GENERALIZED PASCAL TRIANGLES
AND PYRAMIDS

THEIR FRACTALS, GRAPHS, AND APPLICATIONS

by Boris A. Bondarenko

Associate Member of the Academy of Sciences
of the Republic of Uzbekistan, Tashkent

Translated by

Richard C. Bollinger
Penn State at Erie, The Behrend College

A translation of:

OBOBSHCHENNYE TREUGOL’NIKI I PIRAMIDY PASKALYA
IKH FRAKTALI GRAFY I PRILOZHENIYA

Izdatel’stvo ‘““FAN‘‘ RUz, Tashkent, 1990
ISBN 5-648-00738-8

A reproduction by the Fibonacci Association
1993







TABLE OF CONTENTS

PREFACES . . e v, vi
CHAPTER 1. PASCAL TRIANGLES AND THEIR PLANAR AND
SPATIAL GENERALIZATIONS . ... ... ... . .. 1
1.1 The Pascal triangle and its properties . . ... ... ... .. ... .. 1
1.2 Binomial coefficients and their generalizations . ................ 9
1.3 Generalized Pascal triangles and generalized
binomial coefficients . . .. .. .. .. ... ... e 15
1.4 Lucas, Fibonacci, Catalan, and other arithmetic triangles . ......... 24
1.5 Pascal pyramids and trinomial coefficients . . . .. ... ... ........ 45
1.6 Multinomial coefficients and Pascal hyperpyramids . ............ 51
CHAPTER 2. DIVISIBILITY AND THE DISTRIBUTION MODULQ p
AND ITS POWERS, OF BINOMIAL, TRINOMIAL, AND
MULTINOMIAL COEFFICIENTS . .. ... ... .. .. .. 57
2.1 Divisibility of the binomial coefficients . . . .. ... ... ... ....... 57
2.2 The distribution modulo p and its powers of the
binomial coefficients . . .. ... ... . ... ... 69
2.3 Divisibility of the trinomial coefficients and their
distribution modulo p and its powers . .. ... ... ... ... ... .. .. 38



-1i-~

2.4 Divisibility of the multinomial coefficients by a prime

pand itS POWETS . . . . . . i e e e e e 94
2.5 Greatest common divisors and least common multiples of
binomial coefficients. Factorization . ... ... ... ... .......... 101

CHAPTER 3. DIVISIBILITY AND THE DISTRIBUTION MODULO p
OF GENERALIZED BINOMIAL COEFFICIENTS,
FIBONACCI, LUCAS, AND OTHER SEQUENCES .. .......... 105

3.1 Divisibility and the distribution modulo p of generalized
binomial coefficients . ... .. ... .. .. 105

3.2 Divisibility and the distribution modulo p of Fibonacci,

Lucas, and Catalan numbers . . ... ... ... ... .. ..., 118
3.3 Distribution modulo p of some numerical sequences . ... ......... 124
CHAPTER 4. FRACTAL PASCAL AND OTHER ARITHMETIC TRIANGLES . ... 126
4.1 Fractals and their dimensions . . . . .. ... ... ... ... .. .. ..... 126
4.2 Fractal Pascal trianglesmodulop . .. ... ... ... ... ... .. .... 130
4.3 Fractal generalized Pascal and other arithmetic
triangles modulop . . ... ... .. .. 133
4.4 Geometric arrangements of binomial coefficients
whose products are perfect pOWers . . ... .. ... . ... 135

CHAPTER 5. GENERALIZED ARITHMETIC GRAPHS AND
THEIR PROPERTIES . ... . . . 140

5.1 Generalized arithmetic graphs . . . .. .. . ... ... ... ... .. .. .. 140




5.2

5.3

5.4

5.5

CHAPTER 6.

6.1

6.2

6.3

CHAPTER 7.

7.1

7.2

-1ii-
Special case of the generalized m-arithmetic graph . ... .......... 147

An asymptotic formula for the number of paths
in the generalized m-arithmetic graph . . ... ... .............. 151

Spatial isomorphisms and the generalized

m-arithmetic graph . . . . .. ..o e e 153
Properties of the cross-sections of the spatial

arithmetic graph . . .. ... o L e 158
MATRICES AND DETERMINANTS OF BINOMIAL AND
GENERALIZED BINOMIAL COEFFICIENTS AND

OTHER NUMBERS . . . .. .. . i 161
Matrices and determinants of elements of the

Pascal triangle . . . .. .. .. ... 161
Matrices and determinants of elements of the

generalized Pascal triangle . . ... ... ... . . ... .. . ... ... 166
Matrices and determinants of elements of

other arithmetic triangles . . ... ... .. ... ... ... . ......... 168
COMBINATORIAL ALGORITHMS FOR THE

CONSTRUCTION OF GENERALIZED-HOMOGENEQUS
POLYNOMIALS. SOME CLASSES OF NONORTHOGONAL
POLYNOMIALS . . . . e e 170
Generalized-homogeneous polynomials. Euler's formula . ... ... ... 170

Factorial polynomials. Algorithms for the construction
of the "exponent matrix"



-1y~

7.3 Combinatorial algorithms for the construction of
basis systems of polynomial solutions of partial
differential equations . .. .. ... ... . ... ... 182
7.4 Polynomials of binomial type and related polynomials . . .. ........ 198
7.5 Other classes of nonorthogonal polynomials . ................. 207
REFERENCES . . . . .. e e e e e 215

APPENDIX . . . e 242




TRANSLATOR'S PREFACE

Professor Bondarenko has done the mathematical community a valuable service in
writing this useful and interesting compendium of results on the Pascal triangle and its
ramifications, and in compiling the excellent and lengthy collection of references. My
intention is to help make this work widely accessible.

This is meant to be a serviceable translation, rather than a re-exposition, and the
English version follows the Russian closely. In the Russian language section (the first 54
items) of the References, I have replaced some translated entries first published in English by
their original English citations,

For their indispensable help, I would like to thank Kathy Mauro, who typeset the

manuscript, and Linda Bollinger, who proofread the final version.

Richard C. Bollinger






-Vi-

PREFACE

The discrete methods of combinatorial analysis, and their application to the
construction of mathematical models and solutions of applied problems in technology and the
natural sciences, have brought about a great deal of interest in the study of the arithmetic and
geometric properties of the so-called "arithmetic triangles.” The classical example of the
arithmetic triangle is, of course, the Pascal triangle.

In recent decades there has been a widening circle of research on the Pascal triangle
itself, as well as its planar and spatial analogs and generalizations. Although there are a large
number of scientific and methodological papers devoted to the study of the Pascal triangle and
other arithmetic triangles, there have been only a few isolated expository studies and books,
chiefly methodological in character. Among these we might cite the small volume of V.A.
Uspenskii "The Pascal Triangle" [50], which was translated into English and gives a popular
account of the basic properties of the Pascal triangle, and also the excellent book of T.M.
Green and C.L.. Hamberg, "Pascal's Triangle " [162], which describes known and new
properties of the Pascal triangle, and is intended for college students and amateur
mathematicians.

The present monograph is devoted to rather more profound questions connected with
the study of the Pascal triangle, and its planar and spatial analogs. There is an extensive
discussion of the divisibility of the binomial, trinomial, and multinomial coefficients by a
prime p, and of the distributions of these coefficients with respect to the modulus p, or p*, in Y
corresponding arithmetic triangles, pyramids, and hyperpyramids. Particular attention is
given to those objects which today we speak of as fractals, and whose present extensive

development arose from the works of Benoit Mandelbrot [270-272]. Fractals obtained from
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the Pascal triangle and other arithmetic triangles are described, as are also results from the
study of the properties of the generalized arithmetic graph, a special case of which is the
graph model of the generalized Pascal triangle. We also construct and investigate matrices
and determinants whose elements may be binomial, generalized binomial, and trinomial
coefficients, and other special values. Particular attention is given to the development of
effective combinatorial methods and algorithms for the construction of basis systems of
polynomial solutions of partial differential equations, including equations of high order and
with mixed derivatives. The algorithms proposed are invariant with respect to the order, and
the iteration, of operators arising in connection with differential equations. Finally, we
discuss non-orthogonal polynomials of binomial type, and polynomials whose coefficients
may be Fibonacci, Lucas, Catalan, and other special numbers.

This monograph consists of seven chapters, and there are many iilustrations and
specific examples. Fundamental results are formulated as theorems and algorithms, and as
various equations and formulas. There is a detailed list of over four hundred references,
covering almost all known works on arithmetic triangles and pyramids,

The author is deeply grateful to S.G. Mikhlin for his valuable advice and constant
support of this work, and to A.A. Adylov for writing Chapter 5 on arithmetic graphs.

For their reviews of the manuscript and useful comments the author thanks F.B.
Abutaliev, V.M. Maksimov, and V.K. Kabulov.

The solutions of the specific examples, and the constructions of the arithmetic triangles
and their fractals, were carred .out by Mariya Morozova, to whom the author gladly
expresses his appreciation.

Boris A. Bondarenko




CHAPTER 1

THE PASCAL TRIANGLE AND ITS PLANAR AND SPATIAL GENERALIZATIONS

In this chapter we outline some of the history of the Pascal triangie and the binomial
coefficients, and also describe some modern results obtained by mathematicians in recent
decades. We consider, as well, generalized Pascal triangles of s® order, Pascal pyramids and
hyperpyramids, and triangles associated with the Fibonacci, Lucas, and Catalan numbers.
Finally, we discuss generalized binomial coefficients of s* order, multinomial coefficients,

and Gauss-, Fibonacci-, and other analogs of the binomial coefficients.

1.1 THE PASCAL TRIANGLE AND ITS PROPERTIES

One of the most familiar objects in the history of mathematics is the so-called
"arithmetical triangle"”, more commonly known today as the Pascal triangle in honor of the
seventeenth century French mathematician and philosopher Blaise Pascal (1623-1662), who
set forth his results in this area in his Traité du triangle arithmetique [303] (published after
the author's death). Pascal generalized known results, and gave a number of new properties
of the arithmetic triangle, which he formulated in nineteen theorems. [Figure 1 is an example
from Pascal's work.] The various properties of the numbers generated in the arithmetic
triangle were given by Pascal in descriptive form, rather than algebraically, but he made
direct and significant use of the principles he had discovered, e.g., in the method of induction

and the application of the arithmetic triangle to problems in the theory of probability.
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Figure 1

The arithrﬁetic triangle and the additive rules for the formation of its entries were
known in India virtually as we know them today. Its structure was also known to Omar
Khayydm, the Persian mathematician, poet, and philosopher (c.1100). Later, the triangle
appeared in China, and was depicted in a book of Chu Shin-Chien (1303).

In Europe, the arithmetic triangle had been known long before the publication of
Pascal’s work. It appeared, for example, on the title page of a book by A. Apian in 1529,
and was used by many other mathematicians, among them M. Stifel (1544), G. Peletier
(1549). K. Rudolph (1533), N. Tartaglia (1556), J. Cardan (1570), S. Stevin (1585), A.
Girard (1629), W. QOughtred (1631), ané G. Briggs (1633). More on the history of the
Pascal triangle may be found in [17, 28, 31, 44, 50, 89, 90, 122, 141, 147, 241, 257, 265,

291, 292, 320, 379]. 5




The familiar form of the table,

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252
was published more than a century before Pascal's treatise in a work of the outstanding Italian
mathematician Nicolo Tartaglia (1556). Subsequent investigations on the Pascal triangle and
the binomial coefficients, and their connection with the origins and development of
combinatorial analysis are connected with the names of Leibnitz, Bernoulli, Euler, Lucas,
Legendre, and other prominent eighteenth- and nineteenth-century mathematicians.

Interest in the Pascal triangle has not diminished even up to the present, which
accounts for the discovery of new and often unexpected properties related to divisibility and
the distribution of the triangle's elements modulo a prime p, the construction and study of its
fractals and graphs, and its application to important practical problems. We also depend on
the triangle for a model in considering new types of arithmetic triangles, and rectangular,
pyramidal, and other arithmetic tables.

