For an integer $k \geq 2$, let $(L_n^{(k)})_n$ be the k-generalized Lucas sequence that starts with 0, . . . , 0, 2, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all powers of two that appear in k-generalized Lucas sequences; i.e., we study the Diophantine equation $L_n^{(k)} = 2^m$ in positive integers n, k, m with $k \geq 2$.