
A NEW ANGLE ON PASCAL'S TRIANGLE 

V. E. HOGGATT, JR. 
San Jose State College, San Jose, Cal i f . 

.1. INTRODUCTION 

There has always been such interest in the numbers in Pascal1 s a r i t h -
metic triangle» The sums along the horizontal rows are the powers of two, 
while the sums along the rising diagonals are the Fibonacci numbers* An early 
paper by Melvin Hochster [6] generalized the Fibonacci number property by 
using the left-justified Pascal Triangle and taking other diagonal sums, the 
first summand being a one on the left edge and subsequent summands are ob-
tained by moving p units up and q units to the right until one is out of the 
triangle. Unfortunately, he required that (p,q) = 1» Harris and Styles [4] 
produced a generalization of these concepts, and yet a further generalization 
[5 ] . We present here a simplifying principle which will make the study of 
generalizations such as those of Lind [8] easier* 

2, COLUMN GENERATORS 

Consider the columns of binomial coefficients in the left-justified Pascal 
Triangle shown in (1)8 The generating functions for t h e s e columns of 
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coefficients, indicated in (1), are given by the corresponding Maclaurin series. 
That is , 
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where we have used the usual convention that 

© = 0 

for n < k. We should note that the column generators 
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n as the coefficients of x , Using the above generators, the generating function 

for the s 
angle is 
for the sum of the binomial coefficients across the n row of Pascal 's Tri 
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This yields the familiar identity 
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k If, on the other hand, we multiply each generating function g, (x) by A 
and sum again, we find 
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If we multiply the generating function g^(x) by appropriate powers of x, 
this allows us to vertically shift the separate columns, aligning the numbers 
along certain diagonals in a horizontal row, 

3. THE RISING DIAGONAL SUMS 

If we wish to sum the numbers along the rising diagonals, we modify the 
column generators to be 

2k 
* k W =

 h ,k+l (1 - x) n=o 

The diagonal sums, derived from (1), are displayed with appropriate column 
generating functions in (2). We now obtain a generating function 
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a well known result. 

4. GENERALIZED FIBONACCI NUMBERS 

We now turn to the first generalization of the Fibonacci numbers due to 
Hochster [6] and Harris and Styles [ 4 ] . These numbers are given by 

u(n;p,q) = J ] I11." l p | (n > 0) , 
i=o \ f 

where [x] denotes the greatest integer <x. In particular, u(n; l , l ) = F 
and u(n;0,1) = 2 . To get these sums from the left-adjusted Pascal Triangle 

st we form sums beginning with the (n + 1) one in the leftmost column and add 
all the coefficients obtained by moving p units up and q units to the right un-
til out of the Triangle, The column generators which yield such summands in 
a horizontal line are 
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This generating function was not given in [4], but is a special case of one given 
in [9]0 We note that in (3) p may be negative. If p = 1 and q = 1, then 
(3) becomes 
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CO 
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while for q = 2 and p = -1 we have 
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so that there are also Fibonacci numbers in the falling diagonals. 

5. A FURTHER GENERALIZATION 

In a new paper [5], Harris and Styles consider Pascal 's Triangle with 
each row repeated s times. The column generators for the new array can be 
easily obtained. The column generator 

gt(x) 
k (1 - x) k + 1 

generates the coefficients in the k column of a left-adjusted Pascal Triangle, 
and 
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has the same coefficients as gk(x), except each nonzero entryis separated by 
s - 1 consecutive zeros. We can modify the h. (x) to duplicate each nonzero 

s-i entry s times by multiplying it by 1 + x + x2 + • • • + x . Thus 
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To align the coefficients of like powers of x requires 

ks 
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More generally, if we are interested in summing as before by going along 
rising diagonals in steps of p units up and q units to the right (see Section 4), 
then the required column generators will become 
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The generating function for the numbers 
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investigated in [5] is thus 
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The horizontal sums will be finite if p + sq > 15 s > 0, and q ^ 0, so again 
p may be negative. For example? if p = - 1 , q = ls and s = 2, then 
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so there are Fibonacci numbers even in the falling diagonals of the left-ad justed 
Pascal Triangle with each row repeated s times. 

