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1. INTRODUCTION

We shall devote this part of the primer to the topic of generating func-
tions, These play an important role both in the general theory of recurring
sequences and in combinatorial analysis, They provide a tool with which every
Fibonacci enthusiast should be familiar,

2, GENERAL THEORY OF GENERATING FUNCTIONS

Let ag,ay, a4, *++ be a sequence of real numbers, The ordinary gen-

erating function of the sequence {an} is the series

§: n
AR = ap +ax + agx? +ees = a x .

Another type of generating function of great use in combinatorial problems

involving permutations is the exponential generating function of {an}, namely

o]
E(x) = ag + ax/1!] + a,x8/2! + ... = z ax' /ol .

n=op

For some examples of the two types of generating functions, first let
a, = a", The ordinary generating funection of {an} is then the geometric
series

[e.]
(2.1) AR = T _1ax = Zanxn ,

n=0
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while the exponential generating function is

(e8]
E(x = * = E a"<™ /n! .
n=0
Similarly, if a, = nan, then
o0
Ax) = Ao E na"x"” s
- 2
(1 - ax) —
(2.2) ©
E(x) = axe’™ = E nax" /n!
n=0

each of these being obtained from the preceding one of the same type by differ-
entiation and multiplication by x. A good exercise for the reader to check his

understanding is to verify that if a = n? , then

ee]
A(x) = Xx+1 n?x
.
)y
oo}
E(x) = x(x + ))e" = E n2” /n!
n=g

(Hint: Differentiate the previous results again, )

For the rest of the time, however, we will deal exclusively with ordinary
generating functions.

We adopt the point of view here that x is an indeterminant, a means of
distinguishing the elements of the sequence through its powers, Used in this
context, the generating functionbecomes a toolin an algebra of these sequences
(see [3]). Then formal operations, such as addition, multiplication, differen-

tiation with respect to x, and so forth, and equating equations of like powers
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of x after these operations merely express relations in this algebra, so that
convergence of the series is irrelevant,

The basic rules of manipulation in this algebra are analogous to those
for handling polynomials, If {an}, {bn}, and {cn} are real sequences with
(ordinary) generating functions A(x), B(x), C(x) respectively, then A(x) +
B(x) = C(x) if and only if a, +bn =Cp and A(x)B(x) = C(x) if and only if

¢, = apbg T ap_iby + e+ ajbpy +aghy.

Both results are obtained by expanding the indicated sum or product of gener—
ating functions and comparing coefficients of like powers of x. The product
here is called the Cauchy product of the sequences {an} and { b, }, and the
sequence {c | is called the convolution of the two sequences {an} and {bn},

To give an example of the usefulness and convenience of generating func-
tions, we shall derive a well-known but nontrivial binomial identity, First note

that for a fixed real number k the generating function for the sequence

(k _kk - 1)..o(k -n + 1)
n) n!

a
n
is

A = (@ +n"

by the binomial theorem. If k is a nonnegative integer, the generating func-

tion is finite since

(2.3) K} =0 if n»k20o0rmn<o
n

by definition, Then

A® = 1+ 95 = @+ 051 g™ = A (A () .

Using the product rule gives
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Y-S0 - () (S0

n=0 n=0 n=0 n=0
w n
_ k-m m n
= E E : R b
J n-j
n=0} j=o0

so that equating coefficients of X" shows

This can be found in Chapter 1 of [ 8].
If the generating function for { 2, } is known, it is sometimes desirable

to convert it to the generating function for { as follows, If

an+k :’

0
Z n
A = ax
n=0
then
AR -8y n
Tt
n=0

This can be repeated as often as needed to obtain the generating function for
{an+k}'

Generating functions are a powerful tool in the theory of linear recurring
sequences and the solution of linear difference equations, As an example, we
shall solve completely a second-order linear difference equation using the tech-
nique of generating functions, Let { cn} be a sequence of real numbers which

obey
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- + = >
cn—'*z pC ., :qcn 0, n2>0,

where c; and c; are arbitrary. Then by using the Cauchy product we find

(o o]
(1 - px + qx?) cnxn:co+(c1—pco)x+0-x2+---
n=0
= ¢p * (¢ - pey)x = r(x) ,
so that
[0 o]
n 1 - px + x>
n=0

