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ABSTRACT

In a former version of this paper ("Iteration Algorithms for Certain
Sums of Squares'), Karst, by composition of simple sums of squares, found
six iteration algorithms of which he could prove the first by means of the gen-
eralized Pell equation and the second by the permanence of formal laws. For
the remaining four, equivalent to the solution of x® - (k% + 1)y = k%, with k
=1, 2, and 3, Finkelstein and London were able to furnish a unifying proof
by the use of class numbers and quadratic fields. This justifies the new title.

The following three-step iteration algorithm to generate x in 2x +1 =

a’ and 3x +1 = b%, simultaneously, was mentioned in [6, p. 211]:

1-10-1 = 9 92 = 81 (81-1)/2 = 40 = x4
9-10-1 = 89 892 = 7921 (7921-1)/2 = 3960 = x,
89-10-9 = 881 8812 = 776161 (776161-1)/2 = 388080 = x

881.10-89 = 8721 87212 765055841  (76055841-1)/2 38027920 = x4
8721 10-881=86329 863292 =7452696241 (7452696241-1)/2 = 3726348120 =x;

I
I

Proof. From 2x +1 = a? and 3x +1 = b? comes 3a?-2b% =1, If

a,s bn is any solution of this generalized Pell equation, then

41 = 551n + 4bn, bn+1 = 6an + 5bn

is the next larger one. From these, we can obtain immediately

a, +ta _, =10a, b +b . =10b ,

which is equivalent to the algorithm.
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For the nth

(for example, [1, p. 181]) and obtain

formula, we use the usual approach by linear substitution

X, = (V6 + 2)(5 + 2V6)" + (B - 2)(5 - 2\/’6)”]2/48 -1/2 .
This formula has three shortcomings: (1) it uses fractions, (2) it employs
roots, and (3) it has n in the exponent. The algorithm above has none of
them.

Similar arguments are valid for a four-step iteration algorithm [4] to
generate x in xX+ (x + 1)2 = y2

th

Sometimes, the n* term formula may be simple, asfor a%+b?+ (ab)?

= c2?, a and b consecutive positive integers [2]. Here, we have
m-12+n2+ (@-1n? =@ -n+ 12,

and hence we need no algorithm. But for a =.1, an algorithm would be
helpful. Let us first find some clues to such an algorithm. We have by hand

and by a table of squares:

12+ 02+ 02 = 12 = (02 + 1)
12+ 224 22 = 32 = (22 - 1)2
12 + 122 + 122 = 172 = (42 + 1)2
12 + 702 + 702 = 992 = (102 - 1)2

The alternating +1 and -1 in the last column, which shows a constant pat-
tern, suggests the possibility of an algorithm. If we can find all b, say
from by = 12 on, we will also have all c. After some trials and errors we

obtain

Iteration Algorithm I

6:2 - 0 = 12

6-12 - 2 = 70

6-70 - 12 = 408
6-408 - 70 = 2378
6:2378 - 408 = 13860
6:13860 - 2378 = 80782
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which yields easily the next four results:

12 + 4082 + 4082 = 5772 = (242 + 1)2
12 + 23782 + 23782 = 33632 = (582 - 1)2
12 + 138602 + 138602 = 196012 = (1402 + 1)2
12 + 807822 + 80782% = 1142432 = (3382 - 1)2

Similarly, we approach the case a = 2, We have by hand and by a table of

squares:

22+ 12+ 22 = 32 = (12 + 2)?
22+ 32 + g2 = 72:(32_2)2
22 + 8% + 162 = 18 = (42 + 2)2
22 + 212 + 422 = 472 = (72 - 2)?

The alternating +2 and -2 in the last column, which shows a constant pat-
tern, suggest the possibility of an algorithm. If we can find all b, say from

bs = 8 on, we will also have all c. After some trials and errors we obtain

Iteration Algorithm IT

3.3-1 =8
3.8 -3 = 21
3.21 - 8 = 55
3.55 - 21 = 144
3.144 - 55 = 377
3.377 - 144 = 987
which yields easily the next four results:
22 + 552 + 1102 = 1232 = (112 + 2)2
2% 4+ 1442 + 2882 = 3222 = (182 - 2)2
22 4+ 3772 + 7542 = 8432 = (292 + 2)2
22 + 9872 + 19742 = 22072 = (472 - 2)2 ,

Slightly differently behaves the caseof a = 3. We haveby hand and by a table

of squares
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¥+ 02+ 02 = 3P = (0% + 3)2
3+ 24+ 6 = 7? o= (2% + 3)?
32+ 42+ 122 = 132 = (42 - 3)?
3%+ 182 + 54% = 572

3% + 802 + 2402 = 253 = (162 - 3)2
3% + 1542 + 4622 = 487% = (222 + 3)?
32 + 6842 + 20522 = 21637