The Pascal triangle is often presented in the form of an isosceles triangle whose sides
are bordered by ones (Figure 2), and such that the remaining elements are the sums of the
two entries just above to the left and right. Tﬁe line numbered n consists of the coefficients

in the binomial expansion of (1+x)". These coefficients are denoted in various ways in the



literature, but here we will use the notation ( ), introduced as far back as Euler's time,

n
m

and/or the notation C?, which appeared in the nineteenth century.

Figure 2

The Pascal triangle may also be presented in right triangular form, as for instance,

a b
1 1
1 1 1 1
1 2 1 1 2 1
1 3 3 1 1 3 3 1

c d
1 1 1 1 1 1 1 1

e T T T
\/4 1 2 3 /r-w %M B /3//*

1 3 3 1 :




Most common is the form

0 1

1 1 I

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

Results on the properties of the Pascal triangle, including some questions of divisibility, may
be found in Uspensky [50], in the literature on combinatorial analysis and number theory
[4, 17, 21, 40, 41, 44, 45, 52, 54, 141, 255, 300, 316], and in mathematical reference
books. The most complete description of the numerous elementary properties of the Pascal
triangle is that of Green and Hamberg [162], with its many tables, figures, and diagrams, and
interesting problems for independent study. Included, for example, is a table of prime factors
of the binomial coefficients up through the 54® row of the triangie.

We should also mention some results connected with direct applications of the Pascal
triangle. T.M. Green [161] considered recurrent sequences connected with the triangle in the

following way. Let the vertex of the triangle coincide with the origin of the usual coordinate
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system, and its elements with the lattice points of the first quadrant. This establishes a

relation between the lattice points (x,y) and the elements of the Pascal triangle:

where n=x+y, r=y. Then, any set of parallel diagonals of the triangle having rational
slopes gives rise to a recurrent sequence, the elements of which are sums of the triangle
elements lying on the corresponding diagonals. That is, comparison of successive diagonals
with the straight lines ax+by=n, where k=-a/b is the given slope, n=0,1,2,..., and

a,b=1,2,..., leads to the sequence T, T,, T,, ... satisfying the relation

where T, is the sum of the numbers on the n* diagonal. The case a=2, b=1 gives the
Fibonacci sequence.

In a series of works, the Pascal triangle has also been directly employed in problems
involving the expansion of functions. Thus, M. Bicknell [71], using the column elements of
the triangle, found an expansion for an exponential generating function; the result is used to
construct the series expansion for some specific functions.

D.C. Duncan [126] showed that the n* diagonal of the isosceles Pascal triangle gives
the coefficients in the McLaurin series expansion of (1-x)™ for all positive n and | x| <1.
This expansion was also obtained in the work of A.R. Pargeter [302]. We also note that this
interesting expansion allows us to find with any degree of precision the value of (1+x)™ for

x <1 and n a positive integer.
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Power series with coefficients situated in the vertical columns of the isosceles Pascal
triangle are considered in the work of A.A. Fletcher [142]. The general expression of these

expansions has the form

S =1 sppsTH2 L2, [T+ x3+___+[2n+r—2 2
d 2 3 n

It can be shown that S, satisfies the recurrence relation

1
== (s
ol

T

+1 _S), T22,

r+2 T,

where §, is the series corresponding to the central vertical column with elements (2:),
n=1,2,..., which are the coefficients in the expansion of (1-4x)™ for x < %.
L.K. Jones [230] estimated the magnitude of the sums of the :reciprocéls of the

elements of the Pascal triangle. For the n® row, if we write
n a2\
a, = E (k) ’

k=0

1
he established an upper estimate of the form 2+O(n), and a Iower estimate of 2; 210 (‘; )

consequently, lim a =2. He also proved that for the k™ diagonal,

—~ (n\" _ %k
E(k) k1

In the work of A.R. Turguette {380, 381] the Pascal triangle is used in the study of

Post sets and the solution of problems of many-valued logic.
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Others have employed the Pascal triangle in the solution of various problems. Thus,
D.A. Holton [214] showed that the dimensions of stable orbits are the coefficients in the
polynomial [1+(r-1)x]", where in the case of the n-dimensional cube r=2, and the orbit
dimensions are found in the I;ascal triangle. In the work of H. Gorenflo [153], it is used to
obtain the lifting force of pulley blocks. R.L. Morton [288] suggested a simple method of
obtaining certain powers of 11 with the aid of the rows of the triangle. J. Wlodarski [395]
showed that certain multiples of the elements of the triangle are related to two well-known
numerical sequences in nuclear physics. G. Hoyer [226] suggested ways of deriving various
formulas and relations among the binomial coefficients directly from the Pascal triangle,
C.W. Trigg [378] considered properties of the sequence of elements of the fifth column of the
triangle, as for example the length of the period of the sequence of low order digits, the sums
of the digits, and so on.

In references [63, 76, 97, 110, 170, 193, 229, 242, 263, 294, 329] are discussions of
elementary properties of the Pascal triangle, alternate versions of its development, and
geometric interpretations.

The numbers of Fibonacci, Lucas, Catalan, Fermat, Stirling, and others may be
derived and investigated by making use of the Pascal triangle directly [96, 112, 184, 192,

295, 298, 321, 327-329, 337, 394, 396].
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1.2 BINOMIAL COEFFICIENTS AND THEIR GENERALIZATIONS

As we know, the elements of the Pascal triangle are the binomial coefficients, which
were already known before the appearance of the Pascal triangle. However, Pascal was the
first to define and to apply them [303]. Some references on the history of the binomial
coefficients and the binomial theorem are [17, 36, 40, 41, 44, 50, 111, 122, 141, 241, 242,
268, 292].

The binomial coefficients are the simplest combinatorial objects, being defined as the
number of distinct combinations of m elements out of n. They may be obtained from the

generating function as the coefficients in the expansion of the expression

s =3 () gm (1.1
(1 + %) % (m)x ,
where

(n) = --———n!—~—, n=012,.,msn.

m ml (n-m)!

The binomial coefficients satisfy the recurrence relation
n+1 - R + |7 , 0 =1, (1.2)
m m~1 m; \0O
as well as the simple equalities
o)== ()L
0 n ©o\m n-m)’

> (r]-2 3 cr(r]-o

m=0

(1.3)
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IEQREE e

Hundreds of identities and relations among the binomial coefficients have been established;
many of these may be found in [4, 21, 29, 42, 46, 52, 158, 233, 248, 292]. The greatest
numbers of identities are collected in the books of J. Riordan [42], B.N. Sachkov [46], H.W.
Gould [158], and E. Netto [292]. In recent decades, new relations among the binomial
coefficient have also been obtained, some of which we mention below.

M. Boscarol [88] obtained for nonnegative integers m and n the relation
(nﬂ’) (m+n—h]
m A R
¥ AL AN R

H. Scheid [338] proved that the number of distinct prime factors of the binomial

n
m

coefficient ( ) 1 not less than (m log 2)/(log 2m) for 2<2m<n.

S.M. Tanny and M. Zuker [371] studied the sequence of binomial coefficients of the

form (“;’) for n=0, O<r<[n/2}], and pointed out its importance for many combinatorial

problems.

G. Zirkel [405] discussed a method for numerically approximating the binomial
coefficients with the help of a table of areas under the normal curve approximating the
corresponding binomial distribution.

In [376], C.A. Tovey discussed the problem of the existence of infinite sets of natural

numbers N, each element of which is equal to t distinct binomial coefficients ( ), where

n
m
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T
n=0,1,2,..., and 1<m<[n/2]. He showed that for t=2, the least such value is the number

120, which equals (1;’) and (126), the number 210, which equals ( °) and (221), would also be

1
4

in this set. The number 3003, for example, has three representations: (14), (15 ), (78)

5 2/

t=2, this problem is solved, i.e., it is known that there are infinitely many natural numbers
e ::::——r:’f

\
|
|
|
|
|

N which have two representations as binomial coefficients. /

G.H. Weiss and M. Dishon [391] proved that in the expansion

—;— {1 ~u - v -1 -2(u+v)+(u~v)2] = i C,, uv’

r=1 s=1

the values of the C,, may be expressed in terms of binomial coefficients:

Cop = (r4s-1)" (’*H) [r+s~1 ]

r Y

Various other new properties appear in references [49, 56, 91, 118, 128, 163, 183,
358, 393]. The binomial coefficients and their various identities and relations play a major
role in the solution of many problems in mathematics, mechanics, and physics. They also

serve as a model for various generalized binomial coefficients. Two of these, the generalized

binomial coefficients of s™ order, (") , and the multinomial coefficients, (n; n,, n,, ..., n.),
m

5

will be discussed in detail in sections 1.3 and 1.4 of the present chapter; a few other

generalizations we mention below.

S.W. Golomb [151] introduced the so-called "iterated binomiafcoefﬁcients" by the

scheme
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o
(@) = ag (ag; ap) = [Z‘]: (a5 a5 ag) = |V, L.,

2 ay
@; ag ~; a5 @) = ((ay; ag -~ Gyq)s @)

For these iterated binomial coefficients, for specified values k and a;, i = 1,2,. ...k, the
author establishes various identities, inequalities, transformation formulas, and asymptotic and
other formulas and relations.

M. Sved [366] introduced a different kind of generalized binomial coefficient as

follows. Let S = [a,, a,, ..., a,] be a set of n distinct elements. The "sequence"”

A =a™ a™ - a®™ is formed from the elements of S taken with multiplicities

(m,,m,,...,m,), and the degree of A is the number {m|=m, + m, + ~ + m_. If we take the

I

o

“subsequence” B = al(k‘) af") - a% where Os<k;<m, to be a subsequence of A, then the

generalized binomial coefficient G,*(m) is the number of such subsequences B of A (G (m) =0
for r<0 and r>n). In elementary number theory the introduction of these coefficients has
the following meaning. Froﬁa the factorization of a natural numbc:;r into its prime factors we
form a sequence, starting with the set of distinct prime divisors, and the degree of the
sequence is the sum of the divisors occurring in the factorization. Then G2(m) enumerates
the set of all divisors of fixed degree; this generalizes a known property of the binomial
coefficients to the coefficients G*(m).

The Gaussian binomial coefficients, also known as the g-binomial coefficients are

defined [48] by:
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mn n-k+1 _
"] “TT 51, o<men (1.5)
My B g¥-1

= 0, m<0, m>n, (1.6)

where m,n are nonnegative integers and q is a real number. We know that the g-binomial

coefficients occur in the expansion

1
q-é-m(m—ﬂxm (1-7)

n n

II (1+q"x) = [n
m=1 m=0

from which it follows that the g-binomial coefficient is itself a polynomial in ¢, which for

q~1 reduces to the ordinary binomial coefficient. These coefficients satisfy the recurrence

n+l| _in n nemed R (1.8)
m L ~iml, ¥ [m—'!L q ' [OL =1

m

In [315] G. Polya and G.L. Alexanderson discuss various combinatorial interpretations
and properties of the g-binomial coefficients, and construct their multinomial analogs.

M. Sved in [367] discusses known and new properties of the g-binomial coefficients,
including their geometric significance, and gives for q=2,3,4,5 the triangular tables of these
coefficients analogous to the Pascal triangle. Equations (1.5)-(1.8) summarize the basic
relations for the g-binomial coefficients; these and others are to be compared with the
corresponding formulas for ordinary binomial coefficients.

L. Carlitz [101] generalized various theorems for the g-binomial coefficients to the

multinomial case. R.D. Fray [143] and F.T. Howard [224] studied the question of the
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divisibility of the g-binomials by prime divisors; we will take up divisibility questions at
length in the next chapter.
Another generalization of the binomial coefficients is given by the so-called

Fibonomial coefficients [57],

((n)) FFn 17 -5, n-m+1 (1.9)
m))F F, mF m-1 ~F 1
where the F, are the Fibonacci numbers [20], n and m are nonnegative integers, and

([S]L ) ((ZDF =1 for all n=0,1,2,....