Suppose a and b are the roots of the auxiliary polynomial x? - px+q, so
the denominator of the generating function factors as (1 - ax) (1 - bx)., We
divide the treatment into two cases, namely, a # b and a = h,

If a and b are distinct (i.e., p? -4q # 0), we may split the generat-

ing function into partial functions, giving

(2.5) r(x) _ r(x) _ A + B
‘1 - px + qx? (1 - ax)(1 - bx) 1-ax 1-bx

for some constants A and B, Then using (2.1) we find

o0 (e o] (e 2] 2}

n n_n n_n = n n,.n
§cnx=AE ax +B§bx=§(Aa + Bb )x |,
n=0 n=0 n=0 n=0

so that an explicit formula for c, is

(2.6) c, = Aa" + Bb"
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Here A and B can be determined from the initial conditions resulting from
assigning values to ¢y and cy,

On the other hand, if the roots are equal (i.e., p* - 4q = 0), the situa-
tion is somewhat different because the partial fraction expansion (2.5) is not

valid, Letting r(x) = r + sx, we may use (2.2), however, to find

oo} [e o}
Z cnx]f1 - rEsx . (r + sx) E(n + 1)a"x"
) (1 - ax)? —
n=g n=o
o0 [e o}
= Z (r(n + 1)5Ln + snan_i)xn = Z ((r +s/a)n + r)anxn s
n=0 n=0
showing that
c, = (An+ B)a" ,
where
A =1 +s/a, B=r

are constants which again can be determined from the initial values c; and cy.

This technique can be easily extended to recurring sequences of higher
order. For further developments, the reader is referred to Jeske [6], where
a generalized version of the above is derived in another way, For a discussion
of the general theory of generating functions, see Chapter 2 of [8] and Chap-
ter 3 of [2]

3. APPLICATIONS TO FIBONACCI NUMBERS

The Fibonacci numbers F, are defined by Fy, = 0, F; = 1, and Fpi
.- Fn 4T Fn =0, n > 0., Using the general solution of the second-order dif-
ference equation given above, where p =1, q = -1, r(x) = x, we find that

the generating function for the Fibonacci numbers is
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(3.1) Fix) =

The reader should actually divide out the middle part of (3.1) by long division
to see that Fibonacci numbers really do appear as coefficients.
Since the roots o = (1+V5)/2 and B = (1-VE)/2 of the auxiliary

polynomial x% - x - 1 are distinct, we see from (2.6) that

n n

(3.2) F. = Ao + BB

Putting n = 0,1 and solving the resulting system of equations shows that
A= 1NE=1/le-8, B=-1AN5 ,

establishing the familiar Binet form,

(3.3) F =

We shall now turn around and use this form to derive the original generating
function (3.1) by using a technique first exploited by H. W. Gould [5]. Suppose

that some sequence {a has the generating function
n

Then

i n n
-, M = 0 S, (e 7).

n=g

In particular, if a = 1, then A{) = 1/(1 - x), so that
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_ 1 1 1 _ X
F(X)_ar-B<1—a/x_1-Bx)—1—x—x2 )

Next we use (3.1) to prove that the Fibonacci numbers are the sums of

terms along the rising diagonals of Pascal's Triangle. We write

o0 (e o]
E ann = X = X = x xn(l + x)rl
2 2
fomm 1-x-x 1- (x+x%) =
o n 0 n
- Xn+1 n Xk _ n) _nt+k+i
k k| *
n=0 k=0 n=0 k=0
o Em—i) 2]
_ m-j- 1) m
= E . X ,
J
m=i j=0

where [m] denotes the greatest integer contained in m. The inner sum is
the sum of coefficients of x' in the preceding sum, and the upper limit of
summation is determined by the inequality m - j - 1 < j, recalling (2.3). The
reader is urged to carry through the details of this typical generating function

calculation. Equating coefficients x" shows that
[n-1/2]
= n-j-1
(3.5) Fn < i )
v j=0

linking the Fibonacci numbers to the binomial coefficients.

