
THREE M P H A N l i E EQOATSONS • PART I I ' 
IRVING ADLER 

North Bennington, Vermont 

6@ THE PELL EQUATIONS 

Equation (3) is the special case d = 2 of the equation 

(18) s 2 - dt2 = 1 , 

where d is positive and is not a perfect square* Equation (18) is known as the 
Pell equation0 Another way of solving Eq. (3) is provided by the following 
theorem concerning the Pell equations found in most text books on the theory of 
numbers. (For a proof of the theorem, see [2].) 

Theorem: If (s 'fc-) is the minimal positive solution of Eqa (18), then 
every positive solution is given by 

(19) sn + tnV3 = (B1 + t x V3) n , n > 0. 

(A solution (s,t) is called positive if s > 0, t > 0.) The minimal positive 
solution of Eq, (3) is (3,2). Then, according to this theorem, all positive solu-
tions are given by 

(20) s n + t n V 2 = ( 3 + 2 \ / 2 ) n , n = 1 , 2 , 3 , — a 

Equations (15) and (16) are easily derived from Eq. (20) as follows: 

s n + ' n ^ = ( 3 + 2 X / 2 ) I 1 = ( 3 + 2 V ^ ) D 4 ( 3 + 2 v / 2 ) = ( s n - l + Vl^3 + 2 v / 2 ) 

= (3s - + 4t 1 ) + ( 2 s - + 3t i)V2 . x n-1 n - l ; x n-1 n - 1 ' 

Therefore s = 3s + 4t _,, and t = 2s + 3t . . 
n n-1 n - 1 ' n n-1 n-1 

7. RECURRENCE RELATIONS 
If (x ,z ) is one of the sequence of non-negative solutions of Eq0 (1) 

with n > 29 we can derive fromEqs. (7) and (8) a formula that expresses x 
*Part I appeared In the December 1968 Issue., n 
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as a linear function of x ., and x n3 and a formula that expresses z as a 
n-1 n -2 ' * n 

linear function of z - and z 0„ If we replace n by n - 1 in Eqs. (7) and n—i n*-z 
(8), we get 

<21> V l - 3xn-2 + 2V2 + 1 • 

<2 2> V l = 4 x n-2 + 3 V2 + 2 ' 

From (21) and (22) we get 

<23> 2V2 = V l " 3V2 " 1 • 

(24) 4xn_2= V l " 3 V 2 " 2 -

Then, from Eqs. (7), (22) and (23), 

xn = 3 x n - l + 2 Vl + 1 ' 

Xn= 3Vl+2<4V2+3zn-2+2>+1' 

x n = 3 V l + 8 V 2 + 6 V 2 + 5 ' 

xn = 3Vl + 8 xn-2 + 3 < V l " 3 xn-2 " X> + 5 ' 

(25) xn = 6xn_1 - xn_2 + 2 . 

Similarly, from Eqs. (8), (21) and (24), 

zn = 4 V l + 3 V l + 2 -

z n = 4<3xn-2 + 2V2 + « + 3Vl + 2 • 

Zn= 1 2 V 2 + 8 V 2 + 3 V l + 6 « 

z 
n 

= 3 ( V l - 3 V 2 - 2 > + 8 V 2 + 3 V l + 6 
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(26) z = 6z - - z n . 
x ' n n-1 n-2 

EXERCISES 
th 5. Let (u , v ) be the n solution in positive integers of Eq« (2), 

n > 2* Use Eqs9 (12) and (13) to derive the recurrence relations 

(27) u = 6 u . - u + 2 9 x ' n n-1 n-2 9 

(28) v = 6v n - v 0 . x ' n n-1 n-2 

68 Let (s , t ) be the n solution in positive integers of Eqe (3), n 
> 2e Use Eqs. (15) and (16) to derive the recurrence relations 

<29> S n = 6 s n - l - s n -2 • 

<30> fcn = 6 t n - l - fcn-2 • 

80 CLOSED FORMULAS 

If a s e q u e n c e y ' 0 , y - 9 y 2 » •* e ;>y79 • • • is defined by specifying the values of 
the first few terms and determining the values of the rest inductively by means 
of a linear recurrence relation, then there is a standard technique for finding 
a formula that expresses y in terms of n8 For example, it can be shown 
that if the recurrence relation is the equation 

