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H-181  Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Prove the identity

0

m n
m nu v _ 1
z : (am + cn) " (bm + dn)” — = T - ax)(T - dy) - bexy

m,n=0

where

u = Xe-(ax—kby)’ v = ye—(cx+dy) )
H-182  Proposed by S. Krishnar, Berthampur, India.
Prove or disprove
m
(i) Z—l- =0 (mod 2m + 1) ,
_ k2

k=1

and
134
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m

(id) S —F— =0 (mod 2m +1) ,
oy 2k - 1)?

when 2m + 1 is prime and larger than 3.
[See Special Problem on page 216. ]
SOLUTIONS
GONE BUT NOT FORGOTTEN

H-102  Proposed by J. Arkin, Suffern, New York. (For convenience, the problem is restated, using
B =A_)
n-m

Find a closed expressionfor Bn in the following recurrence relation.

-B -B +B

n-4 n-5 +B

+B -B

n —
(H) [E] +1= Bn -B n-8 n-9

n-3 n-7 n-12°

where n = 0, 1, 2,+++ and thefirst thirteen values of By through By, are
1, 1,2, 3,5, 7,10, 13, 18, 23, 30, 37, and 47, and [x] is the greatest

integer contained in x.

Solution by the Proposer.

In a recent paper* this author introduceda new notation, and because of
the new method in the paper, we are, for the first time, able to find explicit
formulas in such recurrence relations as H-102.

We denote by pm(n) the number of partitions of n into parts not ex-

ceeding m, where
o0

(1) F @ = 1/(1-%@ - =) (1 - ) = Z pm(n)xn ,
n=0

and pm(O) = 1.

The new notation we mentioned above is defined as follows:

*Joseph Arkin, ""Researches on Partitions," Duke Mathematical Journal, Vol.
38, No. 3 (1970), pp. 304-409.
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2) A(m,n) = 1 if m divides n
Am,n) = 0 if m does not divide n ,

whe re

Am,0) =1 .

Now, in (1), it is plain that

o0
Folx)/(1 - x®)(1 - x})(1 - x5) = Zps(n)xn )
=0
and we have
O n
(3) Fp) = (1 - )1 - x)A - x%) H pstx .
=0
Then, combining the coefficients in (3) leads to

(4)  pyn) = psn) - psn - 3) - psn - 4) - psa - 5) + ps(n - 7)

+ ps(n - 8) + ps(n - 9) - psn - 12) ,

and it is evident that the right side of (4) is identical to the right side of (H).
Now* it was shown that

*Joseph Arkin, '"Researches on Partitions,!" Duke Mathematical Journal,
Vol. 38, No. 3 (1970), Eq. (6), p. 404.
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pa2u) = u + 1

and

pu +1) =u+1 w=20,1,2, ),
so that
(5) p() = [n/2] ,

where n = 0, 1, 2, ***, and [x] is the greatest integer contained in x.

Then, combining (5) with the left side of (4) and since

Bn =p5(n) (Il:O, 1, 2’"')’
it remains to find an explicit formula for the ps(n).
To this end*, we see that

[6nt + 180n% + 186002 + 76500 + 7719 ]
(270n + 2025)(-1)"
1920A(3,n)
2160(A(4,n) + A(4,n + 3))
3456A(5,n)

1
Ps) = 77555

A LARGE ORDER

H-161  Proposed by David Klarner, University of Alberta, Edmanton, Alberta, Canada.

Let

2 TR (T A 831 % 34
bm) = a. a oo a )
agtagte * +a;=n 2 8 i

*Joseph Arkin, ""Researches on Partitions,'" Duke Mathematical Journal,
Vol. 38, No. 3 (1970), Eq. (19), p. 406,
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where the sum is extended over all compositions of n and the contribution to

the sum is 1 when there is onlyone part in the composition. Find an asymp-
totic estimate for b (n).

Solution by L. Carlitz, Duke University, Durham, North Carolina.
Put

b (Il) - E a4 + a9 29 + ag - ak_l + ak ,
k a t+ . ta =n a a3 ak

o0
1 n
_(_7= b, () x .

It isknown (see "A Binomial Identity Arising from a Sorting Problem,"

SIAM Review, Vol. 6 (1964), pp. 20-30), that fk(x) is equal to the following
determinant of order k - 1:

It follows that

fn+1(x) = fn(x) - xfn_l(x) .

Since f3(x) = 1, f;x) = 1-x, we find that

o0
F(Z) = Z f (x) Zk = _Li.z_. ’
=0 k 1 -z + xz2
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In the next place,

1 - xz - 1 a? _ g
1 -z + xz? a-B\1l-az 1- Bz

where

o+ B =1, aff = xX
It follows that
k+2 +2
f (x) = O‘_:_ﬁ.k; ,
k a - f
so that
= B
n _ a -
(1) 2o b x =
n=0 o - B
Now, if k = 2r + 1,
oKkl 2mis/k
- - Ll @-pe )
s=1
r . .
=TT @ - ﬁezms/ 5 - Be_zms/ Ky
g=1

T
= ﬂ(az - 208 cos—z-'{%§ + ,32)

s=1

L]

_ o TS
= ]_"(1 ~ 4% cos T)

s=1

If we put

139



140 ADVANCED PROBLEMS AND SOLUTIONS

[Apr.
L 9 TS
3) '[—_l (1 - 4x cos ) Z - 7rs s
s=1 1 - 4x cos <
we find that
cosz(r_l) n?s 2r—l o 2(r-1) Ts
A = = k
s 'ﬁ- 5 TS m TI:I' 27s 2mt
cos? == - cos? = Ccos =— - cos ==
t=1 k k t=1 k k
t#s t#s
cos (r-1) lTkE
= r .
'r"' sin it + s) Tt - s)
=1
t#s
But
2r ¢
r TT sin ”E-
Lot +8) .omwt - 8) _ s-1 t=1
E sin R sin k = (-1) —-—-———Sin s » 575
ths k k
-1)°
2" gin? T8 cog 7—Tk§
so that
2k sin? T8 2r-1 78
(4) As - (_1)s—1 k k

