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ABSTRACT 

In a f o r m e r ve rs ion of th is paper ("Iteration Algor i thms for Cer ta in 

Sums of Squares") 5 K a r s t s by composit ion of s imple sums of s q u a r e s 9 found 

six i tera t ion a lgor i thms of which he could prove the f i r s t by m e a n s of the gen-

e ra l i zed Pe l l equation and the second by the pe rmanence of formal laws* F o r 

the remain ing four, equivalent to the solution of x2 - (k2 + l)y2 = k2
? with k 

= . 1 , 2 , and 35 Finkels te in and London were able to furnish a unifying proof 

by the use of c l a s s number s and quadrat ic fields* This just i f ies the new t i t le . 

The following t h r e e - s t e p i tera t ion a lgor i thm to genera te x in 2x + 1 = 

a2 and 3x + 1 = b2
9 s imul taneously! was mentioned in [6, p. 211] : 

1-10-1 = 9 92 = 81 (81 -D/2 = 40 = X l 

9-10-1 = 89 892 = 7921 (7921-1)/2 = 3960 = x2 

89-10-9 = 881 8812 = 776161 (776161-1)/2 = 388080 = x3 

881-10-89 = 8721 87212 = 765055841 (76055841-1)/2 = 38027920 = x4 

8721- 10-881 = 86329 863292 =7452696241 (7452696241-D/2 = 3726348120 =x 5 

Proof. F r o m 2x + 1 = a2 and 3x + 1 = b2 comes 3a2 - 2b2 = 1. If 

a s b is any solution of this genera l ized Pe l l equation, then 

a ,- = 5a + 4b , b ^ = 6a + 5b n+1 n n n+1 n n 

is the next l a r g e r one« F r o m the se , we can obtain immedia te ly 

a „ + a ., = 10a , b ,- + b - = 10b , n+1 n - 1 n n+1 n - 1 n 

which i s equivalent to the algorithm,, 

463 
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F o r the n formula , we use the usual approach by l i nea r substi tution 

(for example , [ 1 , p. 181]) and obtain 

x
n
 = [<V6 + 2)(5 + 2 \ / 6 ) n + (\/6 - 2)(5 - 2 \ / 6 ) n ] / 4 8 - 1/2 . 

Th is formula has th ree shor tcomings : (1) it u se s f rac t ions , (2) it employs 

r o o t s , ancl (3) i t has n in the exponent. The a lgor i thm above has none of 

them. 

Simi lar a rgument s a r e valid for a four - s tep i tera t ion a lgor i thm [4] to 

genera te x in x2 + (x + I)2 = y2. 

Somet imes , the n t e r m formula m a y be s imple , .as for a2 + b2 + (ab)2 

= c 2 , a and b consecutive posi t ive in t ege r s [ 2 ] . H e r e , we have 

(n - I)2 + n2 + (n - l )n 2 = (n2 - n + I)2 , 

and hence we need no a lgor i thm. But for a = 1, an a lgor i thm would be 

helpful. Let us f i rs t find some c lues to such an a lgor i thm. We have by hand 

and by a table of s q u a r e s : 

12 + o2 + 02 = l 2 = (02 + I ) 2 

l 2 + 22 + 22 = 32 = (22 - l ) 2 

I 2 + 122 + 122 = 172 = (42 + l ) 2 

l 2 + 702 + 702 = 992 = (102 - l ) 2 . 

The a l te rna t ing +1 and - 1 in the l a s t column, which shows a constant pa t -

t e r n , sugges ts the possibi l i ty of an a lgor i thm. If we can find all b , say 

from D3 = 12 on, we will also have all c . After some t r i a l s and e r r o r s we 

obtain 

I terat ion Algori thm I 

6-2 - 0 = 12 
6-12 - 2 = 70 

6-70 - 12 = 408 
6-408 - 70 = 2378 

6-2378 - 408 = 13860 
6-13860 - 2378 = 80782 
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which yields eas i ly the next four r e su l t s : 