(3D y n + 2 - 6y n + 1 + yn = 0 . 

then 

(32) y n = o i r ; + c 2 r ° , 

where r1 and r are the roots of the characteristic equation 

(33) E 2 - 6E + 1 = 0 , 
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and the constants c- and c are determined by the values of y.. and y . 
(See [3] for a proof of this assertion.) The roots of (33) are 3 + 2\/2 and 3 
- 2 \ / 2 . So in this case 

(34) yn - c 1 ( 3 + 2 V 2 ) n + c 2 ( 3 - 2 \ / 2 ) n 

The recurrence relations for z , v , s and t all have the form (31) 
n' n n n v ' 

with characteristic equation (33). Hence the closed formulas for z , v , s 
and t all have the form of Eq, (34), and differ only in the values of the con-
stants c- and c9* To determine the constants in the formula 

zn - C;L(3 + 2 V 2 ) n + c2(3 - 2 \ / 2 ) n , 

we make use of the fact that z = 1 and z = 5. Then 

1 = c1(3 + 2 \ /2) 0 + c2(3 - 2V2)° , 

5 = c1(3 + 2V2) 1 + c2(3 - 2V2) 1 . 

Therefore c + c = 1 and c^ - c = J V 2 . Consequently, c1 = i ( 2 + V 2 ) , c 2 

= i ( 2 - V2)9 and 

(35) a = i ["(2 + \ /2) (3 .+ 2 \ /2 ) n + (2 - V 2 ) (3 - 2 V 2 ) J . 

EXERCISES 

7. Determine the values of c. and c 2 in each of these closed formulas: 

(36) s n = c.L(3 + 2 \ /2 ) n + c2(3 - 2V2) n ; 

(37) tn = c 1 ( 3 + 2 \ / 2 ) n + c 2 ( 3 - 2 \ /2 ) n ; 

(38) v = 0,(3 + 2 \ / 2 ) n + c Q ( 3 - 2 \ /2 ) n . 
n X ct 

It can be shown that if the recurrence relation defining a sequence [y } 
is the non-homogeneous equation 
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(39) y n + 2 - 6yn + 1 + y n = 2 , 

then 

n , n (40) yn =O,T\X
+ c9r" - i n T l 1 2 2 9 

where r and r are the roots of (33), and c- and c are determined by the 
values of y_ and y , . The recurrence relations for x and u have the form 0 1 n n 
of (40). Hence the closed formulas for x and u , after evaluation of the 
constants c- and c~, are 

(41) xn = J |(1 + V2)(3 + 2\/2)n + (1 - V2)(3 - 2\/2)n - 2J , 

(42) un = i f(3 + 2V2)n + (3 - 2V2)n - 2 ] . 

9. HOW EQUATIONS (1), (2), AND (3) ARE RELATED TO EACH OTHER 

The sequence of non-negative integers {z | , jv | and jt } which 
arise in the solution of Eqs. (1), (2) and (3), respectively, all satisfy the same 
recurrence relation (31). This shows that the solutions of Eqs„ (1), (2) and (3) 
are intimately related to each other. We shall now derive the equations that 
relate them to each other from the closed formulas for x , z , s , t , u 

ns n5 n9 n3 n 
and v . The formulas for z , x and u are Eqs. (35), (41) and (42), r e -
spectively. The formulas for s . t and v obtained in Exercise 7 are 
* J n' n n 

(36') s n = i [(3 + 2 \ /2) n + (3 - 2 V ^ ) n ] , 

(37') t n = ^ [(3 + 2V2)n - (3 - 2 \ /2) n ] , 

(38') vn = 8 L(3 + 2 V ^ ) n " <3 " 2V/2)nJ . 

By solving Eqs. (42) and (38') for (3 + 2V2) n and (3 - 2 \ /2 ) n , respectively, 
we find 

(43) (3 + 2V2)n = 2u + 2 V2v + 1 , 
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(44) (3 - 2 \ /2 ) n = 2u - 2V2v + 1 . 

