 
to Ln{p)pk = 0 (mod/?), which is impossible as Ln^p)pk = 2Fn(p)pk+l (mod/?). According to identity 
(2), L2n(p) = 2 + 5F2

{p), which yields L2n{p) = 2 (mod p2) and also 

W s 2 (mod^2) (12> 
by Theorem B [13]. 

If 7v(p) ln(p) = 1, then F^+i = 1 (mod /?) by Lemma C, and we get Lln(<p) = Z,w(/?) = 2 (mod 
p) and, similarly, Z^C/OP* = Ln(p)pk s 2F2„(p)/?*+1 = 2 (mod /?), leading to (10). If n{p)ln{p) = 2, 
then Fn(p)+l = -1 (mod /?) and Z,2w(p) = -Ln{p) = 2 (mod /?) and L2n{p)pk = - 4 ( p ) p * = 2 (mod/?) 
corresponding to (11). • 

We are now able to finish the proof of Theorem A. In the case of 7i{p) ln(p) = 1 and 2, we 
can use 

t^fx" = 1 L
 X

 X + X2 - aflj ' Z C + i r 1 - " (mod/*), (13) 

which proves vp{Fn{p)pkn) = vp(Fn{p)pk) + vp(n) for vp{n) < 1. In particular, by setting w = /?, we 
obtain v/,(/^/,)pik+,) = rp(Fn(/7)i?*) +1, and ^(Fw(/?)/?,+1) = e(/?) + * + l follows by induction on 
* > 0 . In summary, we derived that vp(Fn(p)pkn) = e(p) + k + vp(n) and the proof is now 
complete. 
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On the other hand, If n(p)/n(p) = 49 then we switch from using an n(p)pk-section to a 
2*(p)/>*-section. By the duplication formula (cf. [3] or [12]), we get F2n{p)pkn = Fn{p)pknLn{p)pkn 

for any integer n > 0. This yields vp{F2n{p)pkn) = vp(Fn(p)pkn). We consider 

y I2n(p)pkn_n . 
-X" = 

^ 0 ^2n{p)pk 1 ~ ^2n(p)pkX + X 

Identity (12) implies that 

£ |KP)Pf»xn. * ^ ̂ m„ (modp2) ( 1 4 ) 
n=0 r2n{p)pk (l~X) n=l 

The proof can be concluded as above for 
vpiFn{p)PQ = ^(^2<p)P^) = vP(ft>i(p)) +* + vp{n) 

^vp(Fn(P))+k + vp(n) = e(j)) + k + vp(n). Q 

By means similar to Lemma 1', we can prove a stronger version of Lemma 3. 

Lemma 3f: For any prime p = 3 (mod 4), 

_ f 2 (mod /#*•"(/>»), if ^(p) /«(/?) - 1 ? 

*/»/* ™ j _ 2 ( m o d p2(k+e(p))^ if ^ ln(p)^2. 

Proof: We know that vp(/^p)p*) = 2(* +2(p)) by Theorem A. Thus, we can replace p2 by 
p2(k+e(p)) ie identities (9)~(14). D 

We note that, according to Lemmas 1? and 3', the denominators of the multisection identities 
(5), (13), and (14) have either 1 or -1 as a double root modulo some p-power with exponent 
2k + 6 or 2(k + 2(p)). This observation, combined with the remarks made in the proofs of the 
lemmas, helps in obtaining the foil description of the structure of the periods of the corresponding 
multisected sequences [cf. (5), (13), and (14)] with respect to the above-mentioned p-power 
moduli (p*5). 

5. LUCAS NUMBERS 

By using methods we applied to the Fibonacci sequence, we obtain 

V F n ^ 2 + x + 3y2-f4x3-f7x4 + llx5-18x6 + l ly7-7y8+4x9-3x1 0 + x11 

izr*" i»i8x6+x12 
which proves that 

[0, i f / i s l ,2 (mod 3), 
v2 (LJ = 12, if n s 3 (mod 6), 

[1, ifn&O (mod 6). 

If p = 5, then the modulo 5 periodic pattern of Ln is 2, 1, 3, 4, and thus S\Ln. 
If p*2 or 5, thee the order vp(Ln) can be derived easily by the duplication formula and 

Theorem. A (see [9]). Here, for the sake of uniformity, we use multisection Identities. We need 
the companion multisection identity to (1) for the Lucas sequence: 
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w|^-.-wW' (15) 
As Ln=F2n/Fn,wt see that Ln is divisible by p only if In is a multiple of n(p) while w is not; in 
other words, if n is an odd multiple of n(p)/2. This implies that we have to deal only with the 
case in which n(p) is even. The generalized -^-sected Lucas sequence will suffice to prove 

Theorem D: If p * 2 and n(p) ln{p) & 4, then, for every k > 0 and m = {n(p)l2)pk, 

0^E 2 ^ (mod/*), if7t{p)ln{p) = \ 

^ ^ = Z2^(-l)^nxn (modp2) if *(p) //i(p) = 2, 2|n Aw , -

yielding ^ ( Z J = vp(n) + e ( » if w = w(p) /2 (mod w(p)). 

Proof: Note that the conditions guarantee that n(p) is even. We discuss the case in which 
7t(p) ln{p) = 1 with k = 0 only, while the other cases can be carried out similarly. We note that 

It is known that n(p)l2 is odd ifn(p)ln{p) = 1 (cf. [9]). The common denominator of the above 
difference can be simplified. In fact, according to identity (15), the denominator of hn^(x2) is 

1 ~ 4i(p)X + X = 1~~ ( Ai(p)/2 + 2)X + * 

by Iw(/>) = Z ^ y 2 - 2(-l)n(p)/2, which follows from (2) and (3). We get 

l-Ln{p)x2 +x4 = (1-x2)2 ~Ll(p)/2x2 ^ (l-x2)2 (modp2). 

Finally, it is easy to see that l(x) simplifies to 

The exponent ofp can be increased to 2(k + e(p)) in the above proof and therefore in the theorem 
also. 
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