and then if

(21a) T @) = ) taxt kK T) = Ty (@),
n=k
(21b) T (2) = [T(x)1¥*.

Conversely, given a triangular array satisfying (21), we may recover a sequence {a,} (n > 0)
via (20). What are the sequences arising in this way in the partition problems considered
above [see (4, 12, 16)]? -
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ABSTRACT

We have presented a general formula for the break-up of integers into bracket functins,
and some formulas for the break-up of bracket functions into other bracket functioms.

hkk
It is interesting to find break-ups of variable integers into a sum of bracket functionms

involving the integer we want to break up and other integers. Two well-known examples of this
are

m-1 .
(1) x = Z[m—;—t-] integers m > 0;
1=0
@+ D], g [z+ 28
(2) x = [ 2p + 1 ] * EEZ[EE—I—T] integers p > 0.

Here we shall find a general break-up of the variable integer into bracket functions involving
two other integers (equation 12). The above-mentioned break-ups are special cases of this
more general formula.

To derive the general formula, we shall need to use the A-function (defined in [1])
defined by

. ,m) =1 if
(3) h(z, m) if m/z
=0 if me

It is easily seen that it satisfies the following properties (which we shall use later);
(4) {h(z, M)}’ = h(x, m) integers j > 0;

m
5) Do+, m =1

i=1
(6) h(z, m)h(x, m)) = h(z, m) where m = (my, my);
@) h(x + mk, m) = h(x, m) integers k;
(8) h(nx, m) = hix, m) 1if <n,md= 1.

Now, considering the difference operator, A, acting on the bracket function {x ; 1]:
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A A A A A A A

A[x - 1] _ [g] _ [ac - 1] ) {1 if m/x
m i m 0 if me
we see that we can put

A[x - 1] Az, m)

(9) Az, m) = {x - 1] + ¢y

where ¢, is an arbitrary constant. Applying the inverse difference operator to equation (5),

m m .
x = ZA'lh(x +J, m + ey, = Z[—'E—'{';n;——l-] + c,.

Jj=1 Jj=1

we obtain

To evaluate the constant here, take & = 1. Clearly the lefthand side is equal to the bracket

function. Thus, ¢; is zero.
m .
. Z x+ g -1
- xE 3 [ m }’
i=1

which is the same as equation (1).
To derive the general formula, consider

L -1 n+1l
D htz +y+r, m = 'A hnz +y + v, m |,
r=1
_[n:::+L+r—l]_ [mcLy]
- m m
_ A[ﬁx + q]
- m
(10) [ﬁ_x_m-F_y_] =;1A‘1h(nx +yu+r,om + e,

We restrict our attention to relatively prime integers »n and m. There must, then, exist two
integers a and b such that
an + bm = 1

nx + v _ - -
[T] = ;A Ym(nxe + (an + bm) (y + rIm) + c.

Using equation (7), we now get

[M"_H] Z A*h(nz + naly + r), m) + c.

m r=1

As (n ,m) =1, using equation (8) gives

[w] = iﬂ'lh(x taly+r),m+c-=
r=1

m
r=1

Zn:[x+a(y+r)-ljl+c'

m

Putting £ = 0 in the above equation, we obtain

- (1) - Bleesp

m - m
1) [Qm‘f_ﬂ] - ;":l[x taly ¥ r>1 - 1] } zi:l[gﬁzﬂ“_mr‘)_—__l] + [ﬂ

We now further restrict our attention to the case n < m. We can then write

pg +1
m=pg+p+1

n
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as these numbers are relatively prime (as can be easily checked). Then, taking y = 0, we

obtain
pPg+1 pq+1

[(Eg+l):c]=z[.’n+‘!’a—l]_2[ ra - 1 ]

pg+p+1 Zlpgtp+1 Zlpg+p+l )

Now a solution to the constraint on a and b with the above values of m and » is
a=q+1, b=-q.

