Patrick Flanagan, Marc S. Renault, and Josh Updike
Symmetries of Fibonacci Points, Mod m,

Abstract

Given a modulus \(m \), we examine the set of all points \((F_i, F_{i+1}) \in \mathbb{Z}_m^2\) where \(F \) is the usual Fibonacci sequence. We graph the set in the fundamental domain \([0, m - 1] \times [0, m - 1]\), and observe that as \(m \) varies, sometimes the graph appears as a random scattering of points, but often it shows striking symmetry. We prove that in exactly three cases \((m = 2, 3, \text{ or } 6)\) the graph shows symmetry by reflection across the line \(y = x \). We prove that symmetry by rotation occurs exactly when the terms 0, −1 appear half-way through a period of \(F \) (mod \(m \)). We prove that symmetry by translation can occur in essentially one way, and we provide conditions equivalent to the graph having symmetry by translation.