
ON PRIMES AND PSUEDO-PRiJVtES 
RELATED TO THE FIBONACCI SEQUENCE 

EDWARD A. PARBERRY 
Pennsylvania State University, State College, Pennsylvania 

The two sequences |U i and JV } which satisfy the recurrence rela-
tion f(n + 1) = f(n) + f(n - 1), and the initial conditions: J i = U2 = 1; Vj = 
19 V2 = 3; are called the Fibonacci and Lucas sequences 5 respectively. These 
sequences have some interesting divisibility properties which are related to the 
study of prime numbers. For instance 9 it is well known that every prime num-
ber divides infinitely many of the Fibonacci numbers [1, Th. 180, p. 150]; but, 
although for any particular prime we can give any number of the terms which 
it divides s we cannot in general give a general rule for finding the least such 
number. This is the so-called "rank of apparition" problem, where the rank 
of apparition of a number n, designated by o> , is the subscript of the least 
Fibonacci number which n divides. Wall [2] has shown that a number m di-
vides U if and only if a> divides N. This property is used frequently in 
the text without further reference. 

The particular divisibility properties with which this paper is concerned 
are the two "Lucas" equations which hold for all prime m > 5 [1, p. 150]: 

(1) U ( m _€ } = 0 (mod m) 

(2) U m = €m (mod m) , 

where 

[ 1 if m = ±1 (mod 5) 
-1 if m = ±2 (mod 5) J* 

Clearly it would be nice if (1) and (2) were to hold only for prime m, but this 
is not the case. 

In [3] , Emma Lehmer shows that there are infinitely many composite 
numbers, m, for which (1) is satisfied. She calls these numbers Fibonacci 
pseudo-primes. Her result is proved here as a special case of Theorem 3S 

and is extended in Theorem 4 to show that an infinite proper subset of her 
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pseudo-primes also satisfy (2). For the purpose 
a composite number, m, which satisfies both (1) and (2), and which is rela-
tively prime to 30, a strong pseudo-prime. 

The main results in the text are as follows: 
Theorem 1. Let n be either a prime >5 or a strong pseudo-prime, 

then: 

(3) \] = 0 (mod n), iff n E 1 (mod 4), 
2(n-V 

(4) V1 = 0 (mod n); iff n = 3 (mod 4) 
2 ( Q-€n) 

Theorem 2. Let (n,30) = 1, and let m = U , then the following are 
all equivalent: 

(5) Un = €n (mod n) ; 
n ii 

(6) U( v = 0 (mod m) ; 
m 

(7) U1 = 0 (mod m) ; 
7 r (m-€ ) 
2 m 

(8) U s € (mod m) . 
m m 

Theorem 3. Let n be a prime > 5, or a strong pseudo-prime/ then 
for m = U 2 n , 

(9) U/ _ v = 0 (mod m); and m is composite. 

Remark: Theorem 3 is precisely Emma Lehmer!s observation in [3] for 
n actually prime. However5 it was not clear in her proof that the relation de-
pends only on n satisfying (1) and (2), and (n,30) = 1. Theorem4 now deter-
mines those n for which m = LL satisfies relation (2) as well. 

2n 
Theorem 4. If m = U? as in Theorem 3, then m is a strong pseudo-

prime if and only if n s 1,4 (mod 15). 
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T h e o r e m 1 es tab l i shes an identity s i m i l a r to (1) which gives a fur ther 

n e c e s s a r y condition for p r ima l i ty (and s t rong pseudo-pr imal i ty) . This r e su l t 

does not go ve ry far in es tabl ishing a s e t of sufficient condi t ions, but i t has the 

saving fea tures of de termining the pa r i ty of the rank of appar i t ion of many 

p r i m e s (Corol lar ies 1 and 2) , and of reso lv ing the conjecture by D. Thoro [ 4] 

that no p r i m e of the form 4n + 3 divides any Fibonacci number with an odd 

subsc r ip t (Corol lary 3). 

