Jukka Pihko

Remarks on the “Greedy Odd” Egyptian Fraction Algorithm II,

Abstract

Let \(a, b \) be positive, relatively prime integers with \(a < b \) and \(b \) odd. Let \(1/x_1 \) be the greatest Egyptian fraction with \(x_1 \) odd and \(1/x_1 \leq a/b \). We form the difference \(a/b - 1/x_1 =: a_1/b_1 \) (with \(\gcd(a_1, b_1) = 1 \)) and, if \(a_1/b_1 \) is not zero, continue similarly. Given an odd prime \(p \) and \(1 < a < p \), we prove the existence of infinitely many odd numbers \(b \) such that \(\gcd(a, b) = 1 \), \(a < b \), and the sequence of numerators \(a_0 := a, a_1, a_2, \ldots \) is \(a, a + 1, a + 2, \ldots, p - 1, 1 \).