Abstract

Let \(w(a, -1) \) denote the second-order linear recurrence satisfying the recursion relation

\[
w_{n+2} = aw_{n+1} - w_n,
\]

where \(a \) and the initial terms \(w_0, w_1 \) are all integers. Let \(p \) be an odd prime. The restricted period \(h_w(p) \) of \(w(a, -1) \) modulo \(p \) is the least positive integer \(r \) such that \(w_{n+r} \equiv Mw_n \pmod{p} \) for all \(n \geq 0 \) and some nonzero residue \(M \) modulo \(p \). We distinguish two recurrences, the Lucas sequence of the first kind \(u(a, -1) \) and the Lucas sequence of the second kind \(v(a, -1) \), satisfying the above recursion relation and having initial terms \(u_0 = 0, u_1 = 1 \) and \(v_0 = 2, v_1 = a \), respectively. We show that if \(u(a_1, -1) \) and \(u(a_2, -1) \) both have the same restricted period modulo \(p \), or equivalently, the same period modulo \(p \), then \(u(a_1, -1) \) and \(u(a_2, -1) \) have the same distribution of residues modulo \(p \). Similar results are obtained for Lucas sequences of the second kind.