Theo rem 5 i s the famous Lucas theorem on the p r imal i ty of Mersenne 

n u m b e r s (numbers of the form 2 - 1 where p i s a p r i m e = 3 (mod 4)). It i s 

included h e r e because T h e o r e m 1 al lows a new and e l emen ta ry proof. 

It i s obvious [ 1 , p . 150] that U i s p r i m e only if n = 4 , o r n i s p r i m e . 

C lea r ly if m = U is p r i m e , i t m u s t satisfy (1), (2), and (3) when taken a s a 

subscr ip t . However if U i s not p r i m e , i t need not a - p r i o r i sat isfy any of 

them. T h e o r e m 2 shows that indeed U sa t i s f ies al l th ree t e s t s , and in fact 
P 

that U , if not p r i m e , gene ra t e s an infinite s e t of s t rong p s e u d o - p r i m e s 
r ecu r s ive ly . 

The following ident i t ies a r e used in the text and may a l l be found in [ 2 , 

pp. 148-150] . 

/ 1 f t , TT an - ^ , . - 1 1 + N/5 
(10) u = H , where a = - 0 = - — ^ i — 

n rp & 4§ 

(11) Vn = an + f 

(12) Un = ( -D n "V n , Vn = (-DnV_n 

[|(n-l)] 
(13) (a) * - \ - £ (2k\ ,) 5* 

k=0 

(13) (b) 2n"1Vn = y . (l) 5k ; 
[|(n-l)] 

2-J \2k) 
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(14) Vn+l* = *• ^ n ' V = 1 ; 

(15) (U ,'V ) < 2, and equality holds iff n = 0 (mod 3); 

(16) U2 - U -U ^ = (-l)11"1 

n n-1 n+1 

( 1 7 ) V n = U n + 1 + U n -1 

Also, in the proof of Theorem 5, we use the following theorem by Lucas 
[ 5 , p. 302]: 

(18) If to = N - 1, or N + 1, then N is prime 

L e m m a *• U a + b = U a V b + ( " 1 ) a U b -a 

Proof. Vb - (^fy+""' 
a+b 0a+b , a0b b0a 

a - p + a p - a p 

a+b ^+b b-a ^b-a £ -f _ (^)a£ z_L_ 
N / 5 <V/5 

= U a + b - ( " 1 ) a U b -a 

Lemma 2. (i) mV = U (mod 5) ; 
m m 

(ii) U = m (mod 5), if m = 1 (mod 4) ; 

(iii) U = -m (mod 5), if m = 3 (mod 4) ; 

(iv) U = - o-m (mod 5), if m = 0 (mod 4) ; m u 
(v) U = -^m (mod 5), if m = 2 (mod 4) . 
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Proof. F r o m (13), 

[|(n-lj] 
(19) 2 - \ = £ ( 2 k \ l ) 5 k ^ n ( - d 5) 

k=0 X f 

and 

[i(n-l)l 
(20) 2 ^ ^ = ^ ( 2 k ) ^ = * ( m 0 d 5 ) 

k=0 ^ ' 

Multiplying (19) and (20), and dividing out 2 n " , we get (i). F r o m 
4n 4n+l 

F e r m a t f s t heo rem, 2 = 1 (mod 5), 2 = 2 (mod 5), e t c . , and the o ther 
re la t ions follow s ince (2,5) = 1. 

T h e o r e m 1. Let n be e i ther a p r i m e > 5 o r a s t rong p seudo-p r ime . 
then 

(3) U x = 0 (mod n) iff n = 1 (mod 4) 

(4) V = 0 (mod n) iff n = 3 (mod 4) 
2 ( n - c n ) 

Proof. In Lemma 1, l e t 

a = i ( n - € n ) , b = i ( n + €n ) , 

then by Eq. (2), 

2 ( n " €n ) 
(21) U = U 1 V + (-if U = €n (mod n) 

3 ( Q - 6 n ) 2(n+cn) 

now 

2 ( n " €n ) 