In [57] G.L. Alexanderson and L.F. Klosinski also introduce the Gaussian Fibonomial

coefficients

n
k

| o) ey (L10
b)) - (57-1)

where n,k are nonnegative integers, and
n

el -

These Gaussian Fibonomials satisfy a recurrence relation which for x~1 includes that of the

n

0

=1, n=0,1,2,....

F

Fibonomial coefficients, and similarly for other relations. They also examine the case of a

more general Fibonacci sequence

gn+2 = pgn+1 + qgn: nzol (1'11)




-15-

where g,=0, g,;=1, and p and q are arbitrary.
Other analogs and generalizations of the binomial coefficients will be discussed in 1.4

and 1.5, along with the corresponding analogs of the Pascal triangle.

1.3 GENERALIZED PASCAL TRIANGLES AND

GENERALIZED BINOMIAL COEFFICIENTS

The generalized Pascal triangle of s™ order is the table of coefficients of powers of x
in the expansion
{s-1)n

(1+xrxZraxs) = ¥ [n) x™ 8522, (1.12)
m 5

m=0
The coefficients (;) are known as the generalized binomial coefficients of order s.

For s=2, they become the ordinary binomial coefficients, (“) = (“), and the corresponding
2 m

m

triangular table is the Pascal triangle. (We note that some aunthors speak of triangles of
"kind" s rather than triangle of "order" s.) In the literature, the generalized Pascal triangle is
sometimes referred to as the s-arithmetic triangle.

The generalized Pascal triangle of order s may be written, as is the Pascal triangle, in
the form of a right triangle or an isosceles triangle. For example, we give the generalized

Pascal triangles of order 3 and 4 in right triangle form:
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1 2 3 4 5 6 7

1 1

2 3 2 1

3 6 7 6 3 1

4 10 16 19 16 10 4

2 3 4 5 6 7 8 9 10 11 12
1 1

3 4 3 2 1

6 10 12 12 10 6 3 1

10 20 31 40 44 40 31 20 10 4 1

Figure 3a
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In isosceles form, these are:

1
1 1 1
1 2 3 2 1

1 3 67 6 31

1 4 10 16 19 16 10 4 1

1 2 3 4 3 2 1
1 3 6 1012 12 10 6 3 1

I 4 10 20 31 40 44 40 31 20 10 4 1

Figure 3b

In the first triangle (s=3) of Fig. 3a every element is equal to the sum of three
elements in the preceding row: the number just above and its two neighbors to the left. In
the zero-th column, all elements are ones, and we assume any missing elements to the left are
zeros. Similarly, in the second triangle (s=4) each element is the sum of four elements in
the preceding row: the number just above and its three neighbors to the left. In like fashion
we fill in the rows of the generalized Pascal triangle of any order.

Dozens of papers have been devoted to the properties and applications of the

generalized Pascal triangle and generalized binomial coefficients of order s. We will give
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some of these references after we list some of the basic properties of the generalized binomial

coefficients of order s.

n
mfg

The generalized binomial coefficient ( ) is the number of different ways of

distributing m objects among n cells where each cell may contain at most s-1 objects.

We also note the recurrence relation for the generalized binomial coefficients:

) R () (n) 1.13
()3 el ) -

For s=2, this coincides with the recurrence relation (1.2) for the ordinary binomial
coefficients. The generalized binomial coefficients satisfy many equalities, identities, and

other relations analogous to those for the binomial coefficients. For example,

R R v

(sij%n (n) o c;‘::{): (1}" (:JS _ {O,S=2t

Mmjs 1,5=2t+1.

The relation among the generalized binomial coefficients in successive triangles has

the form:

n = (n k
= , where s>2,
(m).sw-'[ g (k} (m“k)s o=

and (k) _ 0 for k<™,
m-kj, s

(1.15)

! (1.14)
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The generalized binomial coefficient of order s may be expressed in terms of the

binomial coefficients as:

k n-1

Qo) o

We introduce for the multinomial coefficient the notation

n!
(n—m1)! (m1 _mz)l e (ms_1 _ms_z)! ms__.-l !

(n;m1,ni2,...,ms_1) =

in place of the usual (n; n,, n,, ..., n,); more detail will appear in section 1.6. Then it is true

that

(n) =y (mmy,my, .m_4), (1.17)

where n20, O<m<(s-1)n, $=3, and the summation is over all m, such that
m1+m2+“‘+ms_1:m, mkSIIlk_l.

Let C_ = SEIP (;) . Then for any n and s>2, the correct asymptotic formula is

lim c ﬁ _ e _ (1.18)
Sﬂ

The derivation of (1.13)-(1.18) is fairly straightforward and is omitted here.
In the Pascal triangle of order s, denote by N, , the number of generalized binomial
coefficients in the row numbered n, and by Q,, the total number of coefficients in the triangle

up to and including row n; then
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N,, = ns-1)+1, Q,, = Jz—(n+‘i)[(s—1)n+2]. (1.19)

For s=2, N, ,=n+1, and Q,, = %(a+1)(n+2).
The generalized binomial coefficients have other interesting properties, as well; in
succeeding chapters we will consider their divisibility properties, and the construction of their
fractals and graphs. The applications of these triangles and coefficients in various
mathematical contexts originated in the 1950's, and below we list in chronological order some
works which were fundamental in this period and up to the present.
In considering these works, we must emphasize the original articles of J.E. Freund
[144], and J.E. Freund and A.N. Pozner [145], in which they construct the generalized
Pascal triangle, set forth the recurrence (and other) relations for the generalized binomial
coefficients (which they denote by N, (r,k)), and apply the results to some occupancy
problems. J.D. Bankier [64] also used the results of [144] to find the coefficients in the
expansion of (x*-x)(1+x-+x3*.
V.E. Hoggatt and M. Bicknell [200,203] obtained difference relations and derived
formulas for the sums of the elements in the generalized Pascal triangle which lie on the
diagonals. A.K. Gupta in [164] explicitly expressed generalized binomial coefficients of
arbitrary order by means of binomial coefficients. J.M. Deshouillers [117] derived
asymptotic formulas for the generalized binomial coefficients, with integral estimates of their
increase with increasing n.

V.E. Hoggatt and G.L. Alexanderson [197] worked out a method for determining

partial sums of generalized binomial coefficients:
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N
S(ns,qr) =Y ( n ) , N=[—(S_1 )n—r].
i=0 \T*ig /g q

In the special cases s=2, q=3,4,5,8; s=3, q=5, the expressions fé1j the sums take the form
of simple formulas involving the Lucas numbers, or the Pell-Lucas numbers, or their powers.
These partial sums are also considered, for s=2,3,4,6, in C. Smith and V.E. Hoggatt [354-
356].

T.B. Kirkpatrick [239] took the ascending diagonals of the generalized Pascal triangle
to be the lines of a ﬁew triangle; iterating this operation R times, he obtains the additive

triangle of order s and "degree” R. He then shows that if the diagonal sums of the elements

of this triangle form the sequence {T;}7, this sequence has the recurrence relation

Tyeg-tiret = Iy * Tyup + Tyupp + =+ + Tye-1)r>

where k22, Rz1, and T,=T,=--=Ty,,=1.

In [78-80], R.C. Bollinger considers a number of properties of generalized Pascal
triangles (there called Pascal-T triangles) and their coefficients. In [78] he constructs
{modified) Fibonacci sequences of order k and uses them to solve various enumeration
problems, which he calls "k-in-a-row" problems. In [79] the connection between the
generalized binomial coefficients and the multinomials is found to have the form

C (nk) = n ,
NEED
where the sum is taken over all n,,n,,...,n,, satisfying n,+n,+--+n_=m and

On;+1n,+-+(m-1)n,=k. Also given is the recurrence relation
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n

c,n®) =Y (") C, . (. k). (1.20)
=0 \J
In [80] Bollinger generalized the Mann-Shanks primality condition [274] for a natural
ww Mann and Shanks gave this novel criterion in terms of the
displaced entries of the Pascal triangle as follows. Each row of the Pascal triangle is
displaced successively two places to the right, so that the n+1 entries in row n occupy
columns m=2n to m=3n. Also, we underline the entries in row n which are divisible by n.
Then the criterion is: column number m is a prime if and only if all the entries in column m

are underlined. The table below shows how this works for the Pascal triangle (the triangle of

order 2).

0 3 2% 3% 4 5% 6 T* 8 g 10 11 12 13* 14 15 16 17*
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Using (1.20) and a theorem of G. Ricci [322], Bollinger in [80] shows that if the same
'displacements are applied to the generalized Pascal triangle of order three (so that the 2n+1
elements in row n occupy columns m=2n to m=4n), and the entries are underlined in the

same way, then it is again true that the column number m is a prime if and only if all the
entries in column m are underlined. The table below shows how this works for the triangle
of order three. He also conjectured that the criterion is true for the generalized Pascal

triangle of any order.

. g 6 1 2 3 4 5 6 T 3 9 10 11* 12 13* 14 15 16 17*
of 1
1 1 1 1
2 1 2 3 2 1
3 13 6 7 & 3 1
4 1 4 10 16 1% 16 10 4 1
5 1 5 15 30 45 51 45 30
6 1 6 21 50 S0 126
7 1 7 28 17
8 1 8

R.C. Bollinger and C.L. Burchard in [81] showed there is, for the generalized

binomial coefficients, an analog of Lucas's Theorem for the binomial coefficients, namely,
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r

C,mk) = Y I C.lnss)(mod p),
(spr-ws;)  i=0
where p is a prime, n = (0.,~00,),, k = (kk,kiko),, 0<m;<p, Oslq<§, 0<k<(m-1)n, and
the summation is over all s; for which s,+s,p+-+sp =k, Ossis(m;l)n. If we denote by
N,(n,p) the number of generalized binomial coefficients for which C_(n,k)=0 (mod p) and
apply the extended Lucas's Theorem, the authors found exact formulas for N_(n,p) in the

cases m=p and m=p’. Let (p-I)n = (aa,,~a,a,),; then

N, (mp) = (1+a9)(1+a))~(1+a),

N, (np") = N,(n(p*-1)/(p-1),p).

They also established, for the generalized Pascal triangle of order p, that for large n "almost
all" coefficients C,(n,k) are divisible by p.

Other questions connected with the application of the generalized binomial coefficients
and generalized Pascal triangle of order s are discussed in [119, 154, 164, 212, 231, 232,

243, 287, 308, 314, 357].
1.4 LUCAS, FIBONACCI, CATALAN, AND OTHER ARITHMETIC TRIANGLES

In sections 1.1 and 1.3 we discussed Pascal triangles and generalized Pascal triangles
of order s. We now turn our attention to the construction and application of other forms of
arithmetic triangles: the triangles associated with the names of Lucas, Fibonacci, Catalan,

Stirling, and others.
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M. Feinberg [138] constructed the arithmetic triangle whose elements are the
coefficients in the-expansion of (a+2b)(a+b)™; the result is what might be called the Lucas
triangle, in which the sums of the elements on the ascending diagonals give the sequence of
Lucas numbers 1,3,4,7,11,18,29,....

The Lucas triangle and its properties were studied in detail by H.W. Gould and W.E.

Greig [160]. In this triangle (nine rows of which are shown below), the elements satisfy

. ‘ 0 1 2 3 4 5 6 7 8 9
1 1 2
""" 2 1 3 2
..... Sr )’?j j‘j
3 1 4 5 2
4 1 5 9 7 2
5 1 6 14 16 9 2
6 1 7 20 30 25 11 2
7 1 8 27 50 55 36 13 2
8 1 9 35 77 105 91 49 15 2
9 1 10 44 112 182 196 140 64 17 2
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the recurrence relation

An+1,k) = A(nk) + A(n,k-1), (1.21)

with initial conditions A(L,0y = 1, A(1,1) = 2, and A(n,k) = 0 for k<O or k>n. The

relation between the numbers A(n,k) and the binomial coefficients is

A(nf) = (Z] . (Z:; ] (1.22)

There are also four criteria given, the proofs being based on the properties of the Lucas
triangle and its elements, for deciding whether a given natural number d=z2 is a prime.

