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The two sequences {Un} and {Vn} which satisfy the recurrence rela-
tion f(n +1) = f(n) + f(n - 1), and the initial conditions: J; = Uy, = 1; V; =
1, V, = 3; are called the Fibonacci and Lucas sequences, respectively. These
sequences have some interesting divisibility properties which are related to the
study of prime numbers. For instance, it is well known that every prime num-
ber divides infinitelymany of the Fibonacci numbers [1, Th. 180, p. 150]; but,
although for any particular prime we can give any number of the terms which
it divides, we cannot in general give a general rule for finding the least such
number., This is the so-called "rank of apparition' problem, where the rank
of apparition of a number n, designated by w,, is the subscript of the least
Fibonacci number which n divides. Wall [2] has shown that a number m di-
vides U[1 if and only if 0 divides N. This property is used frequently in
the text without further reference.

The particular divisibility properties with which this paper is concerned

are the two ""Lucas'' equations which hold for all prime m > 5 [1, p. 150]:;

(1) U(m"ém) = 0 (mod m)
2) Um = €, (mod m) ,
where

+1 (mod 5)]

_ 1if m
€m T -1 if m = 42 (mod 5)

Clearly it would be nice if (1) and (2) were to hold only for prime m, but this

"

is not the case.

In [3}, Emma Lehmer shows that there are infinitely many composite
numbers, m, for which (1) is satisfied. She calls these numbers Fibonaceci
pseudo-primes. Her result is proved here as a special case of Theorem 3,

and is extended in Theorem 4 to show that an infinite proper subset of her
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pseudo-primes also satisfy (2). For the purpose
a composite number, m, which satisfies both (1) and (2), and which is rela-
tively prime to 30, a strong pseudo-prime.

The main results in the text are as follows:

Theorem 1. Let n be éither a prime >5 or a strong pseudo-prime,

then:

(3) U1 = 0 (mod n), iff n = 1 (mod 4),
-Z—(Il—én)

4) V1 = 0 (mod n); iff n = 3 (mod 4) .
i(n—én)

Theorem 2. Let (n,30) = 1, andlet m = Un, then the following are

all equivalent:

(5) U, =€, (mod n) ;
6) U(m—e )y = 0 (mod m) ;
m
(7 U = 0 (mod m) ;
Lim-e )
2 m
(8) Um = €, (mod m) .

Theorem 3. Let n be a prime >3, or a strong pseudo-prime, then

for m = U2n’

9) U 0 (mod m); and m is composite.

H

(m—em)

Remark: Theorem 3 is precisely Emma Lehmer'sobservation in [3] for
n actually prime. However, it was not clear in her proof that the relation de-
pends only on n satisfying (1) and (2), and (n,30) = 1. Theorem 4 now deter-
mines those n for which m = UZn satisfies relation (2) as well.

Theorem 4. If m = UZn
prime if and only if n = 1,4 (mod 15).

as in Theorem 3, then m is a strong pseudo-
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Theorem 1 establishes an identity similar to (1) which gives a further
necessary condition for primality (and strong pseudo-primality). This result
does not go veryfar in establishing a set of sufficient conditions, but it has the
saving features of determining the parity of the rank of apparition of many
primes (Corollaries 1 and 2), and of resolving the conjecture by D. Thovo { 4]
that no prime of the form 4n + 3 divides any Fibonacci number with an odd
subscript (Corollary 3).

Theorem 5 is the famous Lucas theorem on the primality of Mersenne
numbers (numbers of the form 2P - 1 where p is a prime = 3 (mod 4)). It is
included here because Theorem 1 allows a new and elementary proof.

It is obvious [1, p. 150] that U, is prime only if n =4, or n is prime.
Clearly if m = Up is prime, it must satisfy (1), (2), and (3) when taken as a
subscript. However if Up is not prime, it need not a-priori satisfy any of
them. Theorem 2 shows that indeed Up satisfies all three tests, and in fact
that Up, if not prime, generates an infinite set of strong pseudo-primes
recursively.

