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H-136 Proposed by V . E. Hoggat t , J r . , San Jose State Co l l ege , San Jose, Ca l i f o rn i a , 
and D. A . L ind , Universi ty of V i r g i n i a , Char lo t tesv i l l e , V i rg in ia . 

Let J H j be defined by Hi = p, H2 = q, Hn+2 = Hn + 1 + Hn (n I> 1), 
where p and q are non-negative integers. Show there are integers N and 
k such that F ,, < H ^ F ,, ,, for all n > N. Does the conclusion hold n+k n n+k+l 
if p and q are allowed to be non-negative reals instead of integers? 

H-137 Proposed by J . L„ Brown, J r . , Ordnance Research Laboratory, State 
Co l l ege , Pa. 

GENERALIZED FORM OF H-70: Consider the set S consisting of the 
first N positive integers and choose a fixed integer k satisfying 0 < k ^ N. 
How many different subsets A of S (including the empty subset) can be 
formed with the property that af - aM f k for any two elements af, aTT of A: 
that is , the integers i and i + k do not both appear in A for any i = 1,2, 
• • •, N - k. 

H-138 Proposed by George E. Andrews, Pennsylvania State Un ivers i ty , Universi ty 
Park, Pa. 

If F denotes the sequence of polynomials Fj = F2 = 1, F = F + 
x ~ F , prove that 1 + x + x2 + • • • + xp divides F for any prime p = 
±2 (mod 5). 

250 
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H-139 Proposed by L. Carl i tz, Duke University, Durham, North Carolina. 

Put 

A = n 

n+i 
F F 

n+k-i n 

F F 
n+i n+2 

F 
" n+k- i 

n+k-2 

M = 

n+k 
n+(m-i)k n 

n+k 

n+(m-i)k 
\ i+(m-2)k 

n+2k n 

Evaluate det M . 

F o r m = k = 2 the p rob l em reduces to H-117 (Fibonacci Quar te r ly , 

Vol. 5, No. 2 (1967), p . 162). 

H-140 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia 

F o r a posi t ive in teger m , let a = a(m) be the l e a s t posi t ive in teger 

such that F = 0 (mod m) . Show that the h ighes t power of a p r i m e p dividing 

F i F 2 • • • F n i s 

L 
k=i 

®(p ) 

w h e r e [ x ] denotes the g r e a t e s t in teger contained in x. Using th is , show that 

the Fibonacci b inomial coefficients 

F F e ' • e 
m m - i F m - r + i 

FiF2^ (r > 0) 

a r e i n t ege r s . 
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H-141 Proposed by H. T. Leonard, Jr. , and V . E. Hoggatt, Jr . , San Jose 
State College, San Jose, California. 

Show that 

[Oct 

(a) 
'3n 

[n-i] 
+ 2

nF lJ^J 
( n ) \ 2 k + l) L2(n-(2k+i)) 2k+i 

(b) 
L2n - L n 

nl 
"*1 

L̂  ( 2 k +v L2k+i 

(e) 
L2n + L n W L2k 

H-142 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va. 

With the usual notation for Fibonacci numbers, F0 = 0, Fj = 1, F 
"n+i 

= F + F . show that n n-l 

v n / 1 +VITA / 1 + V 5 . , 

=0 \ k n - k 

where 

(t) = x(x - l)(x - 2)- • • (x - j + l ) / j ! 

is the usual binomial coefficient symbol. 
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SOLUTIONS 

ORIGINAL COMPOSITION 

H-88 Proposed by Verner E. Hoggat t , J r , , San Jose State Col lege, San Jose, 
Ca l i fo rn ia (Corrected). 

Prove that 

n 

/ A
 F 4mk []A = L2I1 

n 
/ n \ Yi 

j2mF2mn 

Solut ion by M . N . S, Swamy, Nova Scotia Technical Co l l ege , H a l i f a x , Canada. 
L e t 

n 

S 
~ k ^ 

where 

Hence, 

-2>-*(l) 
»-=0 

k=o w k=o 

= - 4 [(H-p4m)n- (l + q^)n] 

p + q = 1, pq = - 1 ; o r (pq)2 l n = 1 

s = - L ri(pq)2m + p 4m^n _ | ( p q ) 2 n i + q i m J n | 

= 1 I"p2nin (p2in + q2Hi)n _ q2mn(p2m + q2m) n l 
V5"L ^ 

= (p2m + qZmjn W ~ q ) 

L2m F 2mn 
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Therefore, 

i r ^ / \ 
/ J

 F4mk ( k ) = L2mF2mn 
k=o 

Also solved by John Wessner, L. C a r l i t z , and F. D . Parker. 

