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H-181 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

m n 
(am + en) (bm + dn) 

m,n=0 
mini (1 - ax)(l - dy) - bcxy 

where 

^-(ax+by)^ y = ye-(cx4dy) 

H-182 Proposed by S. Krishnar, Berthampur, India. 

Prove or disprove 

m 
(i) V* A = o (mod 2m + 1) , 

k2 
k = l K 

and. 
134 
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m 
(ii) Y^ = 0 (mod 2m + 1) 

~ (2k - 1)' 

when 2m + 1 is prime and larger than 3. 
[See Special Problem on page 216. ] 

SOLUTIONS 
GONE BUT NOT FORGOTTEN 

H-102 Proposed by J. Arkin, Suffern, New York. (For convenience, the problem is restated, using 
Bn=Am-> 

Find a closed expression for B in the following recurrence relation. 

( H ) [I] + X = B n " B n - 3 " B n-4 " B n -5 + B n -7 + B n -8 + Bn-9 " Bn-12 • 

where n = 0, 1, 2 , -«- and the first thirteen values of B0 through B12
 a r e 

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, and 47, and [x] is the greatest 
integer contained in x. 

Solution by the Proposer. 

In a recent paper* this author introduced a new notation, and because of 
the new method in the paper, we a re , for the first time, able to find explicit 
formulas in such recurrence relations as H-102. 

We denote by p (n) the number of partitions of n into parts not ex-
ceeding m, where 

(1) Fm(x) = 1/(1 - x)(l - x2) • .- (1 - x m ) = J2 Pm( n ) x I 1 

n=0 

and p (0) = 1. ^m 
The new notation we mentioned above is defined as follows: 

*Joseph Arkin, "Researches on Partitions,' ' Duke Mathematical Journal, Vol. 
38, No. 3 (1970), pp. 304-409. 
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(2) A(m,n) = 1 if m divides n 

A(m,n) = 0 if m does not divide n , 

whe re 

m = 1, 2, 3, ••• , n = 0, 1, 2, ••• , 

and 

A(m,0) = 1 . 

Now, in (1), it is plain that 

oo 
F2(x)/(1 - x3)<l - x4)( l - x5) = J2 PsWx11 , 

n=6 

and we have 

oo 
(3) F2(x) = (1 - x3)(l - x4)( l - X5) J2 PsWx11 

n=0 

Then, combining the coefficients in (3) leads to 

(4) p2(n) = p5(n) - p5(n - 3) - p5(n - 4) - p5(n - 5) + p5(n - 7) 

+ P5(n - 8) + p5(n - 9) - p5(n - 12) , 

and it is evident that the right side of (4) is identical to the right side of (H). 
Now* it was shown that 

^Joseph Arkin, "Researches on Part i t ions," Duke Mathematical Journal, 
Vol. 38, No. 3 (1970), Eq. (6), p. 404. 
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p2(2u) = u + 1 

and 

p2(2u + 1) = u + 1 (u = 0, 1, 2, ••••) , 

so that 

(5) ft (a) = [n/2] , 

where n = 0 , l , 2 , e " , and [x] is the greatest integer contained in x, 
Then, combining (5) with the left side of (4) and since 

B n = p5(n) (n = 0, 1, 2, • • . ) , 

it remains to find an explicit formula for the p5(n). 
To this end*, we see that 

6n4 + 180n3 + 1860n2 + 7650n + 7719 1 
(270n + 2025) ( - l ) n 

1920A(3,n) 
2160(A(49n) + A(4,n + 3)) 

3456A(5,n) J 

A LARGE ORDER 

H-161 Proposed by David Klarner, University of Alberta, Edmonton, Alberta, Canada. 

Let 

* Joseph Arkin, "Researches on Part i t ions," Duke Mathematical Journal, 
Vol. 38, No, 3 (1970), Eq, (19), p. 406. 