V.E. Hoggatt [194] constructed a new triangle from the Lucas triangle by shifting the
i column down k places (k=1,2,3,...), and derived various results, including the Lucas
numbers, for the elements of this triangle.

H. Hosoya [216] constructed the arithmetic triangle (Figure 4) for the numbers {f_}

satisfying the equations

fm.n = fm—‘l.n + fm—E,n
(1.23)

fm,n_ =fm—1,n-‘i +fm—2,n—2 ’ m22, mznz0

with initial conditions f,, = f;, = f;, = f,, = 1. He showed that f_ = ff

nonen

(m=n=20),
where f, is the n* Fibonacci number, and called the resulting triangle a Fibonacci triangle.
He studied the topological properties of its graph, obtained using the triangle, and applied the

results to the classification of chemical formulas.
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Figure 4

J. Turner [382] suggested and studied what he called the Fibonacci-T triangle.

J. S4na in [335] considered a sequence {g. .} like that of Hosoya [216],

i

gm,n

o
Sm-1,n * gm—Z,n

(1.24)

gm,n = gm—1,n—1 + gm-—2,n—2’ m22’ mznzO

with initial conditions g4,=2, g,,=1, g,,=1, g,,;=2, and constructed the arithmetic triangle
in Figure 5, which he called a Lucas triangle. It has properties analogous to those obtained
in [216]; some of these are investigated, and also the graph equivalent to the Lucas triangle is

constructed.
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11 8 9 9 8 11
18 13 15 14 15 13 18

29 21 24 23 23 24 21 29
Figure 5

The elements of these Fibonacci and Lucas triangles have a recurrence relation of the form
(1.23) or (1.24), in which each element is the sum of two preceding elements on an ascending
or descending diagonal. Other relevant references here are [11, 138, 207].

M. Sved [367] also discussed the arithmetic triangle whose elements are the Gaussian

binomial coefficients [ﬂ . and obtained the Gaussian triangles for q = 2,3,4,5.
q

L.W. Shapiro [342] constructed the arithmetic triangle whose elements are the

numbers B, satisfying the recurrence relation

By = By + 2Bn—1.k R e S

with the conditions B, ;=1, B, =0, B,.=0, m>n+1. The first several rows are shown

below.
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X
\\\\\\\ 1 2 3 4 5 6
n
1 1
2 2 i
3 5 4 1
4l 14 14 6 1
s| a4 48 27 8 1
61 132 165 110 44 10 1

The sequence of numbers {C,} = {1,2,5,14,42,132,...} in the first column are the Catalan

2n

n

numbers C = nLﬂ ( ) It is not difficult to show that the solution of the recurrence relation

is B =£(§y;mdﬁnk:L

n.k o\n

B, =C, = 1 ( 2n) _ 1 (2n)_ (1.25)
n

n-1 n+l \ n

The article also shows that the B, , may be expressed as a sum of products of Catalan

numbers by means of the formula B , = E C C]: -C,, where the summation is over values

for which i,+i,+--+i,=n. As a result, each element of the Catalan triangle may be
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expressed in terms of the Catalan numbers; the name arises because of this connection.
Various properties of the Catalan triangle, analogous to those of the Pascal triangle, are also
discussed.

D.G. Rogers [328] studied questions connected with renéwal sequences which led to
various generalized Pascal and Catalan triangles. These are connected with the introduction

of the generalized Catalan sequence {C,(n)}, where

) = — ((t+1)n),n20, £>0. (1.26)
4

For t=1, we have C,(n) =C,, the Catalan numbers. The introduced sequence and the related
generalized Catalan triangle are applied in the solution of some combinatorial problems.
A number of authors have constructed arithmetic triangles by choosing as their

elements the numbers which satisfy a recurrence relation of the form

fin+1,m) = p(n,m) f(n,m-1) + q{n,m)f(nm) .27

with appropriate coefficients p, q and initial conditions.
C. Cadogan [98] considered the case of this equation where p, q € R and with initial
conditions f(0,k) = d, € R; he found then,
n
fk) =Y (n) p"™ g™ f(0,n-m). (1.28)
m=0 m
By choosing as the values of the d, the cases: d,=1, d,=0 (k=0); .doma, d;=d, d,=0
(k#0,-1); d, = a(m-1)*, k<0 (d, =0, k>0), the author constructs the corresponding Pascal

triangle, a triangle with elements which form an arithmetic progression, and a triangle with
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elements which form a geometric progression. The results are also generalized to the three-
dimensional case.

In [240] M. Klika considered (1.27) for integer-valued functions p(m), q(n) and initial
conditions £(0,0)=1, f(i,j)=0 for i<j, j <0, where 1,j are nonnegative whole numbers, and
constructed the corresponding generalized Pascal triangle P(p,q). For p=q=1 we get the
Pascal triangle itself, and for p=m+1, q=1 the triangle whose elements are the Stirling
numbers of the second kind; the author also discusses the triangle P(p,q) for various other
conditions. In [227], S.K. Janardan and K.G. Janardan also investigate this kind of Stirling
triangle.

H. Ouellette and G. Bennett [301] considered the triangle whose elements are the
absolute values of the Stirling numbers of the first kind.

In a dissertation [24] V.N. Dokina studied the special cases of (1.27) consisting of:
p=1L,q=u,; p=1, ¢=p,: p=1, g=p,+p,, and initial conditions equal to unity. He formed
the corresponding triangles consisting of generalized Stirling numbers of the first and second
kind, and Lah numbers. He also extended the discussion to the case when p(n,m) and q{n,m)
are not merely numerical, but are operators operating on a linear space of polynomials in t
with real coefficients. In these cases the elements of the generalized Pascal triangle are
functions of t. The results are applied to various probability problems, problems connected
with population growth, and others.

V.L. Jannelli [228] constructed and studied the triangle formed from the coefficients
in the éxpansion of (x+a)(x+a,)-(x+a,). Fora, =0, a,=1, ..., a,=-(n-1) the author arrives
at the triangle of Stirling numbers of the first kind; other cases, when a, =k, are discussed in

[120, 133].
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In [333], M. Rumney and E.J. Primrose studied the triangle whose rows are the

coefficients in the expansions of 1, 1+x, (1+x)(2+x), (1+x)(2+x)(3+X),...; a portion of

this triangle is:
m
0 1 2 3 4 5
n
0 1 |
s
). 1 1 1 f' >
.77 ¥ J/_i.{ ; (
b 2 2 3 1 6 Al b
' 5
L 1y 3° 9% 19
L1 3 6 11 6 1
70 4| 2% 50 35 10 1
5 120 274 225 85 15 1
The elements, denoted by e, satisfy the recurrence
en+1,m = en,m-'l * (n+1)en,m! (1.29)

which gives a simple rule for forming the triangle. It is also not difficult to show that

/ o €pm = (m+1)}, )
m=0 i

and other relations are given. The authors also study in great generality the triangle

composed of the numbers in the harmonic series.
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C.W. Puritz [318] generalized the binomial coefficient (:) to the case of n negative,
using the notation C(n,m). He used the arithmetic and symmetry properties of the recurrence

C{nm) = Cin+1,m) - C(n,m-1)

and found that

Clenym) = (-1)" ("*';‘1 )

writing out a portion of the complementary Pascal triangle as below.

-4 1 -4 10 -20 35
-3 1 -3 6 -10 15
-2 1 -2 3 -4 5
-1 1 -1 1 -1 1
0 1 0 0 0 0
1 1 1 0 0 0
2 1 2 1 0 0
3 1 3 3 1 0
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Other variants of the Pascal triangle, in which the elements come from the coefficients

in the expansion of

(a=b){atb)(a=xb) - {ax(-1)"D),
were considered by P. Sahmel [334]. For n=2m and n=2m+1, we obtain the corresponding

expansions of (a>b%)" and (axb)(a®-b%)™.

a a a+b b
a a 2a+b a+b b
a a 3a+bh 2a+d a+2b b

a a 4a+b 3a+b 3a+3b a+Zb b
Figure 6

H.W. Gould [156] constructed and studied the Pascal triangle (Fig. 6) in which the

elements are defined by the recurrence relation

m m

CTH-'I - (:"«1 + J_+_(2_j)f: C’::, nz"l, mz(}, (1.30)

and the conditions

cd=¢Cj =a C] =b, C* =0 for m>n, m<0,
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The cases a=b=1 and a=1, b=2 are studied in detail. The coefficients are denoted by A"

in the first case and by B? in the second, m=0,1,2,...,n. Using (1.30), the following values

are calculated for n=0,1,2,....

n ""k n —k'—-{ n

Az = (nk ],Azm =(" k )’AO i 1’A11 -

Br = M n—k' " - _n1 "‘k"1,3".—,1,31=2_
2% n—k( k ) T k-1 | & !

The A” and B2 can be used to express the Fibonacci and Lucas numbers as

F,=2 AlandL_ =X B® for n>0. It should be noted that
m={}

Y C, = aF,,, + bF,, n>0,

m=0

Y (-)" C, = aF,_, + bF, 4, nz1.
m=0

In [77] M.B. Boisen considers two tables A and B,

Ay
833 d34
dp dp3 Ay
dyy dyp dy3 Ay
[
b2 by,
Dys by by

b14 b24 b34 b44
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where the a's and b's are integers, and defines the superposition of A on B, which then

generates the sequence C = {c, ¢,, ...} with elements of general form

—

£
2] -k

(1.31)
& - Qr s By g
k=0 fak+d
With the sequence {c;} defined he takes the following approach. Let
Px) = ay + agx + - + ayx
and let G,(x) be the generating function of the k™ column of table B, k=0,1,2,.... Then

2 P(x)G(x) is the generating function of {¢}. Several examples are considered in which A
i=0 )

and B are chosen to be the Pascal triangle or its generalizations; in one of these, for example,
the sequence {c;} tumns out to be the Fibonacci sequence.

C.K. Wong and T.W. Maddocks [399] studied the numbers M, , satisfying the

recurrence relation

Mk+1,r+1 = Mk+1,r + Mk,r+1 + Mk.r (1_32)

with initial conditions My, = M,, = M,, = 1. The numbers M, ,, for which the condition

M, = M, clearly holds, constitute an analog of the Pascal triangle (Fig. 7).
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Figure 7

In this triangle, k is the number of the line parallel to the right side of the triangle,
k=0,1,2,..., and r is the number of the line parallel to the left side of the triangle,
""" r=(0,1,2,.... If we introduce the number of the line parallel to the base of the triangle and
denote it by n=0,1,2,..., then the law of formation of the elements is simple: any value in
----- the 0™ row is the sum of the two elements above in the (n-1)" row and the element directly
above in the (n-2)™ row. Thus, 41 is the sum 9+25+7. The author also shows that the
sums of the elements on the ascending diagonals form the "Tribonacci” numbers, 1, 1, 2, 4,
7, 13,24, 44, ...