Thus we get

[(2g+ I)x] ="§1[x+ r(g + 1) - 1] _"i‘ [r(g +1) - 1] :
pq+p+1 = pq+p+1 ZLlrg+p+1 )

To obtain the required formula, we shall break up the summation into the ranges
r=1, ..., psr=p+1, ..., 2p; 2 =p(@-1) +1, ..., pq, and the last term r = pqg + 1.
This may be written as a double summation over 7 and J by writing r = pj + ¢ + 1 where J
goes from O to ¢ ~ 1 and 7 from O to p - 1, apart from the last term. Thus we have

[E(ng-k;_l:ﬂ] - E f{[m + (pd ;qi:pll(cly +1) - 1]

j=0 i=0

- [@j . ;q++lz)9(izr = 1]}+ [pq = 1]

as the last term (¥ = pg + 1) is just

z+qg(pg +p+ 1)]_ [q(pq +p+1)
pq +p+1 pg+p+1 *

Now we have
pi+i+1(@+1)-1=4pg+p+1)+ i(@+1) +q-4.

Cancelling the multiples of pg + p + 1 in both bracket functions, we obtain

Sl - P i [ete)

1
=0 7=0

[(Eg+ l)x:]=jz

pg+p+1

Inverting the order of summation of j, we can replace g - j by J + 1.

[(294-1):;]:‘721P'l{[x+i(q+1)+j+1}_[i(q+1)+.7'+1]}_[ z ]
parp il (55 pq+tp+1 Pq+p +1 pqtp+ 1]

Now the second bracket function on the righthand side is zero, as the maximum value of the
numerator is pq + p - 1. Changing the range of summation of j from O to g - 1 to 1 to g and
replacing J in the bracket function by J - 1, we obtain

[(E_q+1)x]=ipz':l[x+(q+1)i+j]_[ x ]
pq+p+1 s 5 pq +p +1 pq+p + 1}
Adding and subtracting the term for j = 0,
[(gg+1)x]=i”i [x+(Q+1)i+j]_Pf[x+(4+1)i]_[ x ]
pg+tp+1 Frr S pqg+tp+1 “~ pg +p+1 pq+tp+1]°

Now the 7 = 0 term in the second bracket on the righthand side cancels the last term. We can
now again replace the double summation over ¢ and j by a summation over ¢ from O to pg + p - 1.

Adding and subtracting the term for pg + p, we obtain
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A A A A A A A Al

[(gg-u)x]:l’%’[ T+t ]_pil[:c-ﬁ-(q+l)i]_[x+pq+l].
pqg+p+1 & Lpe +p+1 “ pq+p +1 pg +p +1

Using equation (1) for the first bracket function on the righthand side and transposing, we
finally obtain

e [Lpa+ Dz N[zt g+ 1P, 2+ (g + P
Bzl J-1 ]

pg+p+ 1) e pgtp 1 P +p ¥ 1
p .
. _[pg + D= ] T+ (g + 1)1]
(12 - F [pq+p+1 +Zl pg+p+ 1]

This is the general formula which we were searching for.
The special case ¢ = 0 in equation (12) gives equation (1). The case ¢ = 1 in equation
(12) gives equation (2). Similarly, ¢ = 2 gives us

(13) ¢ = [%] +i [%%]

i=1

which is a new break-up of the type in equation (2). We can generate any number of such
series. Separately, by choosing the special values of p we generate other break-ups. Thus,
forp =1

_ rx x+r
(14) x_[r+l]+[r+l]
(where r is g + 1). We can in fact take r > 0. The next break-up in the series is, for = 2,
- (2q+1)] [x+q+1 x+2q+2]
(13) x [2q+3 I s Yt T3 )

Again we can generate any number of such break-ups. It is obvious that equation (12) provides
a considerable generalization of equations (1) and (2).

We are able to obtain an identity involving bracket functions by using eugation (11).
It is clearly going to be equivalent to take y = x and to take y = 0 and replace n by 7 + 1.
Thus,

i[:x:+a(xm+ r) - 1] _(Z[a(x +mr) - 1]+[%] =j§[w+i’r - l:l _’f[@m—_l]

r=1 r=1 r=1
n+1 n n n+1
- [2] N [ztar -1 cta@+r) -1 axtar -1 a-1
ap - [2] SS[Ermat] lereean 1], Slere o] Fe ]
r=1 r=1 r=1 r=1
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NOTE

We can also derive the result using Euler's ¢-function, by using

n + P, n [P
(= - 2[5 B[R] ere s - mrememnon,

r=]1 r=1
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