PsW - j ^ 8 0 
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where the sum is extended over all compositions of n and the contribution to 
the sum is 1 when there is only one part in the composition. Find an asymp-
totic estimate for b (n). 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Put 

b, (n) = X (ai + aA (*2 + a 3V • • I**-1 + % I 
k a1+.*H-ak=nV *2 I \ *3 ) \ *k I 

00 

ra = E \(n) xn • 
n=0 

It is known (see "A Binomial Identity Arising from a Sorting Problem," 
SIAM Review, Vol. 6 (1964), pp. 20-30), that fk(x) is equal to the following 
determinant of order k + 1: 

1 x 
1 1 x 

1 1 x 

1 1 x 
1 1 

It follows that 

W x > = ***> " xfn-l<x> 

Since f0(x) = 1, fj(x) = 1 - x, we find that 

F(z) = JT fk(x) zk = -
k=0 1 

1 - xz 

z + xz* 
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In the next place, 

1 - xz = 1 / a2 __ j32 \ 
1 - z + xz2 a - jS \1 - az 1 - j3z / 

where 

a + ft = 1, aft = x 

It follows that 

ak+2 _ ^ + 2 
fk( x ) a- p ' 

so that 

00 

n=0 « - 0 

Now, if k = 2r + 1, 

4 ^ # = TT «* - ^ ) 
^ " P S = l 

-ii- , 0 2iris/k\/„ „ -27Jls/k\ 
= I I (a - j3e • )(a - /3e ) 

s=l 

f / l - 4x cos2 ^ ] . = TTI'1 - 4 x 

s -

If we put 
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(3) i r f i - ^ c o ^ f ) " 1 ^ - As 
S JL ., X g = i . _ 4x cos* f 

we find that 

But 

2(r- l) TTS 0 r - l 2(r-l) 7Ts 
COS ' -rr 2 C 0 S "F 

TT f cos2
 T - - cos2

 r 1 TT I cos - ^ - cos ^-J 

t^s # s 

^ 2 ( r - l ) 7TS 

so that 

cos -r-
k 

7T(t + S) . 7T(t - S) TJ sin B L l ^ i s i n 
t=l 
#s 

2r 
r TT sin & 

T T sin 2 * + 2> sin I L Z J O = ( . I , B - 1 ^ 1 * _ 
t=l k k sin ™ sin 2 " 
# s k k 

(-D^k 
0 k . o 7TS TTS ' 
2 sin*2 - ^ cos -— 

q . 2 k sin* ™ c o s 2 ^ 1 ^ 
( - l ) 8 " 1 k (4) A„ = ( - I ) 8 " 1 *—,- * 

Then, by (2), and (3) and (4), 
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, k + 2 l ( k + 1 ) , s i n 2 , ^ * ^ a - P _ 21*'" V , -vS-1 — k + 2
 w o k + 2 

~k+2 __ A+2 k + 2 - 2 - / 1 _ 
a s=l 

A 2 A " 8 

4x cos4 k + 2 

.k+2 ^ ( k + 1 ) 00 
S - l . ? 7TS k f S V * /vi \ n 2 n ^"S 

^ IA„\ g k + 2 
s=l n=0 

k + 2 oo 4(k+D 
= 2 V (4x)n V (-1)8"1 sin2 ^ s c o s k + 2 n - ^ — k + 2 2L/ * ' 21* l ; k + 2 C 0 S k + 2 9 

n=0 s=l 

Therefore, by (1)9 

k+2n+2 ^ ( k + 1 ) 
/r\ u / \ 2 x-^ / .jxS-1 . o 7TS k+2n TTS /, ,,v 
(5) bk(n) = k + 2 2 J (-D sin2 j ^ - ^ cos , — g (k odd) 

s=l 

This implies the asymptotic formula 
9k+2n+2 , 9 

<6> bk(n> ~ i m r sin2 rfs cos kTi (k odd) 

Next, if k = 2r , 

<* " P 0 2 - / 3 2 8=1 

r - 1 * 

s=l * 
1 - 4x cos2 ££ 

If we put 
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we get 

A s r -1 

n 
t=i 

ADVANCED PROBL1 

cos 2 ( r ~ 2 ) ™ k 

( 27TS 27Tt \ 

\ k
c o s — - c o s — J 

2 r ^ 2 2(r-2) 7TS 
k 

[Api 

c o s 2 ( r " 2 ) ™ k 
f r / 27TS 27Tt \ £ T . 7T(t + 

j 7 ^ c o s _ . c o s _ j pr sin-4. 
il>sin_____^__ 

Since 

7 7 sin #Jt 

f f sin 2ft^j) sin 2__J--i = (-i)3"1 t=l k 

t = 1 k sin ^ s i n _« s . n (̂r + s) 
# s 

(-1) 

