John B. Cosgrave and Karl Dilcher

Pairs of Reciprocal Quadratic Congruences Involving Primes,
Fibonacci Quart. 51 (2013), no. 2, 98–111

Abstract

Using Pell equations and known solutions that involve Lucas sequences, we find all solutions of the reciprocal pair of quadratic congruences $p^2 \equiv \pm 1 \pmod{q}$, $q^2 \equiv \pm 1 \pmod{p}$ for odd primes p, q. In particular, we show that there is exactly one solution $(p, q) = (3, 5)$ when the right-hand sides are -1 and 1. When the right-hand sides are both -1, there are four known solutions, all of them pairs of Fibonacci primes, and when the right-hand sides are both 1, there are no solutions. By partly different methods we completely characterize the solutions of $p^2 \equiv \pm N \pmod{q}$, $q^2 \equiv \pm N \pmod{p}$ for $N = 2$ and 4, and give partial results for $N = 3$ and 5. In the process we indicate how the general case can be treated.