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It is well known that there exist arbitrarily long sequences of consecutive 
positive integers that are all composite, e. g. , (n + 1)! + 2, (n + 1)! + 3, • • • , 
(n + 1)! + (n + 1). This statement can also be formulated thus: for any given 
positive integer n there exist n consecutive composite positive integers 
each of which has at least one prime divisor. The following is a twofold gen-
eralization of the last statement. 

Theorem. In any infinite arithmetic progression 
(1) ax + b, a, b integers, a ^ 0, x = 1,2,3,- •• 
and for any two positive integers, n, v, there exist n consecutive members 
each of which is divisible by at least v different primes. 

Proof. (By induction on v ). Since a ^ 0, we have a < 1 or a § 1. 
We may suppose, without loss of generality, a ^ 1, since if a < 1 we can 
consider the progression -ax - b, the members of which have the same abso-
lute values as the corresponding members of (1). Thus for x > (1 - b)/a, 
(1) is an increasing sequence of positive integers >1. Since any integer > l i s di-
visibleby at least one prime, our statement is valid for v = i . From the valid-
ity of the statement for v we shall prove its validity for v+ 1. As a matter of 
fact, let 2 < aA < a2 < • • • < a be n consecutive members of (1) each of which 
is divisible by at least v different primes. Consider the sequence of n consec-
utive positive integers (a )l2a+al9 (a )\ 2a+a2,*",(a )\ 2a+a . For 2 L &i L a, 4 a 
we have r,_ ^2, 

(an)!2a + ak = ak W (an)! 2a + J |"(2 . 3 • 4 • - • ak_i . ak . ak+1 . . . an)(an)! a 
ak J k L ak 

= ak[(2- 2. 4 . . . a k - i - a ^ - . . an)(2- 3- 4- • - a k - . - an)a-

The sum in brackets is composed of two terms, one divisible by ak, the other 
being 1. Thus, this sum is coprime with a, , and since it is greater than 1, 
it is divisible by a prime not dividing a,. Hence (an)! 2a + ak is divisible by 
v + 1 different primes, for any 1 < k < n. On the other hand, since a, is 
a member of (1), thus of the form ax + b, we have (an)! 2a + ak = b (mod a), 
thus (an)! 2a + ak is a member of (1), which completes the proof of the theorem. 
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