Danielle Cox and Karyn McLellan
A Problem on Generation Sets Containing Fibonacci Numbers,

Abstract
At the Sixteenth International Conference on Fibonacci Numbers and Their Applications the following problem was posed by Clark Kimberling:
Let S be the set generated by these rules: Let $1 \in S$ and if $x \in S$, then $2x \in S$ and $1-x \in S$, so that S grows in generations:
\[G_1 = \{1\}, G_2 = \{0, 2\}, G_3 = \{-1, 4\}, \ldots. \]
Prove or disprove that each generation contains at least one Fibonacci number or its negative.

In this paper we generalize the problem as follows. Let S be the set described above, S be a sequence and P the property that a generation contains a term of S or the negative of a term of S. We will show that when S is the Fibonacci sequence there are many generations that fail to have property P. Other sequences S will also be considered and shown to have at least one generation failing to have property P. The proportion of generations failing to have property P is also investigated.