Making these substitutions for (3+ 2 \ /2 ) n and (3 - 2 \ /2 ) n in Eqs. (41) and 

(35), we obtain the following equations relating the solutions (x , z ) of Eq. 
(1) to the solutions (u ,v ) of Eq. (2): 

(45) x = u + 2v , s ' n n n s 

(46) z = 2u + 2v + 1 . x ' n n n 

If we solve Eqs. (45) and (46) for u and v , we get these equations: 

(47) u = z - x - 1 , • n n n ' 

(48) v = i (2x - z + 1). v ' n ^v n n ; 

EXERCISES 

8. Use Eqs. (36!), (37T), (43) and (44) to derive these equations relating 
the solutions (s , t ) of Eq,, (3) to the solutions (u ,v ) of Eq. (2): 

(49) s = 2u + 1, x 7 n n * 

(50) v t = 2v , x ' n n 9 

(51) un = - i ( s n - l ) f 

(52) v = i t . \ / n ^ n 

9. Use the results of Exercise 8 and the paragraph that precedes it to 
derive these equations relating the solutions (s , t ) of Eq, (3) to the solu-
tions (xn ,zn) of Eq. (1): 

(53) s = 2z - 2x - 1 , 
v ' n n n 



1969] THREE DIOPHANTME EQUATIONS - PART II 187 

(54) t = 2x - z + 1 , 
n n n > 

(55) x = i (s + 2t - 1) , x ' n ^ n n ' ' 

(56) z = s + t . x ' n n n 

10. Without using the closed formulas (41), (35), (42) and (38f) for x , 
z , u and v , respectively, verify that if (x ,z ) is a solution of Eq. (1), 
in non-negative integers, and u and v are defined by Eqs. (47) and (48), 
respectively, then u and v a re non-negative integers, and (u ,v ) is a 
solution of Eq. (2). Also verify, conversely, that if (u ,v ) is a solution of 
Eq, (2) in non-negative integers, and x and z are defined by Eqs. (45) and 
(46), respectively, then x and z are non-negative integers, and (x ,z ) 

is a solution of Eq. (1). (See [ l ] , pp. 20-21..) 

11. Without using the closed formulas for x , z , s , and t , verify & ns n n' n* J 

that if (x ,z ) is a solution of Eq9 (1) in non-negative integers, and s and 
t are defined by Eqs. (53) and (54), respectively, then s and t are non-
negative integers, and (s , t ) is a solution of Eq. (3). Also verify, con-
versely, that if (s , t ) is a solution of Eq. (3) in non-negative integers, and 
x and z are defined by Eqs. (55) and (56), respectively, then x and z 
are non-negative integers, and (x ,z ) is a solution of Eq. (1)„ 

If we drop the subscripts in Eqs. (45) through (56), each pair of equa-
tions, (45) and (46), (47) and (48), (49) and (50), (51) and (52), (53) and (54), 
aind (55) and (56), defines a linear transformation that converts one of the 
Eqs. (1), (2) or (3) into one of the other two. 

10. FORMULAS FOR GENERATING SIMULTANEOUSLY SUCCESSIVE 
SOLUTIONS OF EQUATIONS (1), (2), AND (3) 

From Eqs. (45) and (50) we get 

(57) x = u + t 
s * n n n 

From Eqs. (45), (46), (12) and (13), we get 
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(58) n+1 
x + z n n 

(59) v = v + z 
n+1 n n 

Then, s ta r t ing with u = 0, vft = 0, and applying r ecu r s ive ly the sequence 

of E q s . (49), (50), (57), (56), (58) and (59), we can genera te in success ion s Q , 

V V V ur vr sr t v x l 3 t„ and so on. 
1 ' u 2 9 v 2 ' " 2 ' "2' " 2 ' 2 ' 

The f i r s t ten non-negative solutions to E q s . (2), (3) and (1), r espec t ive ly , ob-
tained in this way, a r e tabulated below. 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(u , v ) | 

(0, 0) 

(1, 1) 
(8, 6) 

(49, 35) 

(288, 204) 

(1681, 1189) 

(9800, 6930) 

(57121, 40391) 

(332928* 235416) 

| (1940449, 1372105) 

(s , t ) I 
x n' n7 1 
(1, 0) 

(3, 2) 

(17, 12) 

(99, 70) 

(577, 408) 

(3363, 2378) 

(19601, 13860) 

(114243, 80782) 

(665857, 470832) 

(3880899, 2744210) 

(x , z ) x n' n7 

(0, 1) 

(3, 5) 

(20, 29) 

(119, 169) 

(696, 985) 

(4059, 5741) 

(23660, 33461) 

(137903, 195025) 