M. Bicknell-Johnson in [73] writes on the Leibnitz harmonic triangle (Fig. 8), whose
diagonals are the products of the reciprocals of the n® row elements by the reciprocals of the

row numbers (assumed to begin with one) in the Pascal triangle. The sums of the row

elements, and of the ascending diagonal elements are found.
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e L N S
1 2 3 4 5 6
1 1 1 1 1
2 6 12 20 30
1 1 1 1
3 12 30 60
1 1 1
4 20 60
1 1
5 30
1
6
Figure 8

D. Logothetti [259] formed a new, truncated triangle (Fig. 9) (without a vertex) by

taking groups of four elements at the vertices of a thombus in the Pascal triangle and forming - )

the numbers
o = (3)+ (7]« (3) - (7

where n=1,2,3,..., k=0,1,2,...,n.
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Figure 9

Although there is no symmetry, the triangle and its elements have interesting properties, as,
c.2.,

I(nk) = I(n-1,k-1) + I(n-1,k),

n h

Y IR = 3.2, Y (-1 I(mb) = O,

k=0 k=0

R

Ex+)E+ 1) = ¥ Ik xmE,

k=0

The truncated triangle of Fig. 9 may be considered as a special case of a more general

triangle (Fig. 10).
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a 2a+1 a+2 1
a 3a+1 3a+3 a+3 1

a 4a+1 6a+d4 4at+6 a+4 1

Figure 10

Here, the elements G(n,k) are the coefficients of x™* in the expansion of (ax+1)(x-+1)*!, and
satisfy the recurrence G(n,k) = G(n-1,k-1) + G(n-1,k), G(n,0)=a, G(n,n)=1.

H. Harborth [173] considered triangies composed of plus and minus signs, to every
pair of which is assigned a (+) or a (-) sign according to Pascal's rule. Such a triangle for a
given n contains N = 4n(n+1) signs and we assign for that n the signs in the first row. His
results solve the Steinhaus problem [53] on the existence of numbers n, where n = 0,3 (mod 4),
for which the generated triangle has plus signs as half of its elements. For example, for
n=11 Figure 11 shows such a triangle, with 33 of its 66 elements being plus signs. Variants

of this problem were also solved and studied by M. Bartsch [65].
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+
Figure 11
Arithmetic triangles of Stirling numbers of the first kind S, satisfying the

recurrence S = S® — nS™ where S = 1, and S™ =0 for n<1, m<1, m<n,

have the form

Lo pi°

[Jw]
J
—

6 11

I
[

274

—t
[
b
)
Ln

85 15 1

|

where the negative elements are underlined.
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Triangles of Stirling numbers of the second kind o/, satisfying o = o™ + mo®™,

where o = 1 and o™ =0 for n<1, m<1, m<n, have the form

1
1 1
1 3 1

1 15 25 10 1
1 63 301 350 140 21 1

P. Hilton and J. Pederson [188-190] obtained new arithmetic and geometric properties

of the binomial coefficients ( ), including the case of negative values of m and n, by

extending the definition as follows:

(n
\r

‘”) = (-1 [”*“1] for n>0, r20,
\F r

) = 0 for n20, r>n, r<0,

‘") = (-1)™ (’“1) for n>0, r>0.
\ T n-1

As a result of this generalization the authors construct the hexagon (Fig. 12) consisting of the

binomial coefficients for both positive and negétive values of m and n, and call it the Pascal

hexagon.
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They considered the geometric properties of the Pascal hexagon and other figures such as the

arrangement in Figure 13.
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Figure 13

In [191] they also discuss the Leibnitz harmonic coefficients and the q-binomials for positive

and negative values of m and n, as well as describing the properties of the Pascal hexagon
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and constructing the generalized star of David, the harmonic triangle, and the Pascal
hexagon.

K. Dilcher [123] replaced the partial differential equation u, = u, + u, by a
difference equation and, after appropriate normalization, constructed the triangle in Figure
14, which is a kind of generalized Pascal triangle of order three (discussed in 1.3). The
elements C, , of this triangle (cf. Fig. 14) in the n® row are combinations of three elements in

the (n-1)" row and one in the (n-2)* row, according to the recurrence

c =C, + C

nyn

+ Cn = 2Cn—2,m’ CO,O = 1.

~1.m-1 -1,m n-1,m+1

Figure 14

These coefficients may also be generalized by introducing the parameters A, v, in which case

they satisfy
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Av v -1 Av Ly Av
Cn,m = (1 + " ] (Cn—1,m-1 + Cn—‘],m + Cn-1,m+1)

- (1 . 2 "'1] A ch
n

where Cn"f;;' = Chv 5 for A=2, v=1, C! = C,n- The properties of the C}* and their
arithmetic triangles are considered in detail.

Arithmetic triangles also appear in the references [69, 109, 120, 125, 281, 357, 3853,

396].

1.5 PASCAL PYRAMIDS AND TRINOMIAL COEFFICIENTS

As we have seen, the binomial coefficients (;) arise as a result of the expansion of
(1+x)", and can be written in the form of a Pascal triangle of one sort or another. If we

write the binomial in terms of x,, X,, the expansion takes the form

If we denote the trinomial coefficients by (n; m,, m,), where n, m,, m, are nonnegative

integers, and set

n!
: - 1.33
S e T g o (-3

we can write the expansion of (x,+X,+%,)" in the form
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Korxy+x) = Y Y (my mymy) x, ag x;2 . (1.34)

my=0  my=0

The trinomial coefficients are often written as

(m; nyy ny, ny) = ___“_51!__, ny+n,+ng = n; (1.35)
nydnng!
however, in many contexts in which one constructs and uses multi-harmonic, multi-wave, and
other polynomials, the representation (1.33) is more convenient than (1.35), since (1.33)

orders the polynomial terms and trinomial coefficients of the Pascal pyramid and its cross

sections (Figure 15).

Figure 15
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It 1s not difficult to show that the trinomial coefficients of (1.33) satisfy the recurrence

relation

(n+1; my,my) = (m; my,mp) + (n; my~1, my) + (n; my=1, my-1) (1.36)

with initial conditions (0; 0,0) = 1, and where (n; m,,m,) = 0 for n<0, m, or m,<0,
m,>n, m,>m,. We can also verify from Figure 15 the presence of three axes of symmetry.
Much like the binomial coefficients, the trinomial coefficients satisfy the conditions

(n; 0,0) = (n; n,0) = (n; n,n) = I, and the equations

(n; my,my) = (n; my,my-my,),

(r; m1,m2) = (m h—my +m2,m2), ’ (1.37)

(n; my,my) = (n; n-my, n-my).

Some special sums are

n Hy n my
Y mmem) =8 Y Y (1) mymy) = 1 (1.38)
my=0  my=0 my=0  my=0

and the analog of the Cauchy summation formula is
oo Ky

Y Y (i kuk)(ng mikmaky) = (ny+ng memg). (1.39)

k=0 kp=0

The Pascal pyramid can be considered as a regular tetrahedron, or as a pyramid with
unequal dihedral angles as shown. In the n® cross section (n=0,1,2,...) parallel to the base,
which is itself a triangle, we arrange the ‘2{n+1)(n+2) coefficients (n; m,,m,). At the outer

edges the entries are ones, and each of the sides (faces) is itself a Pascal triangle. The
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relation (1.36) allows us to conclude that each interior element of a cross section is the sum
of three elements in the triangular element which forms the (n-1)" cross section.
The rule for constructing the elements in the n® cross section can also be thought of in

terms of the equation

(n; my,my) = (n': ] (m1), (1.40)

where n=0,1,2,...; m,;=0,1,2,...,n; m,=0,1,2,...,m,. This says, in effect, that we get the
entries in the n® cross section by taking the ordinary Pascal triangle for that n, rotating its last
row counterclockwise through the angle =/2, and then multiplying the resulting row entries on
the rows of the triangle, as shown for n=4 by the example in Figure 16(a); the result is
Figure 16(b). If the cross section is considered an equilateral triangle its axes of symmetry

are as shown in Figure 17.

a

7 /

4 7ot
& .7 -2 .f
4 .7 -3 .3 .
71 .
ol -4 6 d
7

2

Figure 16 Figure 17
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When the cross sections are taken to be right triangles, an algorithm for constructing the
entries is given in [6].

These ideas can be extended to the multi-dimensional case. In particular, the
coefficients in the expansion of (x,+x,+X,+x,)* form a four-dimensional Pascal pyramid,
bounded by five tetrahedrons. Analogously, we can think of multi-dimensional Pascal
pyramids bounded by Pascal pyramids of dimension one less.

Pascal pyramids and hyperpyramids have been used in the solution of problems on
probability theory, polyharmonic polynomials, generalized Fibonacci sequences, and so on.
The ideas of the construction and use of these objects appear in the works of many authors,
and below we give a brief chronological survey of some of these papers and the results
obtained.

One of the first occurrences of the Pascal pyramid, apparently, is in the work of E.B.
Rosenthal [330], who suggested and wrote out the trinomial coefficients in an array which he
called a Pascal pyramid.

The author of the present volume worked out an algorithm for constructing the cross
sections of the Pascal pyramid, discussed the multi-dimensional case, and applied the results
to the construction of harmonic and polyharmonic polynomials, and polynomial solutions to
some problems in elasticity theory [5,6].

G. Garcia [146] geometrically formed the Pascal pyramid in the course of considering
the coefficients in the expansion of (a+b+c)", and discussed the possibility of extending the
example to the four-dimensional case.

A note of M. Basil [66] considers some properties of the trinomial coefficients written

in the form of a Pascal pyramid.
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R.L. Keeney [236] derived an algorithm for the construction of the elements in the
cross sections, noted their symmetry, and the possibility of extension to the multi-dimensional
case.

A note of S. Mueller [239] discusses the relations among the trinomial coefficients by
means of the Pascal pyramid.

J. Staib and L. Staib [359] gave an algorithm for constructing the cross section
elements in the trinomial case, and discussed the question of extension to the multi-
dimensional case.

V.E. Hoggatt {195] discussed Pascal pyramids having as the elements of their cross
sections the numbers in the expansion of (a-+b+c)?, and gave as the generating function of

the columns

xPmraRp M n( m +n]
n

(1 - ax)m+n+1

mn

He also showed that

(-] o N 1
G = Gmn = !
2, g " 1-ax-bxP-cx?
and particular choices of the parameters give the generating function for the Fibonacci
numbers (a=1, b+c=1, p=q=2), the Tribonacci numbers (a=b=c=1, p=2, g=3),
generalized Fibonacci numbers (a=b=c=1, p=t+1, q=2t+1), and other sequences.
In [341] A.G. Shannon used the Pascal pyramid to construct the Tribonacci numbers

by summing the diagonal elements.




-51-

M. Alfonso and P. Hartung [58) emphasized the analogies between the Pascal pyramid
and Pascal triangle, and used this approach to obtain some results in probability theory.

J.F. Putz [319, 320] discussed in detail the extension of the Pascal triangle, and the
construction and properties of fhe pyramid, there called a Pascal polytope. He obtained a
graphical representation, and also established the possibility of applying the polytope to the
study of k-Fibonacci sequences. In [319], he generalized all 19 theorems of Pascal to the
multi-dimensional case.

J. Shorter and F.M. Stein [343] constructed the Pascal tetrahedron, examined its
properties, and discussed the possibility of extension to the multi-dimensional case.

The question of studying some special function values with the help of the pyramid is
discussed in [267] by H.F. Lucas.

R.C. Bollinger {79] obtained some results on generalized binomial coefficients of
order m, discussed the construction of the pyramid and its cross sections, and gave a method

for computing the trinomial and multinomial coefficients.
1.6 MULTINOMIAL COEFFICIENTS AND PASCAL HYPERPYRAMIDS

As we know, the multinomial (also called polynomial) coefficients occur in the
expansion of the polynomial (x,+x,+--+x%,,)% the usual notation is (n; ny,n,,..., n.}, which

stands for the form

n!

M, Ry Hpy -y Rt) = —————
SR ) nydnl--nt (1.41)

where ny+my+-+n = n . (1.42)
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The combinatorial sense of the multinomial coefficient may be expressed as: (n; n,,n,,...,n,)
gives the number of ways that n different objects may be distributed among s cells, where the
number of objects in the k™ cell is n,, k=1,2,...,s.