I2 + 4082 + 4082 = 5772 = (242 + I) 2 

l 2 + 23782 + 23782 = 33632 = (582 - I ) 2 

l 2 + 138602 + 138602 = 196012 = (1402 + I) 2 

I 2 + 807822 + 807822 = 1142432 = (3382 - I ) 2 

S imi lar ly s we approach the case a = 2 , We have by hand and by a table of 

squa re s : 

22 + I 2 + 22 = 32 = (I2 + 2)2 

22 + 32 + 62 = 72 = (32 - 2)2 

22 + 82 + 162 = 182 = (42 + 2)2 

22 + 21 2 + 422 = 472 = (72 - 2)2 

The a l ternat ing +2 and -2 in the l a s t column, which shows a constant pa t -

t e r n , suggest the poss ibi l i ty of an a lgor i thm. If we can find all b , say from 

b3 = 8 on, we will also have all c„ After some t r i a l s and e r r o r s we obtain 

I tera t ion Algori thm II 

3-3 
3-8 
3-21 

3-55 -
3*144 -
3-377 -

- 1 
- 3 
- 8 
• 21 
• 55 
144 

= 
= 
= 
= 
= 
= 

8 
21 
55 
144 
377 
987 

which yie lds eas i ly the next four r e s u l t s : 

22 + 552 + HO2 = 1232 = ( l l 2 + 2)2 

22 + 1442 + 2882 = 3222 = (182 - 2)2 

22 + 3772 + 7542 = 8432 = (292 + 2)2 

22 + 9872 + 19742 = 22072 = (472 - 2)2 . 

Slightly differently behaves the case of a = 3* We have by hand and by a table 

of s q u a r e s 



466 APPLICATION OF RECURSIVE SEQUENCES [Dec. 

32 + 

32 + 

32 + 

32 + 

32 + 

02 + 

22 + 
42 + 

182 + 

802 + 

02 = 

62 = 
122 = 

542 = 

2402 = 

32 = 
72 = 

132 = 

572 

2532 = 

(02 + 3)2 

(22 + 3)2 

(42 - 3)2 

(162 - 3)2 

32 + 1542 + 4622 = 4872 = (222 + 3)2 

32 + 6842 + 20522 = 21632 

Here the doubly alternating +3 and -3 in the last column would show a con-
stant pattern, if the exceptional values 572 and 21632 could be eliminated. 
This suggests obviously the possibility of two algorithms. To obtain further 
results , we write an Integer-FORTRAN program for the IBM 1130 which 
yields: 

32 + 30382 + 

32 + 58482 + 

32 + 259742 + 

32 + 1153642 + 

32 + 2220702 + 

32 + 986S282 + 

32 + 43807942 + 

91142 = 

175442 = 

779222 =" 

3460922 = 
6662102 = 

29589842 = 

131423822 = 

96072 = 

184932 = 

821372 

3648132 = 

7022472 = 

31190432 

138532872 = 

(982 

(1362 

(6042 

(8382 

(37222 

+ 3)2 

- 3)2 

- 3)2 

+ 3)2 

+ 3)2 

Now we want to find an algorithm which should generate the sequence 80, 154, 
3038, 5848, 115364, 222070, 4380794, • • • . Let the terms bt = 0, b2 = 2, 
and b3 = 4 be given; then b0 = -4 is the left neighbor of ht = 0, since 

32 + (_4)2 + („ 1 2 )2 = 1 3 2 = (42 „ 3)2 

is. the logical extension to the left. With this new initializing and some trials 
and e r ro r s , we obtain the Iteration Algorithm III on the following page. Now 
there remains only to find an algorithm which should generate 25974, 986328, 
• •e . Here, we have not far to go, since such an algorithm is already con-
tained in the former one, and we obtain Iteration Algorithm IV on the following 
page. 
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I terat ion Algorithm HI 

38*2 - (-4) = 80 
2°80 - 2:4 + 2 = 154 

38-80 - 2 = 3038 
2-3038 - 2*154 + 80 = 5848 

38*3038 - 80 = 115364 
2*115364 - 2t5848 + 3038 = 222070 

38-115364 - 3038 = 4380794 

I tera t ion Algori thm IV 

38-684 - 18 = 25974 
38*25974 - 684 = 986328 

Final ly s one could ask: Does the re exist a genera l formula for solving x2 + 

y2 + z2 = w2 ? The answer is yes0 Le t 

x = p2 4- q2 - r 2 , y = 2pr3 z = 2qr5 and w = p2 + q2 + r2; 

then x2 + y2 + z2 = w2 becomes 0 = 0. But this formula has two s h o r t -

comingss (a) it u s e s f rac t ions , and (b) it employs r o o t s , s ince , for example , 

the solution 32 + 22 + 62 = 72 r e q u i r e s p =\/~2/29 q = 3 \ / 2 / 2 s and r = 

