Petros Hadjicostas and Lingyun Zhang

Sommerville’s Symmetrical Cyclic Compositions of a Positive Integer with Parts Avoiding Multiples of an Integer, Fibonacci Quart. 55 (2017), no. 1, 54–73.

Abstract

A linear composition of a positive integer \(N \) is an ordered list of positive integers (called parts) whose sum equals \(N \). A linear composition of \(N \) is called palindromic of type I if it stays the same when it is read in reverse order, while it is called palindromic of type II if it becomes a palindromic composition of type I (of an integer smaller than \(N \)) when we remove the first part. By considering all cyclic shifts of a linear composition of \(N \) as equivalent linear compositions, we may define a cyclic composition of \(N \). Cyclic compositions were originally studied by D. M. Y. Sommerville more than a century ago, who also considered symmetrical cyclic compositions of \(N \). In this paper, we prove that the equivalence class of every symmetrical cyclic composition of \(N \) with length \(K \) (excluding the one with all parts equal when \(K \) divides \(N \)) contains exactly two linear palindromic compositions of type I or II. Using this result, we derive generating functions for the cardinalities of classes of symmetrical cyclic compositions of \(N \) that avoid integers in a set \(A \). We then derive general recurrences for the cardinalities of these classes of symmetrical cyclic compositions. When \(A \) consists of all multiples of a positive integer \(r \), we use these recurrences to derive Fibonacci-type recurrences. We also indicate that the number of dihedral compositions of \(N \) with \(K \) parts in \(A \) is the average of the corresponding numbers of cyclic compositions and Sommerville’s symmetrical cyclic compositions.