FINE BREEDING 

H-96 Proposed by Maxey Brooke, Sweeny, Texas, and V . E. Hoggat t , J r . , San Jose 
State Co l l ege , San Jose, Ca l i fo rn ia (Corrected). 
Suppose a female rabbit produces F (L ) female rabbits at the n"1 

time point and her female offspring follow the same birth sequence, then show 
that the new arrivals, C , (D ) at the n time point satisfies 

C , = 2C + C ; Ci = 1, Co = 2 
n+2 n+i n . 1 A 

and 

D . =3D + ' ( - l ) n + 1 
n+l n 

Solut ion by Douglas L ind , Universi ty of V i r g i n i a . 

Hoggatt and Lind ["The Dying Rabbit Problem,ff to appear, Fibonacci 
Quarterly] have proved the following result: Let a female rabbit produce B 

th n 

female rabbits at the n time point, her offspring do likewise, and put 

QO 

B(x) 
n=i 

Then the number R of new arrivals has the gene rating function 

R(x) =2^x I 1 = r-rw 
n=0 
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where we use the convention that R0 = 1 (the original female being born at the 
0 time point)» We apply this result to the cases (i) B = F , and (ii) B 

n n 7 n L . 
n (i) If B = F , then n n 

0 0 

B(x) = > F n x n = — - ^ _ 
n=l 1 - x - x2 

SO 

R(x) = 1 + 
1 - 2x - xJ 

It is clear from the generating function that here the R = C obey the recur-
rence relation C . = 2C . + C along with Ci = 1, C? = 29 thus estab-

n+2 n+i n & l * 
lishing the desired result. 

(ii) The recurrence relation proposed is incorrect., the proper one being 
shown below* If B = L , then n n 

00 

,4-,,-B(X) = > L xn = ^ L l J x L 
n=i n l - x - x 2 

so that 

• D / \ 1 14- x + 2x2 

R(x) = — , 0 7" = 1 + —— — 
!__2Lt2xi_ L2X-3X* 

1 - X - X2 

Now 

A 1 
x + 2x2 _ 2 , 12 ^ 4 

-—— _ _ _ - + _ _ -f _ — _ 
1 - 2x - 3x2 1 - 3x 1 + x 
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so that 

D = R = (5/12) (3n) + (1/4) (- l)n (n > 1). 
n n 

n+l It follows that DH = 19 and that D , = 3D + (-1) , the correct relation. 1 n+i n 

BINOMIAL, ANYONE? 

H-97 Proposed by L. Carl i tz, Duke University, Durham, North Carolina. 

Show 

n / v2 

Solution by David Ze i t l ln , Minneapolis, Minnesota. 

I f 

P W . > »v *k 

and 

S)(° QW - > . r " ) r J k ) ( K - i ) n " k 

k=o 

then P(x) = Q(x) is a known identity (see elementary problem E799, American 
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Math. Monthly, 1948, p„ 30). If a and /3 are roots of x2 - x - 1 = 0, then 
Ln = a1 + /5n, F n = (an - /3n)/V5, and thus 

(a) T?(a) + P(/3) = Q(a) + Q(p) , 

since 

(a - l ) n " k + (fi - l ) n " k = (apf-k + «Sa2)n-k 

= ( - l ) n " \ _ k , 
(b) (P(or) - P(/3))/V5 = (Q(a) - Q(/3))/V5 

since 

<* - Dn-k(^ - Dn-k = (-Dn-V~k - ^ k ) 
= _ ( - l ) n - k ( ^ ) F n _ k 

PRODUCTIVE SUMS 

H-99 Proposed by Charles R. Wall, Harker Heights, Texas. 

Using the notation of H-63 (April 1965 FQJ, p. 116), show that if a 
( l + \ / S ) / 2 , m 

nVSF a a^ = 1 + 2 (-l)n(n-1)/2F(n,m)a-n(m+1) 
n=l n=l 
m A T -n 1 ^ £ i , 1xn(n+l)/2 _ , . -n(m+l) j j L ^ a = 1 + L K) F(n,m)« v ' 5 

n=l n=l 

where F F — F 
_ , v m m-1 m-n+1 F(n,m) = 

1 2 n 

Solution by Douglas Lind, University of Virginia* 

We use the familiar identity 

m-i m 

W "TT'd-A) = E (-l)nqn(n-l)/2pjxn, 
n=o n=o 
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[ml /- m w - m-ix M m-n+i 
(1 - q )(1 - q ) «•« (1 - q 

( l - q ) ( l - q 2 ) - . . ( l - q n ) 

If p = (1 - \/E)/2, then A/5F a n = 1 - (p/a)n. Put t ing q = p/a, then 

n*-mn. = a F ( n , m ) , 

and putting x = q in (*) gives 

m 
o X/EV. T*1 o /i n \ V / i x n w \ n(n+l)/2 n 2 -mn 
l i V 5 F a = U (1 - q ) = 2-» (-D F(n ,m)q " or 

n=i n=i 

m 

n=o 

vn(n-i) /2_ / . -n(m+i) 
= E ( - l ) n U l - W / ' F ( i i f i n ) a -

n=o 
where we have used op = - 1 . 