Here the doubly alternating +3 and -3 in thelast column would show a con-
stant pattern, if the exceptional values 574 and 21632 could be eliminated.
This suggests obviously the possibility of two algorithms. To obtain further
results, we write an Integer-FORTRAN program for the IBM 1130 which

yields:
32 + 3038% + 9114% = 96072 =  (98% + 3)2
32 4 58482 + 175442 = 184932 = (1362 - 3)2
3% + 259742 + 779222 = 821372
3% + 115364% +  346092% = 3648132 = (6042 - 3)?
3% + 2220702 + 666210% = 7022472 = (838 + 3)2
3% + 0863282 + 29589842 = 31190432
3% + 4380794% + 13142382% = 138532872 = (37222 + 3)2

Now we want to find an algorithm which should generate the sequence 80, 154,
3038, 5848, 115364, 222070, 4380794, --. Let the terms by =0, by = 2,
and by = 4 be given; then by = -4 is the left neighbor of by = 0, since

3+ (-4)?% + (-12)2 = 132 = (4% - 3)?

is the logical extension to the left. With this new initializing and some trials
and errors, we obtain the Iteration Algorithm III onthe following page. Now
there remains onlyto find an algorithm which should generate 25974, 986328,
+++ , Here, we have not far to go, since such an algorithm is already con-
tained in the former one, and we obtain Iteration Algorithm IV on the following
page.
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Iteration Algorithm IIT

38:2 - (-4) = 80
2:80 - 2:4 + 2 = 154
38:80 - 2 = 3038
23038 - 2:154 + 80 = 5848
38-3038 - 80 = 115364
2°115364 - 2:5848 + 3038 = 222070
38-115364 - 3038 = 4380794

Iteration Algorithm IV

38-684 - 18
38-25974 - 684

25974
986328

nn

Finally, one could ask: Does there exist a general formula for solving x% +

y?+2z? = w? 2 The answer is yes. Let
X=p2+Q—r, y = 2pr, z = 2qr, and w = p?+q?+rd

then x%+y2 + 22 = w2 becomes 0 = 0. But this formula has two short-
comings: (a) it uses fractions, and (b) it employs roots, since, for example,
the solution 3%+ 22+ 62 = 72 requires p =\/2/2, q = 3V2/2, and r =
V2.

Now we shall prove how the integer solutions of certain Diophantine
equations of the second degree, equivalent to Iteration Algorithms I-IV, can

be found by recursive sequences. We will consider the equation
(1) x2 - &2+ 1)y = K2

with k = 1, 2, and 3. Further, X and Yy will denote integer solutions of
1).
If k =1, Eq. (1) becomes x?- 2y? = 1. By Theorem 3 of [3], the

recurrence formula for this equation is given by

Yo = n+1 T Vi1 n>2,

with y; = 2 and y, = 12.
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If Kk =2, Eq. (1) becomes

(2) x2 - 5y = 4 ,

This equation belongs to the quadratic field Q(6), & =+/5, which has
(1, (1 +60)/2) as an integral basis, and its fundamental unit is €; = (1 + 6)/2.
Since the class number of Q(f) is 1 and the discriminant D =5 (mod 8),
the ideal (2) is prime [5, p. 66]. Hence, all the algebraic integers of Q(6)
of norm 4 are associates of 2. Thus, if x + yn(-) is an algebraic integer of
norm 4, we get
_ 2n _ _.n
X +yn9 = 2€¢) = 2€{ ,

where €; = 6(2) = (3 +0)/2.

Remark. Since we want all the algebraic integers of norm 4, we have

only considered the even powers of €, Noting that

n+1 n n-1
€ T = 3¢ - € )

we obtain

Yn+1 ~ 3yn = Yp-1° n>2,

with y; =1 and y, = 3. It can easily be shown, by using the
well-known identity

2 _ 2 — 212
L2 - 5F% = 4(-1)

of the Lucas and Fibonacci numbers, that Yy = an and X

= L2n' If k=3, Eg. (1) becomes

(3) x2 - 10y2 = 9,

This equation belongs to the field Q(f), 6 =~/10, which has (1,6) as an
integral basis, €, = 3+ 6 as its fundamental unit, and class number 2.



1970]

TO DIOPHANTINE EQUATIONS 469

Since the discriminant D = 1 (mod 3), the ideal (3) becomes PPy, where

P; and P, are distinct prime ideals of norm 3.

ideals of norm 9.

Thus there are 3 distinct

Since 3, 7-20, 7+20 are non-associated integers of

norm 9, all the integers of norm 9 are associates of one of these 3 integers.

It follows that

2n

Xgp * y3n9 = 3¢ = 3¢ ,
@) ¥3n+1 T Yaperf = 7 - 2605 = (7 - 20)€l
Xgrio * Vool = (T + 20€8" = (7 + 20)€f

By applying Theorem 3 of [3], we find that e? satisfies the recurrence

formula

u
n+2

where u
n

= 3811][1+

is either the constant term of the coefficient of 6 for 6111.

- u
n °

Thus

the recurrence formulas for Egs. (4) are, for n> 2,

by, = 3%y 5 - by o by = 57, by = 684,

Pontr = 30gy 5 = Py g Pr =2 by = 80,

b3n+2 = 38b3n—1 - bSn—4’ b2 = 4:, b5 = 154
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