It follows from (3.1) upon division by x that

o0
1 n
(3.6) GX) = ———— = F X .
) 1-x-x* nH
n=0

Differentiating this yields
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20

G'(x) = 2x + 1 2 - 1 1+2x - m+1)F +2Xn.
(1-x-x2) 1-x-x2 1-x-x2f- ano n

Now

o0
1+2x _ 2 : n
1 92 a Ln+1 X ’
- X-X o
where the Ln are the Lucas numbers defined by Ly = 1,
Iy =1, Ly = 3 Ln+2 = Ln+1+ Ln’ n = 0.
Hence
Q0 [ee] ed) n
_ n n _ n
G'(x) = E Fn+1x E Ln+1x = E E Fn—k+1Lk+1 X,
n=0 n=0 =0 =0
so that
n
E :Fn_k+1Lk+1 =+ DF L, o
k=0

a convolution of the Fibonacci and Lucas sequences.

We leave it to the reader to verify that

X : = X = E (Fn+2—l)xn .
(1 - %01 - x - x%) 1-2x +x3 -

Also
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X 1 X n| n

(1-x01 -x - x%) 1-x 1-x-x%2

1l
by
=]

Equating coefficients shows

which is really the convolution of the Fibonacci sequence with the constant
sequence { 1,1,1,°°° } .

Consider the sequence {Fkn%oo , where k # 0 is an arbitrary but fixed

integer. Since n=0
v _ akn _ Bkn-
kn o - B

we have
Q0 o0 [e3)

n _ 1 kn_n kn n
EFKHX_CY—ﬁ _ax-EBx
n=0 n=0 n=0

1 1\ @ - ) x
(3.7 a - B\l - cvkx 1 - ka a-B\1- (ozk+6k)x+ (ozkﬁk)x2
_ FkX
1 - Lyx+ (_1>kx2

where we have used a8 = -1 and the Binet form Ln = o+ Bn for the Lucas

numbers. Incidentally, since here the integer in the numerator must divide
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all coefficients in the expansion, we have a quick proof that F, divides F ..

k nk
for all n. A generalization of (3.7) is given in equation (4.18) of Section 4.
We turn to generating functions for powers of the Fibonacci numbers.

First we expand

n ny? 1
S e @ - 2P0 + )

a - B @ - p)?
Then
o0 oQ [0:0] [o:6]
E Fix" = '1—2 E o5 _ 2 E ©B)"x" + E pmx™
=0 - B\ n=0 =0

1 1 2 1

1l

- +
@ -BP\1 -0 1-08x 1-B%

X - x? X - x2

1 - o%)(1 - afx)(1 - B%x) B 1 - 2x - 2x2 + x°

This also shows that {F;} obeys

2 _ o@2 _ o2 2
Fn+3 ZFn+2 2Fn+1 + Fn (VI

We remark that Gould's technique (3.3) may be applied to F{x), and leads to
exactly the same result.

In general, to find the generating function for the pth power of the Fib-
onacci numbers, first expand FE by the binomial theorem. This gives Fﬁ
as a linear combination of &P s an(pmi)ﬁn, see, anﬁn(p_i), ﬁnp so that as

above the generating function will have the denominator

@ - P - P x) e @ - P - pPx) .

Fortunately, this product can be expressed in a better way. Define the Fib-

onomial coefficients 1; by



456 A PRIMER FOR THE FIBONACCI NUMBERS [ Dec.

[k] I R T SR s I
r FyFy e T s lof Tt

Then it has been shown [ 7] that

p pf1

Qe = M a- P Iglx) :Z(_l)j(3+1)/2[13 + 1] J
=

For example,

Q&) =1-x - x2

Qyx) =.1 - 2x - 2x% + x°

Qsfx) = 1 - 3x - 6x2 + 3x° + x4

Qux) = 1 - 5x - 15x + 15x° + bxt - x5

Since any sequence obeying the Fibonacci recurrence relation canbe written in
the form Aa" + BB", Q (x) is the denominator of the generating function of
the pth power of any sulzh sequence. The numerators of the generating func-
tions can be found by simply multiplying through Qp(x). For example, to find

the generating function of {Fi 4ofr W have

o0

F2 X" = rx)
n+2 2 3
1 - 2x - 2%% + X

n=0

Then r(x) can be found by multiplying Qy(x), giving

(1 - 2x - 2x + )1 + 4x + 9x2 + 25x% + ¢.v)

r(x)