k~ "A" ~TT ° i l x k 

s -1 k 
0 k . o 7TS ^ o A"s 

2 sin4 -r- cos4 -r-
k k 

it follows that 

s 

2 k sin4 ™ c o s k " 2 ™ 
= (-I)8"1 ^ L 

Then 

, . Q fk . 2 ITS k 7TS 
Q 0k+2 4 _ 1 sin4

 1——-r cos i • , o a - p _ _2 <c-̂  , vS-1 k + 2 k + 2 
k+2 J_+2 k + 2 _L, {"1} - . 2 7TS 

a " * s=i x " 4 x c o s FTT 

= FT* E ^ T ^ s*2 FT* cosk+2n ™ k + 2 
n=0 s=l 
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so that 

9k+2n+2 2 K , ^ . . m 
m\ u /v,\ - 2 V ^ / i \ s _ l • 2 fins k+2n TTS ,, v 
(7) bk(n) " k + 2 2 ^ (_1) s m FT2cos FT2 (k e v e n ) • 

s= l 

Th is impl ies the asymptot ic r e s u l t 

Qk+2n+2 . , 0 
/o\ i / \ 2 . 9 7TS k + 2 n 7T /, v 
(8) bk(n) ~ k + 2 s m FTT c o s FT^ (k e v e n ) 

We may combine (5) and (7) in the single formula 

k+2n+2 [Jfc+i>] 
/^\ i / \ 2 v ^ / - s S - 1 . o TTS k + 2 n TTS 
0) bk(n) = -g—y. 2 <-x> sm2 FTT c o s irn* 

s=l 

and (6) and (8) in 

js+2n+2 / I A \ i / \ 2 • ? 7T k+2n 77 
(10) bk(n) ~ - g - ^ sin* ^ — cos , — g 

LUCA-NACCI 

//-7£3 Proposed by hi. H. Ferns, Victoria, B. C, Canada. 

Prove the following ident i t ies : 

k=l 

k=l 
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where F £ 
respectively. 
where F and L are the n Fibonacci and n Lucas numbers, 

Solution by A. G. Shannon, Mathematics Department, University of Papua and New Guinea, 
Boroko, T.P.N.G. 

i. s^i; E22k"2LkF
k+3

 = L i F 4 = 3 -
k=l 

and 

2 n F ^ + 1 - 1 = 2 * F | - 1 = 3 

Assume identity true for n. Then, 

n n+1 

k=l k=l 

2 2 n F U _ 1 + 2 2 n L n + i F ^ 

= 2 2 n ( F ^ 1 + (Fn + F n + 2 ) ( F n + 3 + F n + 2 ) ) - l 

= 2 (F2 + 2F2 + 2 F F + F F + F F ) - l 
4 u n + l n+2 n n+2 n n+1 n+1 n+2; 

= -22 n(2F* + F J 0 ( 2 F + 2 F x 1 ) ) - l N n+2 n+2 N n n+1 

= 2 2 n + 2 F2 1 
2 F n + 2 - 1 

which proves the result. 

2. It can be readily shown that 

<3> L k F k + 3 = F k L k + 3 + 4 < - 1 ) k • 
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by using 

L k = ak + £• 

and 

F k = {ak - pk)(a - iS)"1 . 

From (1) above, it follows that 

n 

<4 ) 5 E *k~2 L k F k + s = a 2 n ^ + 1 - pQ+1>1 - 5 • 

k=l 

With (3), the left-hand side of (4) becomes 

k=l k=l 

n 
_ \ ^ 02k-2 _ T ^ /Q2n+2 , i xn , x 

= 5 1 / 2 FkLk+3 + (2 <-« " 4 ) ' 
k=l 

The right-hand side of (4) reduces to 

22n( a2n+2 + ^n+2 + 2 ( _ 1 ) n ) _ g 

= ( 2 2 n L n + 1 - l ) + ( 2 2 n + 2 ( - l ) n - 4 ) . 

and result (2) follows. 

/1 /M solved by M. Yoder, C. B. A Peck, J. Milsom, M. Hatch ford, D. V. Jaiswal, and the Proposer. 