Here we will denote the multinomial coefficients by (n; m,,m,,...,m,,), defined as

1
(n; m :m s“'lm - ) = dd ’ (1'43)
e T em ) oy ~m) - (i, —m,_)Im ]

and introduced in [6]. Using this definition, condition (1.42) will be satisfied, and we have

the ordered expansion

n

Hx,n) = (xg + % +~ + x,_)"

yp

Z E E (?1; My, Mo, -y ms_1) .

my=0 my=0 my_4=0

W T L e (1.4
We use (1.43) and (1.44) in the ordered construction of the Pascal hyperpyramid of
multinomial coefficients, polyharmonic and other polynomial systems, and in discussing
relations among the coefficients themselves. The multinomial expansion (1.44) appears in the
literature of combinatorial analysis, algebra, statistics, and number theory [22, 23, 25, 38,
47].

We mention some basic formulas (omitting the proofs) for the multinomial coefficients
(1.43), and then turn toa review of some references devoted to multinomial coefficients, the

multinomial theorem, and connections with related matters. .
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The recurrence relation is

(r+1} mymy,m_y) = (n, my,mg, -, m_q) + (n; my=1,my, -, m )
+ (o my=1,my=1, - m_ ) + -
+ (n; m1 _1,7712—1,"‘,Tns__a—“,ms_-‘)

+ {m my=t,my-1, 0 my 1), (1.45)

with initial condition (0; 0,0,...,0) = 1, and (n; m,,...,m,,) = 0 for n<0, or m, <0, for at

least one value of k, and for m; >n, m,>m,,. The coefficients also satisfy the conditions

(n; 0,0,-,0) = (; n,0,-,0) = (m; n,n,0,-,0)

(n; n,n,~,n) =1,

and s equalities, the first and last of which are

() gy ) = (5 my g,y oy _p =M _y)

(1.46)
(nmy my,,m_y) = (1 R-m,_, R~ _ o B~ My, N —My).
We have also the summation formulas
n ny Mme_p
02 3 (momyemey) = ST
my=0 my=0 m,_4=0 (1.47)
n my Mme_a
E Z E 5(m1""’ms—1)(n; m1’""ms—1)
my=0  mp=0 m,_4=0
0, s=21
- {1, §=21+1, (1.48)

my~mg+mg=my+ - +(=1)m, 4

where &(my,,m,_q) = (-1)
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We obtain (1.47) from (1.44) by taking x,=x,=-=%,,=1, and (1.48) by taking

Xg =Xy ==Xy =1 and X; =X = =Xyy4 =-1, where 1(s) = 2 [s_;]

The multi-dimensional analog of the Cauchy summation formula is

2 (g Ky ) (g my—kyymy—Fkp,~,m _q~k, )

= (Rt Mgy Mg ), (1.49)
where (n;m;,-,m,,)=0 if at least one of the m,_<0.

As mentioned in the book of E. Netto [292], the multinomial theorem was first
mentioned in a letter from Leibnitz to Johann Bernoulli in 1695. Its proof has been given by
a number of authors using various methods, one of which is the combinatorial argument.
There are many works devoted to the study of the multinomial coefficients, and reviews of
earlier results may be found in [41, 122, 292, 322, 372]. Below, we give in chronological
order a survey of some results from recent decades.

With the coefficients written in the form

nl
i«]! izl e ir! (ﬂ _k)i

y Iy vig++i =k

for i;<i,<<i sn-k<n-2, P. ErdSs and 1. Niven [136] obtained a formula for f(x), the number

of coefficients less than the positive number x, of the form

£6) = (1 + y2)x¥ + OG),

Two works of S. Tauber [372, 373] are devoted to the study of the multinomial

coefficients in the form (1.41). The first gives material of a historical nature and establishes
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basic summation formulas; the second contains proof of some summation formulas similar to
those for binomial coefficients.

M. Abramson [55] discussed the multinomial coefficients in the form (1.41), and
established the basic formulas and relations by using their combinatorial interpretations.

In the author's book [6], he studies the multinomial coefficients in the form (1.43),
establishes their basic relations, and gives applications to the construction and study of multi-
dimensional harmonic and polyharmonic polynomials.

V.E. Hoggatt and G.L. Alexanderson [196] defined for each mulﬁnonzial coefficient
(1.41) the s(s-+1) neighboring coefficients for which their product is N™, where N is an
integer such that there exists a partition of these coefficients into s sets of (s-+1) coefficients
whose product equals N, and where any such set may be obtained from another such set by a
cyclic permutation of indices.

In [296] A. Nishiyama discussed values f(n) which occur as sums of multinomial
coefficients (n; j,,...,j,), when the j, satisfy some condition. For example, for p=2 we have
the binomial coefficients, and if the condition is that they should lie on the Pascal triangle
diagonals, then f(n) is the Fibonacci sequence.

D.L. Hilliker [185] extended the binomial theorem for complex values, established by
Abel in the binomial case, to the multinomial theorem, and gave [186] various representations
of the expansion of (a,+a,+--+a)" by means of binomial coefficients.

A.N. Philippou [309] proved a theorem on the representation of the terms of the
Fibonacci sequence of order k, {f®} by means of multinomial coefficients. The result is

] .
1 = O (g +ny ety ny g, my), 120,
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where the summation is over all nonnegative numbers n,,...,n, for which n,+2n,+-+kn, =0.
Further results on the multinomial coefficients connected with questions of divisibility
and other properties may be found in [14-16, 18, 67, 121, 225, 261, 275, 348, 352], a

review of which we turn to in the following chapter.
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CHAPTER 2
DIVISIBILITY AND THE DISTRIBUTION WITH RESPECT TO THE MODULUS p,
AND ITS POWERS, OF BINOMIAL, TRINOMIAL, AND MULTINOMIAL

COEFFICIENTS

In this chapter we discuss questions of the divisibility of binomial, trinomijal, and
multinomial coefficients by a prime p and its powers for the Pascal triangle, pyramid, and
hyperpyramid. We also consider the number and distribution of these coefficients with
respect to the modulus p and its powers 1n a row, triangle, or cross section of a pyramid.

A. great number of works have been devoted to the study of the divisibility of these
_____ coefficients. Fundamental in these investigations are the theorems of Legendre, Lucas, and
Kummer, and other important results are those of L. Carlitz [99-105], P. Erdds [131-133],
N.J. Fine [139], H. Harborth [172-181], F.T. Howard [221-225], D. Singmaster [346-352],
M. Sved [366-369], and the present author [11, 12, 14-16]. A survey of early divisibility

results may be found in L.E. Dickson [122], and work from more recent decades is reviewed

in the detailed article of D. Singmaster [352].

2.1 DIVISIBILITY OF BINOMIAL COEFFICIENTS

References containing material on the divisibility of binomial coefficients by a prime p
and 1ts powers are [11, 103, 109, 139, 148, 149, 176, 221-223, 233, 238, 256, 263, 297,
325, 365, 369, 401]. In dealing with the arithmetic properties of binomial coefficients and

other coefficients containing factorials, it is convenient to have Legendre's Theorem:
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Theorem 2.1. Let p be a prime, and s the highest power of p such that p* divides n!.

Then

L T ..?—1.-:-.9.. . (2'1)
p-1

where the p-ary representation of n is n=(aa,; — 2,3,),, and a=a,+a, +- +ar

it

To obtain the residue mod p of the binomial coefficients we have\L‘ufs's Theorem:

T

Theorem 2.2. Let p be a prime, n and m nonnegative integers (m=0,1,2,...,n), and
let the p-ary representations of these be n=(aa,_,~a,), m=(bb_,-by), where a =0, and

0<a, <p, O<b, <p. Then

ny _ ao 01 Clr ]
ERRINECISRE

where (b) - 0 if b >a, .

L

Using Theorem 2.1, E. Kummer [246] obtained a formula for determining the highest

ower s of the prime p for which ("} is exactly divisible by p* (and not by p**'):
P P i y

Theorem 2.3. Let p, m, n and the p-ary representations be as in Theorem 2.2, and let

n—m = (CC,,~Cg),. Then (m) is exactly divisible by p’ if and only if

r

=Lzb+ck—ak) (2.3)
-1 i3
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Let us denote by h(n,p) the number of binomial coefficients in the n® row of the
Pascal triangle which are divisible by p, and g(n,p) the number of these coefficients not
divisible by p. Also, denote by g;(n,p) the number of these coefficients which when divided
by p have the remainder j<p—1, and by h{(n,p) the number of these coefficients exactly

divisible by p*. Then we have

g(mp) = g(np) + g(mp) + -~ + g,4(n,p)
h(n,p)

where q,=max{s} in the n® row. Since row n has n+1 entries, we have

h1(n,p) + hz(",P) o F hqn(n,p),

h(np) = (n+1) ~ g(n,p).

Theorem 2.4. Ietp be a prime, and n a row number of the Pascal triangle, with

n=(aa,;-ay),. Then

glnp) = (a,+1)a,_+1) -~ {(ay+1)(ay+1).

The proof of this theorem based on Lucas's Theorem 2.2 was first given in [139].
For the calculation of h,(n,p), L. Carlitz [103, 104] introduced the functions 6,(n,p)

n
m

and ¢,(n,p), where the first is the number of binomial coefficients ( ) exactly divisible by p°,

and the second is the number of products {(n+ 1)( ) divisible by p°, with p a prime and

m
m=0,1,...,n. For these functions he derived a system of recurrence relations and found the

generating functions. He proved that for s=1,

r-1

hy(n,p) = g (ap+1)(ay+1) ~ (a1 +1)P-a,-Dag.(ap+1) -~ (a,+1) 2.5)
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and for s>2 established a formula for h,(n,p) when n has the form(s)

n =ap +bp™', Oca<p, 0<b<p; .
n=a(l+presp™),  O<a<p
n=a(l+p+-+p™)-1.

F.T. Howard [221, 222] found a formula for h,(n,p) when $=0,1,...,4; in the case of
s>4, the formula requires further conditions. In [223] he found an exact formula for h,(n,p)

and for s> 2 values of h (n,p) valid when n is of the form(s):

=
1

= gp*+bp" , O<a<p, 0<b<p, k<r,

c1pk1 +...+Cmpk"', O<c‘.<p, k1 28, ki

=
il

1 —kf>S'

+

The extension of the divisibility results noted here to the trinomial case will be
discussed in 2.3 and 2.4. We mention two examples of the application of Theorem 2.4 to the
enumeration of the number of binomial coefficients not divisible by p. Let p=2 and n=13;
we write the binary representation 13=(1101), and find g(13,2) = (1+D{1+DO+F1D1+1D)
= 8. And if p=3, n=14 we write the ternary representation 14=(112), and find g(14,3) =
(1+DHA+DH2+1) = 12.

We now turn to the Pascal triangle whose base is the row numbered n. Denote by
H(n,p) the (total) number of coefficients divisible by p in this triangle, and by G(n,p) the
number not divisible by p. Also, let Gi(n,p) denote the number of coefficients in this triangle

whose remainder after division by p is j<p—1, and let H,(n,p) be the number exactly divisible

by p°. Then
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G(np) = Gy(np) + Golmp) + ~ + Gp—‘i(n’p)l

H(np) = Hi(np) + Hy(mp) + ~ + H, (n,p),

where q, = max{s} over the triangle. We note also that the triangle contains

N(n)="%(n+1){(n+2) entries; thus H(n,p)=N(n) —G(n,p).

Theorem 2.5. ILet n be the row number of the base of the Pascal triangle, and let p

be a prime. Then

where n+1 = (bb,;~by),.

Proof: For any n, we have

G(n+1, p) = G(np) + gln+1, p),

and so

G{np) = Gn+1, p) - gln+1, p).

