Daniel Duverney and Yohei Tachiya
Linear Independence of Infinite Products Generated by the Lucas Numbers,

Abstract
The purpose of this paper is to give linear independence results for the infinite products
\[
\prod_{n=1}^{\infty} \left(1 + \frac{q^n z}{q^{2n} + 1} \right),
\]
where \(q (|q| > 1)\) and \(z\) are algebraic integers with suitable conditions.
As an application, we derive that the ten numbers
\[
1, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2n}}, \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{1}{L_{2n}} \right), \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{2}{L_{2n}} \right),
\]
\[
\prod_{n=1}^{\infty} \left(1 \pm \frac{\Phi}{L_{2n}} \right), \quad \prod_{n=1}^{\infty} \left(1 \pm \frac{\Phi^{-1}}{L_{2n}} \right)
\]
are linearly independent over \(\mathbb{Q}(\sqrt{5})\), where \(L_{2n}\) is the 2\(n\)-th Lucas number and \(\Phi\) is the golden ratio, and that
\[
\sum_{n=1}^{\infty} \frac{1}{L_{2n} + a} \notin \mathbb{Q}(\sqrt{5})
\]
for any \(a = \pm 1, \pm 2, \pm \Phi, \pm \Phi^{-1}\).