The equation \(m^2 - 4k = 5n^2 \) and unique representations of positive integers, Fibonacci Quart. 45 (2007), no. 4, 304–312.

Abstract

If \(n \) is a positive integer, there exists one and only one pair \((j, k)\) of positive integers such that \((j + k + 1)^2 - 4k = 5n^2\). The resulting unique representation of \(n \) can be used to generate both the Wythoff difference array and the Fraenkel array. It also provides the solution of the complementary equation \(b(n) = a(jn) + kn \) in all cases in which \(a \) and \(b \) are a pair of Beatty sequences and \(a(n) \) is of the form \([rn]\) for \(r \) an irrational number in the field \(Q(\sqrt{5}) \).