(803760, 1136689) 

(4684659, 6625109) 

EXERCISE 

12. Find ( u 1 0 , v 1 0 ) , ( s 1 0 , t 1 ( ) ) and ( x ^ . z ^ ) . 

1 1 . SOLUTIONS WITH EVEN OR ODD INDEX 

It is of in te res t to examine separa te ly the even-numbered solutions (x2>, 

z 2 . ) , ( u 2 i , v 2 i ) and ( s 2 l , t 2 l ) of E q s . (1), (2) and (3), r espec t ive ly , and the 

odd-numbered solutions ( x
2 i+ i> Z 2 i+i '> ^U2i+1'V2i+17 a n d ^ S 2 i + l , t 2 i + l / * T h e s e 

solutions can be exp re s sed in t e r m s of the solutions ( x . , z . ) , (u . ,v . ) and 

( s . , t . ) . F o r example , we know from Eq. (20) that 

S 2 i + t 2 i V 2 (3 
( 

2V2)21 = [(3 + 2V2)1J (s. + t . V 2 ) 2 

That i s , 
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S2i + t 2 i V ^ = (Sf + 2tf) + 2 s i f c i ^ -

There fo re 

(60) s 0 . = s ? + 2t? = 2 s 2 - 1 = 1 + 4 t 2 , 
x ' 2i i l l i s 

and 

(61) t 0 . =• 2s. t . . 
x ' 2i i i 

By using E q s . (48), (50), (54), (55), (56), (60) and (61), we can show that 

(62) x 0 . = 2 t . ( t . + s . ) = 2t .z . = 4z. v. = 2z. (2x. - z. + 1) , v ' 2i r i v i i i i i v i i ; J 

and 

(63) z 0 . = t 2 + z? = (2x. - z. + l ) 2 + z 2 . 
v ' 2i i i x i i ' i 

By using E q s . (49), (50), (51), (52), (60) and (61), we can show that 

(64) u„ . = 2 t 2 = 8v? , 
K ' 2i 1 1 ' 

and 

(65) vrt. = s.t . = 2v .s . = 2v.(2u. + 1) 
v ; 2i i i i i v i ' 

By invoking Eqs* (58) and (59), we can show that 

(66) u 2 . + 1 = (vt + v l + 1 ) 2 = ( u . + 1 - u . ) 2 , 

and 

(67) v 0 . . - = z. (v. + v., J 
x ' 2i+l i v i i+ r 
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The following equations are also easily derived: 

(68) s 2 . + 1 = 2 z f + ( v i + v . + 1 ) 2 = 2 z f + ( z i + t . ) 2 , 

(69) t M + 1 = 2 z l + ( v l + v l + 1 ) = 2 2 ^ + t j ) , 

(70) x 2 . + 1 = (z. + 2x.-M)2-zf , 

(71) z 2 l + 1 = ( z i + 2 x . + l ) 2
 + z J , 

12. SUM AND DIFFERENCE RULES 
The following rules are either already included among the equations we 

have derived so far^ or are easily derived from them. 

(56) s. + t. = z. , 
v ' i l l 9 

(72) S l - t . = z w , 

(73) u l + v . = u l + 1 - v . + 1 = | ( z . - 1) , 

(74) u. - v. = u. n + v. , = i(z. . - 1) , 
v ' i I i - l i - l i - l ' 

(58) z. + x. = u . + 1 

(47) z. - x. = u. + 1 , 
v ' i l l 

(75) s 2 i + t 2 i = fcf + \ ' 

(76) s 2 l - t2. = tf + z2_x . 

(77) U 2 i + V 2 i = 2 V V i + W • 

(78) u2. •- v2 . = 2v. (t. - z.) , 

(79) z2 . + x2 . = (z. + t . ) 2 , 
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(80) Z 2 i - X 2 i= < W 2 - Sf ' 

(81) s 2 i + l + t2 i+ l = 3 ( t l + z 1 ) ' i
+ 2 t 1 z l + 2 , 

<82> S2i-*-l " ^ i ^ ! = Z2t = 

<83> U 2 i + 1 + V 2 i + 1 = 2Vl(Wl>' 

(84) U2i+1-V2i+1 = 2 V V L + W • 

(85) Z 2 i + 1 + X 2 i + 1 = 2(Z. + 2 X l + l ) 2 , 

(86) z 2 . + 1 - x 2 . + 1 = 2zf , 

(87) Z 2 . + 1 - (x2 .+ 1 + 1) = (u{+1 - u . ) 2 . 