6. THE TRIMMED PASCAL TRIANGLE 

Let us return to the numbers u(n;p, q) of [4] (see Section 4). Suppose 
we define u*(n;p,q) as having the same summation pattern (p units up and q 
units to the right), but in Pascal 's Triangle with the first m columns removed. 

th Letting g£(x) be the generating function for the k column of this trimmed, 
left-justified Pascal Triangle, it easily follows that 

xk(p+q) 
g k ( x ) " ~ ,m+i+kq ( 1 - x ) 

Therefore the generating function for the numbers u*(n;p,q) is 
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We point out that if 

f (x) = Z an ** ' 
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then 

f(x) 

so that multiplying the generating function for the u(n;p, q) by ( l - x ) " 1 mere-
ly yields the generating function for the partial sums of the u(n;p, q). Repeated 
application m times yields m-fold partial sums. Thus we note if we take 
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rising diagonals on Pascal 's Triangle with the left column of ones trimmed off, 
the result will be the sum of the Fibonacci numbers, so that 

Ft + F2 + • • * + F . = F , - 1 , 1 ^ n n+2 9 

while consideration of row sums gives 

1 + 2 + • • • + 2 n = 2 n + 1 - 1 

(see Figure 1)* In general we have 

1 2 4 7 12 20 33 

Figure 1 

V ^ u(k;p,l) = u(a + p + l; p, 1.) - 1 . 
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We also note that the original generating function for the Fibonacci numbers, 
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for Pascal1 s Triangle trimmed of the first m columns. Thus we have 
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st a convolution of the Fibonacci numbers with the (m - 1) column of Pascal1 s 
Triangle. If the column of ones is deleted, so that m = 1, the generating 
function for p = -1 and q = 2 is 

G(x> = T ^ • 7 - T ^ = Z F 2 n + 2 x" • 
1 - 3x + x^ A ~ n=0 

so Fibonacci numbers are again in the falling diagonals. 
Returning to the general case of the generating function for the u(n;p, q) 

given in (3), we remark that in this particular case we can interpret the 
sequence generated by 

( 1 _ x ) q „ x P + q = I i U ( n ; P ' q ) X f a - 0 ' 1 . - ) 
n=o 

7. A SURPRISE CONNECTION 

In an important paper concerning unique representations of the positive 
integers as sums of distinct Fibonacci numbers and the generalization of this 
representation property, D. E. Daykin ([1], [2], [3]) studied the sequence 
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defined by 

u n = n (n = 1,2,3, • • • , r) , 

u = u + u (n > r) 
n n-i n - r 
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Now if r = 1, we get u = 2n~1
9 while if r = 29 then u = F _,_. Consider 

n n n+i 
the generating function for the numbers u(n; r - 1,1) , 
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The initial values are u(n;r - 1,1) = 1 for n•' = 091,* • • , r - 1, and u(n;r - 1,1) 
= n + 2 - r for n = r, r +19 • • • , 2r - 1„ Thus 
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for n 2 1, Hence, the generating function for the u is 
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But this is a special case of (4). Thus the second generalized Fibonacci num-
bers u(n;p9q9s) of Harris and Styles reduce to the u by choosing s = r9 

q = 1, and p = r - 1* 
D„ E. Daykin also studied ([1], [2], [3]) the sequence 

n=i 

defined by 

v = n (a = 1, 2, • • • , . r ), 
v = v + v + 1 (n > r) . n n-i n - r 

It can be easily verified that the numbers u (n + r - 2; r - 1,1)9 summed in 
Pascal 's Triangle with the first column deleted9 obey the same recurrence 
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relation and boundary conditions as the v , so that v = u*(n + r - 2; r - 1,1) 
for n 2 1. Thus the generating function for the v is 

& & n 
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8. SOME FURTHER RESULTS 

Let f (x) be the generating function 
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Suppose we multiply each of the column generators gk(x) by the corresponding 
coefficient a, and sum, yielding 

00 

G(x) = 2 ^ \^k(x) " 
k=o 

In many particular cases the results are quite interesting. For example, let 
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^ = ^ H = 2 (J) *" ' 
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If, on the other hand, we put 
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then we are multiplying F, by the corresponding elements of the rising di-

agonals, and 
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n=o \ k=o / k=o 

1 - x 

(1 - x ) / l - 2 _ £ _ _ 2 — ^ — + — — 
\ * " X (1 - x)2 (1 - x) 
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There are thus many easily accessible generating functions where the numbers 
generated are multiplied by the corresponding elements on any of the diagonals 
whose sums are the u(n;p,q). These methods were discussed in [7]. 
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