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1. INTRODUCTION

Let Wy, Wi, p # 0, and g #0 be arbitrary real numbers, and
define

L) W, =pW, 4 -aW,, ©p?-4q #0, m=0,1,-),
(1.2) U, = @" - BYY/(A - B) @=0,1,+),
1.3) Vn = An + Bn, V_n = Vn/qn’ = 0,1,c°),

where A # B are roots of y>-py+q = 0. Carlitz [1, p. 132 (6)], using
a well-known result forlinear transformations ofa quadratic form, has given
a closed form for the class of determinants

wE

(1.4) n+r+s

(rys = 0, 1, ¢c=, k) &

As a first generalization of (1.4), we will show that for m = 1,2, °°*,
and ny, =0, 1, *°-,

(1.5) |W];n(n+r+s)+n0 (rys = 0,1, ¢+, k)

k
- (_1)(k+1)(k/2) . q(mn+n0)(k+1)(k/2)+(1nk/3) &-1) | (k)
J
j=0
k
° (Vvi _ p\VOWI + qW%)(k'l‘l)k/z . n szxf]i,{-l-l—l) .
i=1
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For m =1 and ng = 0, Eq. (1.5) gives the main result (1.4) of [I]. Asin
[1] » our proof of (1.5) will require the following known result for quadratic
forms (e.g., see [2, pp. 127-128]):

Lemma 1. Let a quadratic form
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n n
> Y a.xx, @. = a.)

iy ij ji
i=1 j=1

be transformed by a linear transformation

n
Xj_ = ZﬁlkYk i=1,2,°°,n)
=1

to

n n

> 2 cinin (cij = c].i) .

i=1 j=1
Then
(1.6) lcij| = ﬂaijl' lﬁij' @5 = 1,2, +2+,m) .

2. STATEMENT OF THEOREM 1

We note that (1.5) is a special case of Theorem 1.
Theorem 1. Let Wn’ n=0,1, **°, satisfy (1l.1), where A # B # 0
are the roots of y2 -py+q = 0. Let m,k = 1, 2, +++, and define

1 (2.1) P =11 W

mn+ni m=20,1,°°),

i=
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where n, i=1, 2, -, k, are arbitrary integers or zero. Let Nk = ny
+thgters oy, Then, with v+ 1 as the row index and v +1 as the column
index, we have

k
(2.2) n Wi (atu-y) o, W, v = 0,1, «e+, k)
i=1 1
, k
= ey te/2 | onderl) (e/2)+Hmk/3) (2-1) | c,
=0
k
. (WE - pWoWy + QWi )(k+1)k/2 n UIZIflf+1—1) ,
i=1
N
with Cy = A k ,
(3
T
N, -S@, 1) .
(2.3) C, = 2 A k BS(J’r) r =1,2, 9,k ,

=1

@.4) SG,1) = np) +n2(j) +n§j) + eee + ni‘j) (J =1, 2, ¢« (k)),

where, for each j, S(j,r), as the sum of r integers, ni(j), i=1,2, ¢oe,
r, represents one of the 1; combinations obtained by choosing r num-
bers from the kK numbers, ili, Ngs Ngy **°, N

Remarks., If n, =ng, i=1,2,°*,k, then Nk = kng, S(@,r) = rng,
and

c = (k) A(k—r)noBrno .
r r

Since AB = ¢, we have
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k k
+
r=0 j=0
and thus (2.2) gives (1.5) as a special case.

Forthe case ny =ny = +++ =n , =d and n_ # d, it is readily seen
that

c, - (1; - i) A le-m)d -1y (k - 1) pler-Ddng rd

As a footnote to Theorem 1, we have

Lemma 2, For r<k-v, r=0,1, -, we have

)
k)qN (r j‘j S(i,1)-8(, 14N

_ k .
2.5 CCyp = (r DI V2s(, 1)-286,1) *
j=2 i=1
Thus,
k k-1)/2
(2.6) 11 CI‘ = I1 CI'Ck—I' k =1,3,5, ),
r= r=0
k (k-2)/2
(2.7) I1 CI‘ = Ck/Z . I1 CI‘Ck—I‘ (k = 2, 4, 6, cee),
r= r=0
where
k-1
k/2 y
— S(j’k 2) = . 000
(2.8) Ck/Z = E q 4 VNk—ZS(j,k/Z) (k 2, 4.', 6, )D

=1
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Proof of Lemma 2, Since AB = ¢, we obtain from (2.3),

(k)
L . N, -25(j,r)
- ~ S(J,I') k ’
Co= a7 -4

=1

Noting that a choice of r numbers from k numbers leaves a complement
choice of k - r numbers, we have from (2.3)

() (&
r N, -8G,k-1)_8(j,k-1) r
(2.9) C .= 3 A B =

j:

(k)
r .
) qS(i, ) . BNk-ZS Gi,r)

i=1

NS

S, 1) Nk—S(j,r)
A B

™

In forming the product Cer_r, we nolsIe that (l;) product pairs have equal
i and j indices and the same value q K. For the cross products with i #

j» we combine those pairs having the same values of i and j, noting that

S@G,r) Nk—ZS(j,r) SG,r) NK—ZS(i,r) SG,r) Nk—ZS(i,r) S(@,r) Nk—ZS(j,r)
A . q B + q A .q B