Then, by (2), and (3) and (4),
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1(k+1) .o TS k 78
o - B _ 2k+2 2 (_1)3—1 sSin m COS m
ak+2 §+2 k+2. 1 - 4x cog® -~
B s=1 ) S kr2
1
~Zk+2 7l s-1 . k 7s w\ n 2n
= pr7 2 (D77 sin? Ry cost o5 D @x)” cos
s=1 n=0
o2 10 1 k-+2
_ n s-1 ., Ts +2n 7S
SEFT L W0 ) (0T sint gy o gy
n=0 s=1
Therefore, by (1),
k+2n-+2 %(kﬂ)
_ s-1 .9 7S k+2n ms
(5) bk(ﬂ) = T%T (-1) sin® —— cos )
s=1
This implies the asymptotic formula
k-+2n+2
2 ) ki) k+2n m
6) bk(n) ~ 13 Sin® g5 cos ET 3
Next, if k = 2r,
k k r-1 . .
- - -2 k
o ﬁk _ ,Bk =TT - Best/k)(a _ e mis/ )

1 s
= [(1—4}{0082—1{-) .
s=1
If we put
r-1
r-1 A
1 - 4x cos? E) = 5
s=1( k Z 1 - 4x cos? TS
s=1 k

141

s
k+2

(k odd) .

(k odd) .
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we get
cos (r-2) ms
A, = k
s r-1 27s
rT COSs ——k-— - C —_—
t=1 Y
t#s
21’-&2 cos"(r_z) s c082(1’—2) Eki
) = r-1
T cos%—cosk s W(tl:S) in (tk-s)
t=1 t=1
t#s t£s
Since
I—r|:1 sin 7t
r-1 — k
-rr sin Tt - s) sin Tt - 8) (_1)3—1 t=1
B Kk s 2rs . 7(r + 8)
t=1 sin — sin —— sin
k k k
t#s
-1 k
(-1)® ,
k .o 7s 2 TS
2" sin T o8’ T
it follows that
K gin? T8 gogk-2 M8
A = (_l)s—l k k
s k
Then
s k ms
a - B =2k+22(1)s18mk+2c°sk+2
ak+2 _ Bk+2 k + 2 4x cos? 1-T+S
k2 2
_ .2 TS k+2n s
k+224x) ) sm—-—k+2cos E T3
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so that
b
k+2n+2 2
_ 2 s-1 ., 7Ts k+2n 7S
(7 bk(n) = —m—z (-1) sin® ;== cos ) (k even)
s=1
This implies the asymptotic result
k+2n+2
2 .9 TS k+2n 7
(8) bk(n) T3 St g5 cos K33 (k even) .
We may combine (5) and (7) in the single formula
L
2k+2n+2 [2(k+1)] s-1 s k+2n 7S
= —_— - - N2 D
(9) bk(n) T3 E (-1) sin? — = cos T3
s=1
and (6) and (8) in
Kk+2n+2
2 Lo T kt2n
(10) bk(n) o Sin® o cos ]
LUCA-NACCI
H-163  Proposed by H. H. Ferns, Victoria, B. C., Canada.
Prove the following identities:
n
2k-2 _ 52n .2
(1) > oMt Fy L = 2wl -
k=1
n
2k-2 _ 52n.,2
@) 52 Iy, =2, -1,

=1
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where Fn and LI1 are the nth Fibonacci and nth Lucas numbers,

respectively.

Solution by A. G. Shannon, Mathematics Department, University of Papua and New Guinea,
Boroko, T.P.N.G.

n
_ 4. 2k-2 _ _
1. n=1 D 2L P o = LyF = 3,
k=1
and
Do = 92 2 =
2'FE -1 =2'F) -1=3.

Assume identity true for n. Then,

n n+1
3 2k-2 2n _ 2k-2
22 L F g v 2L g F = 22 L F g
k=1 k=1
2n 2 211
2 R -t 2L T
=9 4 (F 4+ F ) L +F ) -1
n+l n n+2 n+3 n+2
= 920 2
=20 (FL g F2F 2R F o T F Fa P Fae) - 1
- 920 (oru _
=2 (ZFn+2 * 1;‘n+2 (ZFn * 2Fn+1)) 1
_ 2n+2 2
= 2 Fn 42 1 )
which proves the result.
2, It can be readily shown that
3) L F, .. =TF L . +4-)f
k™ k+3 k“k+3 ’
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by using
_ k
Lk = a + ,Bk
and

I S

From (1) above, it follows that
k-2 _ 52n, n+l n+1 2
(4) 522 L Fg =2 @ -8"7) -5,

With (3), the left-hand side of (4) becomes

n n

2k-2 2k-2 , .k
5 Z 2 F L5 + 20 Z 2 (-1)
k=1 k=1

=53 2 2p o+ PRt _ g

The right-hand side of (4) reduces to

2n , 2n+2 21n-+2
(o

2 + B +2(-1%) -5

_ (521
= (2 Ln+1—1)+(2

2n+2 (_1)n _ 4,
and result (2) follows.

Also solved by M. Yoder, C. B. A. Peck, J. Milsom, M. Ratchford, D. V. Jaiswal, and the Proposer.

L. ata ave 4