Similar ly , La = 1 - (P/a) , so putting q = p/a and x = -q in (*) 

gives 

m 
n L a ~ n 

n 
n=i 

m 
n /i . iiv V / i\n-r,/ \ n(n-i)/2 n 2 -mn/ ,n n (l + q > = 2L (-1) F (n ,m)q a (-q) 

n=i 

m 

n=o 

n(n+i)/2 n 2 -mn F(n 5 m)q " a 

n=o 

m 
= Z ( - l ) n ( n + l ) / 2 F ( n > m ) a - n ( m + 1 ) 

n=o 

Also soived by M . N . S. Swamy. 
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PYTHAGOREANS AND ALL THAT STUFF 

H-101 Proposed by Harlan Umansky, Cl i f fs ide Park, N . J . , and Malco lm Tol lman, 
Brook lyn, N . Y . 

Let a ,b9c9d be any four consecutive generalized Fibonacci numbers (say 
H1 = p and H2 = q and H n + 2 = H n + 1 + H ^ n > 1), then show 

(cd - ab)2 = (ad)2 + (2bc)2 

Let A = L k L k + 3 ? B = 2 1 ^ 1 ^ , and C - L £ k + 2 + L ^ . Tnen show 

A2 + B2 = C2 . 

Solut ion by M . N . S. Swamy, Nova Scotia Technical Co l l ege , H a l i f a x , Canada* 

Now 

(ed -ab ) 2 = [c(b + c) - b(e - b)]2 

= (c2 + b2)2 = ( c 2 - b 2 ) 2 + (2bc)2 

= (c + b)2(c - b)2 + (2bc)2 = d2a2 + (2bc)2 

Hence 

(1) (cd - ab)2 = (ad)2 + (2bc)2 

Since L, , the Lucas number, is also a generalized Fibonacci sequence 
with 

Li = p = 1, L2 = q = 35 

we have that for the four consecutive Lucas numbers Lk>
 L

k + 1 , Lk+2? L ^ + 3 ' 

(2) (L. M L T MO - L. L. _,, )2 = (L. L. M )2 + (2L. , ,L. ,_ )2 = A2 + B2 
' k+2 k+3 k k+i k k+3 k+i k+2 

Now 
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( Lk+2Lk+3 " L k L k + i ) = Lk+2(Lk+2 + L k + l ) _ Lk+l ( Lk+2 " L k + i ) 

= L k + 2
 + L k + 1 = ( F k + 3 + F k + i ) 2 + ( F k + 2

 + F k ) 2 

= ( F k + 2 + 2 F k + i ) 2 + ( 2 F k + 2 - F k + i ) 2 

(3) = ^ U ^ k i * = 5F2k+3 
= 2F + (F - F ) + (F + F ) + F 

^ 2k+3 U 2k+5 * 2k+4' U 2k+2 2k+i' 2k+3 

2k+2 2k+4 

Thus , from (2) and (3) we have, 

A2 + B2 = C2 , 

Also solved by J . A . H . Hunter and A . G . Shannon. 

• • • • • 

[Continued from p. 285] 

RECURRING SEQUENCES - LESSON 1 

ANSWERS TO PROBLEMS 

1. a = n(n + 1 ) ; T ^ = 3T - 3T + T 
n n+3 n+2 n+i n 

2. a = 3n - 2; T Mn = 2T ^ - T 
n n+2 n+i n 

3. a = n3; T , i = 4T , - 6T ^ + 4T , - T 
n n+4 n+3 n+2 n+i n 

4 - Tgn+k = 1, 3, 3 , 1 , 1 / 3 , 1 / 3 , for k = 1,2, 3 ,4 , 5, 6, respec t ive ly 
5. T ^ = V l + T2 

n+i n 
6. T ^ = 4T ^ - 6T ^ + 4T ^ - T 

n+4 n+3 n+2 n+i n 
7. T , 4 = aT 

n+i n 
8. T ± = 3 T ± - 3 T , + T 

n+3 n+2 n+l n 

9. T 2 n _ ! = a, T 2 n = l / a 
10. T _Lj = 1/(2 - T ) n+i n 

• * * • • 


