Jiří Kláška and Ladislav Skula

Periods of the Tribonacci Sequence Modulo a Prime $p \equiv 1 \pmod{3}$, Fibonacci Quart. 48 (2010), no. 3, 228–235.

Abstract

Let the Tribonacci polynomial $t(x) = x^3 - x^2 - x - 1$ be irreducible over the Galois field \mathbb{F}_p where p is an arbitrary prime such that $p \equiv 1 \pmod{3}$ and let τ be any root of $t(x)$ in the splitting field K of $t(x)$ over \mathbb{F}_p. We prove that $\tau^{(p^2 + p + 1)/3} = 1$. Using this identity we show that the period $h(p)$ of the sequence $(T_n \mod p)_{n=0}^\infty$ where T_n is the nth Tribonacci number divides $(p^2 + p + 1)/3$. Similar results will also be obtained for $t(x)$ being reducible over \mathbb{F}_p. In this case we prove that the period $h(p)$ divides $(q - 1)/3$ where q is the number of elements of the splitting field of $t(x)$ over \mathbb{F}_p if and only if 2 is a cubic residue of \mathbb{F}_p.