The following identities are used in the text and may all be found in [ 2,
pp. 148-150].

n -
(10) U = LAl , where a= -1 = 1+ N5,
n 2
Ne
(11) Vn = o+ ﬁn ;
n-1 _ n
(12) U, =)0, Vo= DV
e
s @ 2"y, = <2kn+ 1) 5
k=0
o
n-1 ny .k
(13) (b) 2 Vn = <2k) 5 ;
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(14:) (UH’U ) =1, (Vn9vn+1) = 1;

n+1

(15) (Un,Vn) < 2, and equality holds iff n = 0 (mod 3);
2 = (L1,

(16) Un Ur1--1Un+1 -1) ’

(17) Vn = Un+1 * Un-l ;

Also, in the proof of Theorem 5, we use the following theorem by Lucas

[5, p. 302]:

(18) If wN =N-1, or N + 1, then N is prime.
B a
Lemma 1. Ua+b = Uavb + (-1) Ub-a
a a
Proof. UV, = (_9!___—__[_3_ @+ )
NEG;
) aa+b _ Ba+b +aaﬁb _abﬁa
N
+b +b b- -
_ a _—ﬁa —(aﬁ)aa a_Bba
NE NB
_ a
N Ua+]o - D Ub—a
Lemma 2, (i) mV._ =T (mod 5) ;
p . m m

(ii) Um = m (mod 5), if m = 1 (mod 4) ;

It

(iii) Um = -m (mod 5), if m = 3 (mod 4) ;

m (mod 5), if m = 0 (mod 4) ;

Giv) U

1
m -2
m (mod 5), if m = 2 (mod 4) .
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Proof. From (13),

(19) 2“'1Un = Z <2kn+ 1>5k = n (mod 5)

and
(4o

(20) 2“‘1v}[l = Z (;f{) 5 = 1 (mod 5)

k=0

Multiplying (19) and (20), and dividing out 2n—1, we get (). From
Fermat's theorem, 2 4n = 1 (mod 5), 24n+1 = 2 (mod 5),

etc., and the other
relations follow since (2,5) = 1.

Theorem 1. Let n be either a prime >5 or a strong pseudo-prime.
then

(3) U = 0 (modn) iff n

1
E(n_ ‘n )

1 (mod 4)

(4) v
(- €, )

0 (modn) iff n = 3 (mod 4)

DO b=

Proof. In Lemma 1, let

o
1l
[N

(n - en), b = —21-(11 +en),

then by Eq. (2),
_ n _
21) U, =1 \Y% + (1) U =€, {mod n)

now

Uy =U_; =1, and (1) " =e_ (modn) iff n =1 (mod4).
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Hence

(22) U v = 0 (modn) iff n=1 (mod4) .
Lo-e ) Lmre )
2 n 2 n

Also, from (1),

(23) U =T v = 0 (mod n) .
(n-¢_) 1 1
n -2-(n+en) —Z-(n—en)

Now suppose n = 1 (mod 4), and the pe n, while pe/i/U1 then
from (22), g(n—en)
A

| %(n+en)
and from (23),
\Y%
1
| —Z-(Il-fn)

which is impossible since by (14),
[V Vv =1.
1 > 1
( 5(o+e ) E(n"n))
Hence

n U1 iff n=1 (mod4) ,

—Z'(H— € )

which proves (3).
If, on the other hand, n = 3 (mod 4); then (21) shows that pln implies

Ul V1 = 42 (mod p) .
3n-€ ) 5(o+e )

U ,ny =1 ;
(%(n-en) )

Therefore
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hence from (23),

A%

n
1
g(n— €,)

And finally if n = 1 (mod 4), then n U1 ; and since

g(n- €n)
U » V < 2, nfv s
( —%(n— €,) %(n— En)) /{ %(n— €,)

Corollary 1. If p = 3 (mod 4), then wp is even.

Proof. This follows from (1) and Theorem 1, since wp, p - € which is
1
even, but wp‘f’g(p -€ ).

Corollary 2. If p = 13, 17 (mod20),then @ is odd.
Proof. Here ep = -1, p = 1 (mod 4), hence

1 p - ep) is odd. There-
fore, since

50

1

pUl 2(p"€p) 9

implies wp
—Z'(IJ-Ep)

w,_ is odd.

Corollary 3. (Thoro [3]) If p|U(2n+1), then p # 3 (mod 4).

Proof. p|U21r1+1 implies a)p‘Zn +1 which in turn implies p = 2, or
p = 1 (mod 4) by Corollary 1.

Theorem 2. Let (n,30) = 1, andlet m = Un' Then the following are
all equivalent:

(6) (@) U, =€, (mod n ;

6) () U(m—em) = 0 (mod m) ;

(7) (c) U1 = 0 (mod m) ;
g(m—em)

8 (@ U, =€, {mod m) .

