Salah Eddine Rihane, Mohand Ouamar Hernane, and Alain Togbé

On the D(4)-Diophantine Triples of Fibonacci Numbers,
Fibonacci Quart. 56 (2018), no. 1, 63–74.

Abstract

Let F_m be the mth Fibonacci number. We prove that if $F_{2n+6}F_k + 4$ and $4F_{2n+4}F_k + 4$ are both perfect squares, then $k = 2n$ for $n \geq 1$, except in the case $n = 1$, in which we can additionally have $k = 1$.