V2. 
Now we shall prove how the in teger solutions of cer ta in Diophantine 

equations of the second d e g r e e , equivalent to I terat ion Algor i thms I-IV, can 

be found by r e c u r s i v e sequences . We will cons ider the equation 

(1) x2 - (k2 + l)y2 = k2 

with k = 1, 29 and 3. F u r t h e r , x and y will denote in teger so lu t ions of 

(1). 

If k = 1, Eq. (1) becomes x2 - 2y2 = 1. By Theorem 3 of [ 3 ] , the 

r e c u r r e n c e formula for this equation i s given by 

y = 6y ,- - y - , n > 2 9 
J n J n + 1 J n - 1 

with y1 * 2 and y2 = 12. 
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If k = 2 , Eq. (1) becomes 

(2) x2 - 5y2 = 4 . 

This equation belongs to the quadrat ic field Q(0), 0 = V ^ s which has 

(1 , (1 + 0 ) /2 ) a s an in tegral b a s i s , and i t s fundamental unit i s €0 = (1 + 0)/2,, 

Since the c l a s s number of Q(0) i s 1 and the d i s c r iminan t D = 5 (mod 8), 

the ideal (2) i s p r i m e [5, p . 66] , Hence, all the a lgebra ic in tegers of Q(0) 

of norm 4 a r e a s soc i a t e s of 2. T h u s , if x + y 0 is an a lgebra ic in teger of 

norm 4 , we get 

n o 2n n n x + y 0 = 2€0 = 26-t , n J n u 1 9 

where et = e\ = (3 + 0) /2 . 

Remark . Since we want all the a lgebra ic in tegers of norm 4 , we have 

only cons idered the even powers of €0. Noting that 

€n + l _ o n n - 1 

we obtain 

y , i = 3y - y - , n > 2 , J n + 1 J n J n - 1 

with ji = 1 and y2 = 3. It can eas i ly be shown, by using the 

well-known identity 

L2 - 5F2 = 4 ( - l ) n 
n n N 

of the Lucas and Fibonacci n u m b e r s , that y = F Q and x 
n 6X1 n 

= L ? . If k = 3 , Eq. (1) becomes 

(3) x2 - 10y2 = 9 . 

This equation belongs to the field Q(0), 0 = \ / T 0 , which has (1,0) a s an 
in tegra l b a s i s , €0 = 3 + 6 a s i t s fundamental unit , and c l a s s number 2. 
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Since the discriminant D = 1 (mod 3), the ideal (3) becomes PjPg, where 
Pi and P2 are distinct prime ideals of norm. 3. Thus there are 3 distinct 
ideals of norm 9. Since 3, 7 - 26, 7 + 26 are non-associated integers of 
norm 9, all the integers of norm 9 are associates of one of these 3 integers. 
It follows that 

(4) 

X3n + Jan* = 3 €' n = 3€? -
X3n+1 + W = ( 7 " 26^R = <7 - 2*>€? • 
X3n+2 + yan+26 = (7 + W)€^ = ( 7 + W)^ 

By applying Theorem 3 of [ 3 ] , we find that e? satisfies the recurrence 
formula 

u , 0 = 38u (1 - u , n+2 n+1 n ' 

where u is either the constant term of the coefficient of 6 for €̂ j\ Thus 
the recurrence formulas for Eqs. (4) a re , for n > 2, 

bQ = 38bQ Q 3n 3n-3 
b Q ^ = 38bQ 0 3n+l 3n-2 
b3n+2 = 3 8 b 3 n - l 

" b 3 n - 6 9 

" b3n-5> 

- b3n-4> 

^ = 57, 

bj = 2, 

b2 = 4 , 
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