\J1 = U x = 1, and (-1) u = € (modn) iff n 5 1 (mod 4) 
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(22) U 1 V 1 = 0 (mod n) iff n = 1 (mod 4) 
l ( n _ €n ) l ( n + 6 n ) 

Also , from (1), 

(23) 
(n - e n ) . l ( n + C n ) | ( n _ e n ) 

e l < 
Now suppose n = 1 (mod 4 ) , and the p In, while p 

from (22), 
e ! u i 

then 

V*„> 
and from (23), 

f^n* 
which i s imposs ib le s ince by (14), 

(Vv' V«n>) = 1 

Hence 

U 1 iff n = 1 (mod 4) , 
2(n"V 

which proves (3). 
If, on the other hand, n = 3 (mod 4); then (21) shows that p|n implies 

U V 
l ( n _ €n ) l ( n + £ n ) 

= ±2 (mod p) . 

Therefore 
Aj- , n\ = 1 ; 

U ^ ) 
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hence from (23), 
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V 
| ( n -€n ) 

And finally if n = 1 (mod 4) , then n lU- ; and s ince 

I 2 ( n"V 
/ U , V \ < 2 , n J i 9 

Coro l l a ry 1. If p = 3 (mod 4) , then co i s even, 

Proof. This follows from (1) and T h e o r e m 1, s ince co |p - e which i s + 1 P | P 

2 (P - € ) . 
Coro l l a ry 2. If p = 13 , 17 (mod.20)?then t o p i s odd9 

Proof. Here € = - 1 , p = 1 (mod 4) , hence ^(p - e ) i s odd. T h e r e -
fo re , s ince u i 

2 (p-y 
impl ies to ^ t P - e p ) , 

co i s odd. 
P 

Coro l l a ry 3. (Thoro [3]) If P | U ( 2 n + 1 ) ? then p ^ 3 (mod 4). 
Proof. P)Uon+-| impl ies w |2n + 1 which in turn impl ies p = 2 , o r 

p = 1 (mod 4) by Coro l l a ry 1. 

T h e o r e m 2. Let (n,30) = 1, and l e t m = U . Then the following a r e 

a l l equivalent: 

(5) (a) U n 5 €n ( m o d n ) 

(6) (b) 

(7) (c) 

(8) (d) 

U(m-€ ) " ° (m0d m ) ; 
v m 

U-
2 ( m - €m ) 

= 0 (mod m) 

U = € (mod m) m m 

Proof. ( a )^^ (b ) . 

F r o m Lemma 25 we see that U = m = i n (mod 5), s ince n i s odd. 

There fo re € = e $ and replac ing e in (a)9 we have 
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n U - c -*=>U U = U 
n m n u - e m - c 

1 J n m m 
( b ) ^ M c ) 
Since n i s odd, and U is odd (since 3 | n ) we have: 

U = HI 
n 

U -*=*-n m - € -«^n m - e m m 2 m n U, 

2 ( m - €m ) 

(c) =Md) 

Using L e m m a 1, we have 

( 2 4 ) U m = U l , / . + (-1) - = (-1) (mod m) 

Now since n is odds we see by Coro l la ry 3 , that 

U = m = 1 (mod 4) n 

Hence 

(-1)2 m = € 
m 

(d) ^ ( c ) 

Compar ing (d) with (24), we see that 

(25) U l V l 
I ( m - €m ) 5 ( m +€m ) 

0 (mod m) , 

and from (16), we see that 

IP - U U 
HI m - e m+€ m m 

(-1) E 1 (mod m) , 

hence 

(26) U U s 0 (mod m) . m - e m+e m m 
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Now suppose p e jm 9 and P°^^m_e y then P j V ^ m + € } by (25), 
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Also 

(D \n and i s therefore odd? hence 

a) o M m - € ) =^oj ¥m - c =^-pe JrU 
A -e/f m m ^ m -€ 

m 

Therefore^ Eq„ (26) impl ies that p U ,^ . But &> i s a l so odd, hence 
^ l I m+€ w p 

I n F 

w | m + 6 =^w 
PI m p 

which i s a contradict ion s ince 

2 m F U 

i^J 

( • • 2
( m + e m ! 