Proof. (@)<=>(b) .
From Lemma 2, we see that U, =m=4n (mod 5), since n isodd.

Therefore €n = € and replacing €, in @), we have
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nlUn ~en UV e T U
n m m
(b) == (c)

Since n is odd, and Un is odd (since 3 ‘/ n) we have:

[Feb.

Un = m Um_ <>nlm - emd»n %(m - em)<=>Um = m U1
€m §(m-e )
(c) = (@)
Using Lemma 1, we have
1 1
Sm-€_) S(m-e_ )
@4 U_ =U, v, FED? ™ 2 2 ™ (mod m)
g(m—em) §(m+em)
Now since n is odd, we see by Corollary 3, that
Un=m51(mod4).
Hence
1
=(m-€_ )
2 m°
(-1) = em
(d) = (c)
Comparing (d) with (24), we see that
(25) U, A = 0 (mod m) ,
—2-(m—em) -2-(m+em)
and from (16), we see that
2 _ - (- m-1 -
Um Um—e Um+e (-1) = 1 (mod m) ,
m m
hence
(26) U U = 0 (mod m) .
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Now suppose pe Im9 and pe /r Uﬂ} s
) . (m-€,,)
w e|n and is therefore odd, hence

p
I8) l(m - €& ) =w m-¢€_ =>p° JU
ef 2 m e m m-€ :
p p m

Therefore, Eq. (26) implies that p lUm+£ . But wp is also odd, hence
n

then p IY‘L( by (25).  Also
2

M+, )

U1 )

1
w |m+ € =elsm+e ) =>p
pl m plZ m E(m+em)

which is a contradiction since

Hence

p° [m =p°|U, ;
—Z-(m—em)
which means that
m U1 . Q.E.D.
—Z'(m'fm)

Theorem 3. Let n be a prime >5, or a strong pseudo-prime, then

for m = UZn’

U )EO(modm);

and m is composite.

Proof, We rote that UZn = UnVI1 by Lemma 1, and is therefore com-
posite for n > 2.

Now, using (2) and (17):

UZn = Unvn = Envn = ﬁn(Un+En + UH—EH) (mod n) ,

and using (1), and Lemma 1:
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n
€n (U(n+€n)) En(Unve + 1) U—(n—en))

2 = =
enVe =V = en (mod n)

i
1

2n
n

€
n

Hence, nlm - en; which, since n and m are odd, implies:

@27 2njm - € =U, =m U(m—en)

To complete the proof, we note that by Lemma 2,

UzI1 = m = in (mod 5), hence Em = En .

Theorem 4. If m = U2n as in Theorem 3, then m is a strong pseudo-

prime if and only if n = 1,4 (mod 15).
Proof. From Theorem 3, and Lemma 1,

m l(m—em) —1-(m+e ) m

. 1
Now if m = em (mod 4), then 2n E(m - em) by (27); hence:

l(m—tfm)
U = (-1) Ue = 1 (mod m) .

On the other hand, if m = —em (mod 4), then a new application of Lemma 1

gives:
1
E(m—zn—em )

U =1 Vv + (-1) U H
m 1 1 2n+€e
E(m—Zn—em) E(m+2n+€m) m

which shows, since now 2n —Zl-(m - 2n - em), that

Um = U2n+e = U2n-€ £ +1 (mod m) ,
m m
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hence Um S€., (mod m) iff € 1 and m =

= 1(mod 4). This corresponds
to n = 1 (mod 5), and n = 1 (mod 3)

(i.e., n = 1,4 (mod 15)). Q.E.D.

(Lucas [5, p. 310]) Let p = 3 (mod 4) be a prime, then
2P _ 1 is a prime if and only if V (p-1) = 0 (mod N).
2

Theorem 5.
N =

Remark. This is the simplest test of primality known; since

2
v = Vv~ -
2n z(n—l)

2

3

and hence can be calculated in only n steps.
Proof. Sufficiency:
Let

Vz(p—l) = 0 (mod N),
then by Lemma 1,
= = = p
Uzp UZ(P-l)Vz(p-l) = 0 (mod N) = wi2".

and since

= = 9P .
(U2<p-1>’ Vz(p—n) = hoey =2

which by (18) gives that N is prime.
Necessity:

Let N be prime, and then since N = 3 (mod 4), we have by Theorem 1,

N Vl
E(N—GN)

and since

P _1=2%_1 =2 @mod5),

EN = -1. Therefore, N Vz(p—l)' Q.E.D.
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