1+28k - X2+ 0e X3 4000 =1+ 2% - X2 .

This is (4.7) of Section 4. However, for fixed p, once we have obtained the

. ; P p ees JEP b -
generating functions for { Fn}’ {Fn +1} , ,{Fn +p}’ the one for { Fn+k}f°1

lows directly from the identity of Hoggatt and Lind [4]
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N e g ¥

3.5 P )= -j) /2| k| |p| ( _k-p) b

(3.5) n+k Z( 1 p| 7] \ T Fotj 2
=

where we use the convention Fy /Fy = 1. For example, for p = 1 this gives

Fn+k B FanH * Fk—iFn *

Using the generating function for {Fnﬂ} in (3.4) and {Fn} in (3.1), we get

o) e ©
2 : n E : n § : n
Fn+kx = Fk Fn+1X + Fk—i an
n=0 =0 n=0
Fk + Fk_1 X

In fact, one of the main purposes for deriving (3.5) was to expressthe generat-
ing function of {Fg +k} as a linear combination of those of {Fp }, soe Fﬁ +p}'
Alternativzly, to obtain the generating function of {Fg +k\l from that of
{Fg}, we could apply k times in succession the technique mentioned in Sec-
tion 2 of finding the generating function of ian +1% from that of fa }. -
The generating function of powers of the Fibonacci numbers have been
investigated by several authors (see [3], [5], and [7]).

4, SOME STANDARD GENERATING FUNCTIONS

We list here for reference some of the generating functions we have

already derived along with others which can be established in the same way.

(4.1) —-———X————=EFXH
1-x-x° et
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[o:e]
1 ’ n
4,2 - =
.2 1-x - %2 ZFnHX
0.
o0
4.3) _2_—X. = Ln Xn
1-x-x% -
) n=0
o0
(4.4) _LF_..ZE(___ = L Xn
1-x - x? e
n=0
[o o]
2
4.5) = = E Fix"
1-2x - 2x% + x° .
n=0
0
(4.6) Lot = Fin <
1 - 2x - 2x% + x5 o
n=0
oo
4.7) R S SN N
1 - 2% = 2x% + X3 Lo B2
n=~0
co
4.8) : X = FF _x°
( 1-2x - 2x% + %3 Znnﬂ
n=0
[0 o]
1-2x - 2xt + 53 Zn:0 "
o0

1+ 7x - 4x? _ 9 n
(4010) = LI'].+1 X

1 - 2x - 2x%2 + x3

n=0
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(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

NF oy v vy
Manv thanks
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(e 2]
_ 2
9 - 2x - X :§ :L2+ .
1 - 2x - 2x% + x° nrz
- n=0
. o0
X - 2%xE - X3 - F3
1 - 3x - 6x2 38+ xt Lt T
[ee)

1-2x - x% :E:F3 &
1 - 3x - 6x% + 3x3 + x4 o

1+ 5x - 3x%2 - %8 _ K
1- 3% - 6x2 + 3x3 + x4 Z e

-
8 + 3x - 4x? - x5 :§ :F3 &
1 - 3x - 6x% + 3x% + x* n+s

n=0

00
2x
= FF F x
1 - 3x - 6x% + 3x° + xt Znn+1n+2

n=0
Q0
Fkx _ I
K, § : kn
1-Lx+ D)X o
r oo
Fo+ (-1) F X _ . N
1o Lx+ ()52 Lat K0T

to Fatrleen Weland and Allan 3cott
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