, V 
l ( m + €m • ) < 

Hence 

e s e 
p m =**p U l 4(m-€ ) 2V m 

which m e a n s that 

iTL 
~(m-e ) 2 m 

Q . E . D . 

T h e o r e m 30 Le t n be a p r i m e > 5 , o r a s t rong p s e u d o - p r i m e , then 

for m = U 2 n J 

and m is compositee 

U ( m -€ ) = ° ( m o d m ) 
m 

Proofo We rjote that U 0 = U V by L e m m a 1, and i s there fore com-2n n n J 

posi te for n > 2, 
Now, using (2) and (17): 

U 0 E U V s € V = 6 (U ^ + U ) (mod n) , 
2n n n n n nN n+€ n-€ 

n n and using (1), and L e m m a 1: 



58 ON PRIMES AND PSEUDO-PRIMES [Feb. 

UQ = € (\Jt ^ , \ = € (U V^ + ( - l ) nU , £ v \ 2n n l (n+€n) I n y n 6 ^ _ ( n -€n ) y 

= e 2 V = V , s € (mod n) . n € € n 
n n 

Hence , n | m - € ; which, s ince n and m a r e odd9 imp l i e s : 

(27) 2 n | m - e Q - U 2 n = m | u } . 
I I n 

To complete the proof, we note that by Lemma 2 , 

U 0 = m = i n (mod 5), hence e = e 2n " m n 

T h e o r e m 4, If m = U 2 a s in Theo rem 3 , then m is a s t rong pseudo-

p r i m e if and only if n = 1,4 (mod 15). 

Proof, F r o m Theorem 3 , and L e m m a 1, 

I( m-em) 
U » = U1, , , \ + , . + ( _ 1 ) ^ 

T?(m-e ) -^(m+e ) m 
2 m 2 m 

Now if m = e (mod 4) , then 2n - ( m - € ) by (27); hence: 

U m = ( - i r m U€ = 1 (mod m) . 
m 

On the o the r hand, if m = -€ (mod 4) , then a new application of L e m m a 1 

g ives : 

Tr(m-2n-€ ) 
U m = U l V l + (-1] m U2n+€ ; 

m -i(m-2n-€ ) -±fai+2n+e ) Z n m 
2 m 2 m 

which shows, s ince now 2nhr(m - 2n - € ) , that 
u m 

U = U 0 ^ = U 0 £ £ ±1 mod m) , m 2n+6 2n-€ 
m m 
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hence U m = €m (mod m) iff c = 1 and m = l ( m o d 4 ) . This co r re sponds 

to n = ±1 (mod 5), and n = 1 (mod 3) ( i . e . , n = 1,4 (mod 15)). Q. E.D. 

Theo rem 5. (Lucas [ 5 , p . 310]) Let p = 3 (mod 4) be a p r i m e , then 

N = 2 P - 1 is a p r i m e if and only if V (p_i) = 0 (mod N). 

Remark . This i s the s imples t t e s t of p r imal i ty known; s ince 

V = V2, -v - 2 , 
2 n 2 ( n - l ) 

and hence can be calculated in only n s t eps . 

Proof. Sufficiency: 

Le t 

V 2 ( p _ 1 } - 0 (mod N) , 

then by L e m m a l s 

U = U / -vV / -v s 0 (mod N) = w_T 
2 P 2 ( P - D 2 ( P - D N 

and s ince 

= 2? : 

2 P 

( U
2 ( p - 1 ) > V

2 ( p - 1 ) ) = X ' <*N 

which by (18) gives that N i s p r i m e . 
Necess i ty : 
Le t N be p r i m e , and then s ince N = 3 (mod 4) , we have b y T h e o r e m l , 

N V l | ( N -€N ) 

and s ince 

2 P - 1 E 2 3 - 1 = 2 (mod 5) , 

€N = - 1 . The re fo re , N | V , _1 ) e Q . E . D . 
• 2 
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