Chris K. Caldwell and Takao Komatsu

Some Periodicities in the Continued Fraction Expansions of Fibonacci and Lucas Dirichlet Series,
Fibonacci Quart. 48 (2010), no. 1, 47–55.

Abstract

In this paper we consider the Fibonacci Zeta functions $\zeta_F(s) = \sum_{n=1}^{\infty} F_n^{-s}$ and the Lucas Zeta functions $\zeta_L(s) = \sum_{n=0}^{\infty} L_n^{-s}$. The sequences $\{A_\nu\}_{\nu \geq 0}$ and $\{B_\nu\}_{\nu \geq 0}$, which are derived from $\sum_{\nu=1}^{\infty} F_{\nu}^{-s} = A_{\nu}/B_{\nu}$, satisfy certain recurrence formulas. We examine some properties of the periodicities of A_n and B_n. For example, let m and k be positive integers. If $n \geq mk$, then $B_n \equiv 0 \pmod{F_{mk}}$ (with a similar result holding for A_n). The power of 2 which divides B_n is $\left\lfloor \frac{n}{6} \right\rfloor + \sum_{i=0}^{\infty} \left\lfloor \frac{n}{2^i} \right\rfloor$.