Abstract

An unexpected relationship is demonstrated between n-color compositions (compositions for which a part of size n can take on n colors) and part-products of ordinary compositions. As a consequence, we are able to use techniques developed for studying part-products to generalize the concept of n-color compositions to that of S-restricted C-color compositions, whose part-sizes are restricted to an arbitrary set S of positive integers and for which a part of size n can take on $c_n \in C = \{c_1, c_2, \ldots \}$ colors. We count the number of S-restricted C-color compositions and the number of C-color palindromic compositions, as well as the total number of parts in each setting. The celebrated Fibonacci numbers persist throughout.