From (2.4), we can write

n+l r
Gn+1,p) = ¥, (B,;+1)
k=0 j=0

2.6

@.7

2.8)

2.9)

where k = (BB, ;~y),. If we now pass from the single sum with index k to a multiple sum

with indices 8,,--,8, and take into account the implied limits of summation we have
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b1 p-1 p-1 r

G-y T -5 S 11 (B,+1)

B0 B0 Py=0 f=0 ;=0

B4-1 p- -1 p- r

VDD I DY

Pr1=0 PB,.p=0 B1=0 Bg=0 j=

b1 p-1 -1 r

-1
* [ 1] 2 Y Y Y6

B,2=0 B, =0 B4=0 By=0 j=2

b1 -1 p—-1 r

(BB +1) - B+ 1)] 3 Y [ (B, 1)

Bi=0 Bg=0 j=r-1

by=1
+ [(B,+1) (B, +1) = (By+1)] BEO (Bo+1)
+ (B, +1)(B,4+1) ~ (By+1)(By+1) . (2.10)

Each of the sums in (2.10) is an elementary calculation. It follows that

br—'l (br-'l +1 ) (p +1 )r-'!

b(b +1 r
G(n+1’ p) = .L(..f.j_.l (p+1 3 .

(P ) - (B+1)

r-2
v (b1, y+1) 22l (P*‘) ‘

2 2

by(b;+1) p+1\!
+ (B4 1) (B4 +1) -~ (Bp+1)] = 5 ( 2 )

b-(b.+1 +1\0
+ [, B+ 1) - (By+1)] 0(5 ) (p21)

+ (B, +1)(b, 1 +1) ~ (by+1)(Bp+1)
_ _I r i p+1
g e )

j=0

* (5,05, 4+1) - (by+1)(bo*1) = Glnp) + gln+1, p) ,
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which proves the theorem. From Theorem 2.5 it follows that if n=p*—1, then

2 2

r_ = P+'f d r_ = a+1 p+1 ’
Gp’-1, p) (ZJ,G(ap 1, p) ( )( ) 2.11)

Glap™+b-1, p) = Glap™-1, p) + (a+1)G(b-1, p) ,

where O<sa<p—1, 1<bxp". If czp, then

Glep™1, p) = (P: ]rG(c-‘l, » .

Let p=2. Then n+1 may be written in the form

n+l = 5,2" + 5 2% + .. + b 27,

and it follows from Theorem 2.5 that
q
G(n2) = Y 2137, (2.12)
i=1
If n=2"—1, then{ G(2'—1,2) = 37, G(2'+b—1,2) = G(2*—1,2) + 2G(b—1,2), and
G(c2'—1,2) = 3G(c—1,2).

It also follows that if we subtract G(n,p) from the total number of elements, we have

H(np) = N(o) - Glnp) = [";2] - Glnp) - (2.13)

For each p, from some n onward H(n,p) > > G(n,p). Thus, for p=3 we have
G(26,3) = 216, H(26,3) = 162; G(80,3) = 1296, H(80,3) = 2025; G(242,3) = 7776,

H(242,3) = 21868; G(728,3) = 46656, H(728,3) = 485514. We need to clarify this order
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of increase of H(n,p) and G(n,p). For this, it is sufficient to consider, rather than {n}, the

subsequence {p"—1} for r—e.

Theorem 2.6. For p22, lim G(n,p)/H(n,p)=0.

Proof: Since G and H are nondecreasing functions of n, then for p'—l<n<p™!—1,

using the first equation in (2.11) and equation (2.13), we have

G(np)[Hinp) s Go™ -1, p)/Hp"-1, p)
JONIESR )
i p(p+1)/ p+1 19‘31 ] i 2] '

Since for p=2, 2” >1, =<1, then as r~ (i)r—*oo, (ﬁ_])r—-O, and it follows that

pl

im G(np)/H(np) = 0, (2.14)

n-es

which proves the theorem.

We give below a short survey of some basic works on the divisibility of the binomial
coefficients.

J.W. Glaisher [148, 149] discussed questions of exact divisibility of the binomial
coefficients by powers of a prime and established a formula for the numbers of entries not
divisible by p in the rows of the Pascal triangie.

N.J. Fine [139] obtained a formula for the number of binomial coefficients

(;), O<msn, not divisible by p, and gave necessary and sufficient conditions for divisibility
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by p and for non-divisibility by p. He also proved that as n—« almost all binomial
coefficients are divisible by p.

1.B. Roberts [325] discussed the problem of obtaining the number 8,(n) of binomial
coefficients in the Pascal triangle congruent to j, O<j<p—1, modulo the prime p. He reduced
the problem to the solution of a linear difference equation with constant coefficients, and gave
a formula for 6,(n) for p=2 and any n, and also for p=3,5 and n=p*—1, k0.

In [177], H. Harborth studied the problem of the number A(n) of binomial coefficients (:)
in the Pascal triangle which are divisible by their row number n, as n-«, He proved that
almost all binomial coefficients are divisible by their row number; the distribution of
divisibility by the row number is also considered in section 3.2,

N. Robbins [323, 324] looked at the connection between the function A(n) mentioned
above and Euler's function ¢(n). In [323] he proved that A(n)=¢(n) for all n, and A(n)=¢(n}
if n=p*(s21) or if n is twice a prime Mersenne number. In [324] he found necessary and
..... sufficient conditions for the equality A(n)=¢(n), when n is square-free, and also discussed the
case when n is a product of three distinct primes.

Consider the number of binomial coefficients (:;)’ for 0<ms<n<N, not divisible by the
product (n){(n—1)-(n—s+1), s=1. H. Harborth [1807 proved that for fixed sz1 and N~
almost all binomial coefficients are divisible by this product. From this, he concludes that
almost all binomial coefficients are divisible by (:), and for s=1 this is the row number.

L. Carlitz [99] proved that if n=(aa,,~a,),, o(n)=a,+a,,+~+a, and (p—1) is
divisible by k>o(n), then all binomial coefficients (k‘:“), O<.l'<m<n, are divisible by p. He

n

mn

_ also considered in [100] the number of binomial coefficients ( ) satisfying the conditions:
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(1) = ) # et 1m0 .

(n) = ( ﬁ_{) =0 (mod p), m=1,2,...,n.

In [360, 362, 363] K.B. Stolarsky studied various problems connected with the
function B(n) defined as the number of ones in the binary representation of n. In [360] he
discussed the recurrence relation y,,;=y,+B(n), n=1,2,..., and established the asymptotic

behavior y,,~ (m log m)/2 log 2. In [362], he studied the function r,=B(m")/B(m), where h

h-1
is positive. He showed that the maximal order of magnitude of r,(m) is c(h) (log m) *

where c(h) >0 depends only on h; the minimal order of magnitude of r,(m) is not greater than
c(log log m)¥/log m, where ¢>0 is an absolute constant. In [363], he compared the behavior
of the functions B(kn) and B(n), and called n "strong" if B(kn) > B(n); he also studied the
question of the number of solutions of B(3n)~B(n)=a for 2°sn<2*'. If we denote by F(n)
the number of odd binomial coefficients in the first n rows of the Pascal triangle, Stolarsky

also studied [361] the asymptotic behavior of F(n), using the expressions

o = lim sup F(n)/n® B = lim inf F(n)n?®,

n-teo oo

where 8 = log 3/log 2 = 1.58496.... He established that & and B satisfy the conditions
1<e<1.052, 0.72<B<0.815, and that n®/3 <F(n) <3n".

These results._were sharpened by H. Harborth [176], who showed that a=1,
B=0.812556....

In a series of papers [346-352], D. Singmaster studied various properties of the

binomial and multinomial coefficients. In [346] he discussed the problem of the number of
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ways a whole number a may be represented as a binomial coefficient, and showed that
N(a)=0(log a). In [347] he introduced the functions E(n) and F(n), where E(n)=s if p’/n

and F(n)=n/p* (mod p); on the basis of the properties of these functions, he determined E(u!),
F(n!y, E((:)), F((:)), and so generalized the results of Lucas, Legendre, and Kummer. In

[348], he obtained the least n for which the multinomial coefficient (n; n,,n,,...,n,),
n,,n,,...,Nn given, is divisible by p*. In [349] he showed that "almost all” binomial
coefficients are divisible by any positive whole number d. The notion of "almost all" appears
in four versions, using the definitions: A(a,m) is the number of pairs (j,k) for which Ogj,

k<m, p*} (j:‘); B(«,m) is the number of pairs (j,k) for which O<j+k<m, p*| (j*k"); Cla,n)

is the number of values of k for which O<ks<n, p*] (:), D(e,k) is the density of j's for which

p*| (j;k); s=«. He showed, then, that

lim A(e,m)fm? =0, lim B(a,m)/(m(m+1)[2) =0,

e =

i

lim E Cle,d)/(i+1) = 0, Iim k—“T ZL: D{a,i) = 0.
A B

e R op k-

In [350] he discussed the greatest common divisor of corresponding triples of binomial
coefficients in the Pascal triangle, and in [351] he considered the equation (::) = (L"’) and
showed there are infinitely many solutions of the form n=F,, ,F,.,;— 1, k=F;F,;,.;—1, where
F, is a Fibonacci number. Finally, [352] is a.systematic review of more than seventy papers
by various authors, and also contains some new results on divisibility of binomial and

multinomial coefficients by a prime p and its powers.

R. Fray [143] posed the problem of determining the least positive number ¢ tor which
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(W] (;) (mod p7) 2.15)

for all m=0,1,...,n, r=1,2,.... He showed that if p’<n <p"*!, the least a satisfying (2.15)

for all m is a=p™*, and if p*sm <p°*!, the solution is again a=p"**.

H. Gupta [167] solved the problem of determining the smallest positive n so that for a

given positive m the binomial coefficient (:1) will have at least m prime divisors.

In [234, 235] G.S. Kazandzidis worked on a method for obtaining the highest power
of a prime p which will divide () and (;1; )

H.B. Mann and D. Shanks [274], using the Pascal triangle, established a criterion that

a natural number m be prime: m is a prime if and only if for Z<n<Z, n divides ( " )
)

In [175, 178] H. Harborth, with the help of the Pascal triangle, generalized the
criterion of [174], showing that m is a prime if and only if for :’“_1 <n sic’i, n divides (m‘_’c n);
here, for fixed c<2, m>2, n is not a multiple of a prime less than or equal to ¢>—c~1. The
details for ¢=3 are given in [175], and for c=4 in [178].

J. Bernard and G. Letac [67] proved that if a and b are whole numbers satisfying

n+m

|la] <p, |b| <p, where p is prime, (a-b)=0, and ( ) is divisible by p°, then

m

(pn+pm+;z+b] = 0 (mod p¥). (2.16)
pm-+

n

Lastly, E.F. Ecklund [127] proved that (;) has a prime divisor psmax {;, %}, with
the exception of (;’) for n=2m,

The question of the divisibility of the binomial coefficients by powers of a prime p is

discussed in the following section.
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2.2 THE DISTRIBUTION OF THE BINOMIAL COEFFICIENTS IN THE PASCAL

TRIANGLE MODULO p AND ITS POWERS.

Here we consider problems associated with the number and distribution of the
binomial coefficients in the Pascal triangle with respect to their remainder, or residue, after
division by the prime p, and also the distribution of these coefficients strictly divisible by a
power of p. These problems are also connected with the quantities Gy(n,p), H,(n,p)
introduced in section 2.1.

C.T. Long [261, 262] introduced two triangular forms composed of binomial

coefficients:
mp*
' @.17)
np *+p*-1 . nptap*-1) o e
mp* mp *+p *-1
and
np* ) . np*
mp *+1 mp *+p *-1
' 2.18)

kypp ke
(np pt-2 ,n2l, Osmsn-1,
mp*+p k-1

where m, n, k are whole numbers, and k>1. If we replace the elements in (2.17) by their

residues mod p, and denote the result by A, the author discusses the triangle of triangles



' (2.19)

"isomorphic" to the usual Pascal triangle. He shows that for practical purposes the triangle

A, .. may be taken to be the triangle

(2.20)

Rl

consisting of the residues mod p, which by Lucas's Theorem are congruent mod p to the
corresponding elements of the triangle (2.17). It is also shown that the triangle A, , satisfies

the recurrence relation

A+ A (2.21)

atl,m+1 = “pm n,m+1

A

"isomorphic" to the ordinary one, (“*1) = (“) + (m'il). On the right side of (2.21), addition

m+l m

is carried out mod p.
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Between each pair of adjacent triangles A, ,, and A .., m=0,1,...,n—1, in (2.19), we
may place (the elements of) a triangle V, , consisting of the residues mod p of the binomial
coefficients in (2.18). By Lucas's Theorem the residues of each of the binomial coefficients
in (2.18) are all zeros, and so all the elements of V,  are null.