S@,r)-S@,r)+N

g ky

2S (j,r)-28(,r)

q

Set k = 2r in (2.3). Since a choice of r numbers from a set of 2r
numbers leaves another set of r numbers, we may again pair off related

terms of the sum in (2.3). Since

N,.-S@,r) S@,r) SG,r) N__-S(j,r) SG,1)
AP B +A BT =q v

NZr—ZS(j »T)
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() -2 (7)) -

we obtain (2.8) from (2.3) with r = k/2.

and

3. PROOF OF THEOREM 1

Since A # B, the general solution to (1.1) is

anaAn-i—an’ n = O’ 1,-on,

where a and b are arbitrary constants whose values satisfy Wy = a + b
and Wj = aA +bB. We readily find that (B - A)a = WyB - W; and (B - A)b
= Wy - AW, Since A+ B =p and AB = q, we have that

(3.1) (A - B)2ab = (Wi - pWoWy + qW3) .
We observe that

k k
B2 P =M1W, . =3 K]_(Bm(k—j)Amj)n @ =0,1,°) ,
i=1 Yo=0

where Kj’ j=0,1, °e,k, denote arbitrary constants independent of n.

The quadratic form

k k k
- = . m(k-j) , mj ,n+r+s
Q= 2 PhriptsYris = 2z Yi¥s 2z Kj(B AT
T, s:() r,s:() J=0
k k )
_ m(k-j) ,mj,2 mj(r+s) jmk-j) (r+s
3.3 = ZKj(B A7)y Y A B Y Y
j=0 r,5=0
k

. i s n
j=0
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where

k
= mj,mik-j)\* A
(3.4) x = 3 B ) Y., G =0,1,°°", k) .
r=0
Thus, by means of the linear transformation (3.4), we have reduced Q toa
diagonal form. If M denotes the determinant of the linear transformation
(3.4}, it follows from Lemma 1 (see (1.6)), that

k k
_ 2 mk-j) mj," _ o, mnlcl)k/2
B8 P = M U KB Ay =M. g 1K,
j=0 =0
where
(3.6) M = i(A JBm - ) l (j:r =0,1,°*,k) ,

is a Vandermonde determinant.
We find now that

k-1 k
M= 11 @orpmk-r) _ migmb-))y oo gmipmken) ) gy o)
m(r-j
Ogi<r<k j=0 r=j+1
k-1 K-j
- - B2 oo AmJBm(k_J—S)UmS
j=0 s=1
(3.7)
k-1 k-1 k-i
N B)k(k+1)/2 . Am](l{—J)Bm(k—])(k—J—l)/Z. o Ums
§=0 i=0 s=1
k

=(A-B

)k(k+1)/2_ qu(kz-l)/e_ 1 Ui{x;kil—i

i=1
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We proceed now to evaluate

k
I1 Kj
j=0
of (3.5). From (3.2) we have
k k i
_ mkn mn
(3.8) 3| Wm]thni =B .3 K, (/™) ,
i=1 §=0

which is a polynomial in the variable (A/ B‘)mn. Since Wn = aA” + an, we

have

n, n,
_ Smn i mn i
anmi = 8™ (aa ‘a/B™ +bB ') ,
and thus
k k
_ mkn ni mn oy
(3.9) nw,. =B - 11 (aA *(A/B)" " +bB ")
i=1 ! i=1
N k n
= BE AR T (/B + b/a)B/A) 1) .
i=1

Recalling the definition of the elementary symmetric functions of the roots of
a polynomial, we conclude, after comparing (3.8) and (3.9), that (see (2.3))

k .
N (I') T n]s'])
(3.10) K, =a. A K. (0. X (/)b T @/4) 5= F e,
=1 s=1 (r=0,1,0,K .



3568 ON DETERMINANTS WHOSE ELEMENTS ARE [Oct.

Using (3.1), we obtain from (3.10)

K K
_ k(k+1)/2
n Kr = (ab) I1 Cr
r=0 =0
8.11) k
= (/2 gyl ) 2 Sy 4 qwd)EED/2 g c,.

r=0
Thus, (3.5), with the use of (3.7) and (8.11), gives the desired result, (2.2).

4, THE CASE p? - 4q = 0

In [1] , Carlitz gave an alternate proof of (1.4) for the case p? - 4q = 0.
Although (1.4) was proved for the case p? - 49 # 0, the two results are
shown to be the same for the case p? - 4q = 0.

In the derivation of (2.2), we assumed that p* - 49 # 0. It can be
shown (by a repetition of the argument in [1]) that (2.2) is also valid for the
case p’-4q = 0, where now U, = n(p/z)n-l, and w, = (a + bn) (p/2)",
with a = Wy and pb = 2W; = pWj Since A = B = p/2, we obtain from
(2.3) that

Moreover, we have

k k
m szn(i{ﬂ_i) - (mi)Z(k+1-i)_‘(p/2)2(mi-l)(k+1-i)
i=1 i=1
k
= k&) (p/z)k(k+1)(mk+2m-3)/3. o @),
r=0

and
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k

n (k)(rz 2 = )<L,

r
=0

Thus, from Theorem 1, we obtain the simplified result
Theorem 2

k m (n+r+s)+n, |
I1(a+bn +bmn +r +s))@/2) (rys = 0,10+ ,Kk)

i=1

(k+1) (ik(mn+1)+(2/3)mk (k-1)+(k/3) (mk+2m-3)+N, )
@) = pEIE2 k

k(k+1) k+1

+ (bm) o (&)
Remarks. If m =1 and n, = 0, i=1, 2, ¢+, k, then Nk = 0,
and thus (4.1) contains, as a special case, the second (and the last) principal
result, (7), of [1].
Additional simplifications of (4.1) are readily obtained,
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