NUMBERS THAT ARE BOTH TRIANGULAR AND SQUARE THEIR TRIANGULAR ROOTS AND SQUARE ROOTS

R. L. BAUER St. Louis, Missouri

There is an infinite series of numbers, N, which for integral T and S:

(1)
$$\frac{1}{2}T(T + 1) = N = S^2.$$

The first nine members of the series are tabulated below, together with their triangular roots, square roots, and index numbers, n.

<u>n</u>	T	N	S
0	0	0	0
1	1	1	1
2	8	36	6
3	49	1225	35
4	288	41616	204
5	1681	1413721	1189
6	9800	48024900	6930
7	57121	1631432881	40391
8	332928	55420693056	235416

By inspection of the tabulation, we note the recursive formula for N:

$$N_{n} = 34 N_{n-1} - N_{n-2} + 2 ,$$

from which we can develop a generalized formula for N:

(3)
$$N_{n} = \frac{1}{32} \left[(17 + 12\sqrt{2})^{n} + (17 - 12\sqrt{2})^{n} - 2 \right].$$

Similarly,

197

(4)
$$T_{n} = 7T_{n-1} - 7T_{n-2} + T_{n-3} ,$$

and

(5)
$$T_{n} = \frac{1}{4} \left[(3 + 2\sqrt{2})^{n} + (3 - 2\sqrt{2})^{n} - 2 \right].^{*}$$

Also:

(6)
$$S_n = 6S_{n-1} - S_{n-2}$$
,

and

$$S_n = \frac{1}{8} \sqrt{2} \left[(3 + 2\sqrt{2})^n - (3 - 2\sqrt{2})^n \right]$$
.

Other recursive formulas and relations were found by inspection of the tabulation:

(7)
$$S_{2n} = S_n (S_{n+1} - S_{n-1})$$

(8)
$$T_{2n-1} = (T_n - T_{n-1})^2$$

$$S_{2n-1} = N_n - N_{n-1}$$

$$T_{2n} = 8N_n$$

(11)
$$T_n - T_{n-1} = S_n + S_{n-1}$$

(12)
$$T_{2n-1} = (S_n + S_{n-1})^2$$

(13)
$$S_{2n-1} = (S_n^{-1} - S_{n-1})(T_n - T_{n-1})$$

(14)
$$N_n - N_{n-1} = (S_n - S_{n-1})(T_n - T_{n-1})$$

^{*}This simplification of the author's more complicated formula was furnished by Hoggatt

 $T_{2n} = 8S_n^2$

Apr. 1971

(16)
$$S_{2n-1} = (S_n - S_{n-1})T_{2n-1}^{\frac{1}{2}}$$

(17)
$$N_{n} - N_{n-1} = (S_{n} - S_{n-1})(S_{n} + S_{n-1}).$$

By the use of the recursive formulas, the tabulation was extrapolated for negative index numbers. It was found to be perfectly reflexive about 0 except that the values of S became negative for negative index numbers, while the values of N and T remained positive. All generalized formulas and recursive formulas and relations held for the reflected series.

[Continued from page 195.]

(15)

Solution by Using the Fibonacci Terms

2

8

34

144 610

2584

10946

46368

196418

832040

• • • • •

3389

 $3 \times 3389 \cdots = 1016949 \cdots$.