13. HISTORICAL NOTE 
Dickson's History of the Theory of Numbers, Vol. II, contains scattered 

notes about Eqs. (1) and (2), and denotes a sixty-page chapter to the Pell equa-
tion, of which Eq. (3) is a special case. (See [4].) Some of the more interest-
ing facts cited by Dickson are reproduced below. 

Concerning Eq. (I). 
Fermat showed that if (x, z) is a solution of Eq. (1), then so is (3x + 

2z + 1, 4x+ 3z + 2). (See Eqs. (7) and (8).) 
C. Hutton (1842) found that if p /q is the r convergent of the con-

tinued fraction for the square root of 29 then p D - and 2q q are consec-
utive integers, and the sum of their squares is equal to q0 . 1 . 

2 2 P. Bachmann (1892) proved that the only integral solutions of x +y = 
2 z , z > 0, x and y consecutive, are given by 

x + y + z \ / 2 = ( 1 + V 2 ) ( 3 + 2V2) , k = 0 , l , 2 , " 8 . 

R. W. D. Christie (1897) expressed the solutions of Eq. (1) in terms of 
th continuants. The continuant C(a..,a ,«• • s a ) is the r order determinant 
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o 
in which the term u„„ of the principal diagonal is equal to a.s (i = 1, • • • , r ) , 

1, • °•, r - 1), immediately under the principal diagon-
, r ) , immediately above 

each term u.+- ., (i 
al is equal to - 1 , and each term u. - ., (i = 2, • 

i—±, i 
the principal diagonal, is equal to 1, and every other term is equal to 0. Let th Q r stand for the r order continuant C(2,- .»,2) in which all the diagonal 
elements are 2, and define 2n = 1. Christie observed that the positive inte-
gral solutions of Eq. (1) are given by 

x = Qo + Qi + r + Q« r = 1,2,-2 r - l ' r 2r ' 
This result was proved by T. Muir (1899-1901). 
Concerning Eq. (2). 

Euler (1732) found solutions to Eq. (2) in the following way: He started 
with the identity of Plutarch (about 100 AD), 

.2 

ByEq. (2), 

9 2 
Then 8v + 1 = (2u + 1) . Let s = 2u+ 1, and t = 2v. Then s and t sat-
isfy Eq. (3), which Euler solved by using his general method for solving the 
Pell equation. 

Euler proved, too, that u and v satisfy Eq. (2) only when 

8u(u + 
2 

JL + i = 

u(u + 1) 
2 

(2u 4 

2 
= V 

a +jB a - 0 
v = t£— 

4V2 

where 



1969] THREE DIOPHANTINE EQUATIONS — PART II 193 

<*= ( 3 + 2 V 2 ) n , j3= ( 3 - V 2 ) n
5 n = 0 , l , 2 , - - - . 

From this result, he derived the recurs ion formulas given byEqs. (27) and (28), 
E. Lionnet (1881) stated that 0,1 and 6 are the only triangular numbers 

whose squares are triangular numbers. This assertion was proved by Moret-
Blanc (1882), In the notation of Section 2, Lionnet?s result is that S(T(n)) = 
T(m) only if n = 0,1 or 3. Since S (T(0)) = 0 = T(0), S (T(l)) = 1 = T ( l ) , 
and S(T(3)) = 36 = T(8), It follows from LIonnetfs result that the equation 
S(T(n)) = T(S(n)) has only the trivial solutions (0,0) and (1,1). 

Concerning Eq9 (3). 
2 2 Among those who worked on solving equations of the form S - dt = 1 

were DIophantus (about 250 AD), and Brahmegupta (born 598 AD). 
The general problem of solving all equations of this form was proposed 

by Fermat in February 1657. Hence an equation of this form should be called 
a Fermat equation. It came to be known as the Pell equation as a result of an 
e r ror by Euler, who incorrectly attributed to Pell the method of solution given 
In Wallis? Opera. 

Lagrange gave the first proof that every Pell equation has Integral solu-
tions with t i- 0 if d Is not a square. 

Others who contributed to the voluminous literature on this equation are 
Legendre, Dirichlet and Gauss. 
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