First Problem. Let p be a prime, k>0, n=0,1,...,p—1, and m=0,1,...,n. Then

among the p(p+1)/2 triangles A, ,, constituting p* rows, as in (2.19), there will be only p—1

distinct types. Their general form, which we denote by A”, k20, i=1,2,...,p—1, is

(2.22)

The interior elements of the triangle are calculated by the usual rule as the sums of two
elements in the preceding row, except here mod p. Also, the elements of the triangle V, ,, are

zeros independently of n and m, and for a given k compose p“—1 rows, these triangles are all
the same and we denote thém by V.

Using the "geometric” (Pascal rule) interpretation, we can establish that each triangle
AP is itself a "geometric” sum of p(p-+1)/2 triangles A® and p(p—1)/2 triangles VY.

Thus, we can write out the "geometric" equations
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1 1 2 -1 -1 o
AP = a A v g AP g AT p(p2 ) v
2) 1) 2 -1 -1) o
AP = ap AL + 0,508, + v gy AL 4 p(p2 ) vO

(-1 (1) 2)
A 7 = Gy qqBpy 12A1c-1 o
-1 1
T Gpgpe1Ben (p pe-1) Vih,

where a;; is the number of triangles AP occurring in A®. These coefficients a;

> (2.23)

= a®
(8

depend on p but not on k, and their values coincide with the numbers of ones, twos, ..., up

to (p—1) inclusive, contained in the triangles AP, AP,

of (2.22), and which have p rows.

, &7V whose general form is that

Let P2(r) be the number of occurrences of r in the triangle A?. Thus, P(1) is the

number of ones in AP, P (3) is the number of threes in A®, and so on. Using (2.23) and

taking into account that the VA” contain only zeros and may be neglected, we can form the

k-1

system of first order recurrence relations

1 1 2 1

p i . 2 -1
()(r) ‘12,1P1£-%(r) * az,zplg—%(?') ot az,qu& )(r),

----------------------------

— ol = )
where I—I,Z,.-.,P l’ai,j_aifj?'

> (2.24)
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The solution of the system depends on the initial data, which are determined by the
occurrences of r in the triangles AP, I<j<p—1. Since each of the AY contains but one

element equal to j, and does not contain 1#j, the data take the form of (p—1) groups:

~

Py =1, PRW) = 0, P(1) = 0, -, PEV(1) = 0,

PP@) =0, PP =1, PP@ =0, -, PF@) =0, } (2.25)

0, P (p-1) = 0, P (p-1) = 0, -, PF (p-1) = 1.

P{(p-1)

From (2.24) and (2.25) we may determine the number of occurrences of r in any triangle

AP, 1<igp-1. The triangle AV itself represents the Pascal triangle mod p, and so B(r)
gives the value of G(p*-1,p); the values of BY(r), 2<j<p-1, are the number of occurrences

of rin AE), as shown schematically in (2.22).

The matrix of the system (2.24) is

A1 G2 T Gypy
a a a
2,1 2.2 2.p-1 - "
Ay =0 P 4y = Gy
Ap11 Gpq2 a,_1,p-1

which, except for p=3, is not symmetric. The element ga, ., as indicated before, is the number

i

of occurrences of i in AP for a given value of p. We give below some examples.
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Let p=3. Then

and so

all =5,af) =1,a% 1,48 = 5.

The system corresponding to (2.24) is

2
P’ = 5P (0 + B,

(2.26)
PO = POE) « 5PA0),
where r=1,2, and the matrix is
5 1
4 = {1 5}
The initial data are obtained from A" and AP, and we have
PN =1, PE() = 0, P’ = 0, PP @) = 1.
The solution of (2.26), with these initial values is
PO(1) = 16+4), P2 - 1(e--4)

Q.27

PE() = L6"-44, PP() - 1(e+4.
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It follows from (2.27) that for p=3 the number of ones in the Pascal triangle whose base is
row 3*—1 is

Gy(3*-1,8) = P (1) = 1(6*+4¥),

and the number of twos is

G,(3-1,3) = PV (@) = (6~ 4H.

It also follows that the total number of coefficients in this triangle which are not divisible by
31is

G(3-1,3) = G, + G, = &,
which agrees with Theorem 2.5. If 3*<n<3*¥"!, then for the enumerations G,(n,3), G,(n,3)

we need to use the appropriate "geometric” equations and the formulas for P (1), P®(2),

where £ <k and k and £ must be specified.

Let p=5. Then
1 2
1 11 \ 2 2
Al = 1 2 1 A® - 2 4 2
1 3 38 1 2 1 1 2
1 4 1 4 A 2 3 2 3 2
3 4
3 3 4 4
A® - 3 1 3 A - 4 3 4
3 4 4 3 4 2 2 4



and so we have

&) _
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{5)

a11 10 a1(52} = 1, a1'3 = 2, 1(:54)_ = 2;
aa(? = 2, = 10, aésg =2, aéa =1;
a:ﬁ) =1, aﬂ = 2, a33 =10, aﬁ =2;
al =2, a3 =2 a =1, af =10,
and the matrix A,
10 1 2 2
2 10 2 1
Ag
1 2 10 2
L2 2 1 10|
In vector form the system is
P £1) " 10 1 2 2 (1) ) ()
PR 2 10 2 1 |pB©»
PPl 11 2 10 2 P&
0] |2 2 1 10 [BA0)
for r=1,2,3,4, and the initial conditions are
(1] [0 ] [0 ] 0]
0 1 0 0
0 0] 1 0
| O | | O | 0 ] 1
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The solution of this system with the given initial data has the form

P(1) = PP@ = PP@) - PP @)
= L1155 + &) + JH(1,8),

P2 = PB4 = PP(1) = PP (3)
= 115" - 99 - 1H(1,8),

P@) = PP(1) = P8 - PP

= 1(18* - 9 + 1H{(1,9),
PP@ = PP - 2@ - PR()

= (15" + 9 - ZH{(1.8),

where
ko
k [T] 1 k 2i k-2i 0
H . - _4yi i+, k= -a, = 0, -[,
D Sl P

is itself known to be a harmonic polynomial in two variables [6]. With this information we

can find the distribution of the residues 1,2,3,4 mod 5 in the Pascal triangle whose base is the

row numbered 5%—1:

G,(8* - 1,5) = 1(15" + 99 + 1H,(1,8),

n
w——
an
b
t

15) = J(18" - 9) - ZH{(1,8),

L)
-
a
x

f

1,5) = 2(15F - 99 + %Hfﬁ 8),

Gy(5* - 1,5) = 2(15* + 9 - %H§(1,8).
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In like fashion for p=7,11, the matrices will be

27 5 5 4 3 3 2 4 4 9]
3 27 2 5 4 5 4 4 9 3
15 2 2 1 4 4] 4 4 27 3 4 5 3 9 5 2
1 15 4 2 4 2 5 3 4 27 4 2 9 5 3 4
4 2 15 4 1 2 4 2 3 5 27 9 4 3 4 5
4; = dyy =
2 1 4 15 2 4 5 4 3 4 9 27 5 3 2 4
2 4 2 4 15 1 4 3 5 9 2 4 27 4 3 5
4 4 1 2 2 15 2 5 9 3 5 4 3 27 4 4
3 9 4 4 5 4 5 2 27 3
9 4 4 2 3 3 4 5 5 27]

These matrices for any prime p, as here for p=3,5,7,11, have a property which we

might call quasi-symmetry, in which the elements satisfy three types of conditions:

A4 = Qgp = g3 =~ =8, 4, 1
Ap1 = Gapp T Q353 = = = 4y 1,
ai_j = apui,p_j, 15*_], l+]9"-'p.

The first and second of these require the equality of the elements on the main diagonal, and
of those on the counterdiagonal, respectively. The third requires, in effect, the equality of
elements in positions above and below the main diagonal, related to one another by a 180°
rotation about an axis perpendicular to the center of the array. Without going into the matter
here, we mention that these quasi-symmetric matrices which arise in coﬁnection with the

Pascal triangle mod p have a number of interesting properties.
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Questions connected with the distribution in the Pascal triangle of the binomial
coefficients mod p are discussed in papers by A. Fadini [137], J.B. Roberts [325], M. Sved
and J. Pitman [369], among others. In particular, [137] uses a triangle of triangles like that
of Long [2621; [325] gives the distribution of the binomial coefficients mod 3 and mod 5; in
[3609] are tables of the distribution mod 3 up to the 50" row, and also for the composite
modulus 9=37 up to the 60® row. In the last, there are also tables of values «,8 for the
expression of the binomial coefficients in the forms «-3>+8-3 and «-7*+5-7, and other
tables.

As examples of the properties mentioned in this section, we show the distribution of

the binomial coefficients mod 2 in Figure 18, and mod 3 in Figure 19 (the dots stand for

ZET0S).

------
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Figure 18
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Figure 19

Second Problem. Here again we are interested in the distribution of the binomial

coefficients in the Pascal triangle, but now the criterion (for forming the distribution) is that

of strict divisibility by a power of the prime p. That is, using the notation introduced by

m

Long [261], we denote by Lﬁ] the exponent of the highest power of p which divides (“) , and

consider the friangle whose elements are the values

11111}’ O<mxn, called the p-index Pascal
triangle, This triangle has a number of interesting properties, and was first discussed by
K.R. McLean [277].

We list some of these properties, formulated and proved in [261]. Let p be a prime,

and N and n natural numbers; then
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k
[npm-'l] =0, if T<sn<p, Osm<np*-1;

k 2 E
[pm] > 1, if t<m<p¥, [p()} = Ek] = (0;

[Npk+np"‘1—1] _j0for rp*<m<rp*+np*i-1, O<ren,
m 1 for rp*+np* T <m<(r+1)p% O<r<y,

where 1<n<p, 1<N<p.

Let p be a prime, k a natural number, and n,m integers, 0<ms<n. Denote by T,f?, the

p-index triangle formed from the triangle (2.17), and which will be of the form
np* }
mp*

np*+p "—1} R AT ]
mp mp *+p k-1

(2.28)

In [261] it is shown that T.%, =

rr;] + éﬁ)), where the symbolic addition on the right-hand

side indicates that the element Lﬂ 1s added to each entry of Té{%. Thus, 1t follows that if we

know the distribution of elements in the triangle TD(%, we can easily find the distribution in

the triangle Tﬂ:, and moreover we obtain the distribution of the binomial coefficients

according to the criterion of the strict divisibility by a power of the prime p in the triangle

(2.17). From the triangles T,f?" we can form an indefinitely increasing triangle.

We introduce the p-index triangle R corresponding to the triangle (2.18):

n,m
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(2.29)

where nz1, O<ms<n—1.

It is not difficult to show that the correct equation for this triangle is

® = L[;l] + R, 1t follows that if we know the distribution of the entries in the triangle

Rfi)), we can find the distribution of the elements in (ﬁl for any n,m, and moreover we will

obtain the distribution of the binomial coefficients strictly divisible by a power of p in the
triangle (2.18) for any n,m.
Consider the Pascal triangle whose base is the row numbered N=p*—1. The

corresponding p-index triangle Té{% consists of p(p+1)/2 p-index triangles T,fi;”, where
n=0,1,...,p—1, and O<m=<n. The distributions of the elements in all the triangles T,ff‘:) are
e (k1) . . E-1)
identical, and so we may replace each of them by Tgqo °. Besides the triangles T, ", Tgp

also contains p(p—1)/2 p-index triangles R,ff;), where n=1,2,...,p—1, O<m=<n—1., The

distributions in these are also identical, and so we may replace each of them by the triangle
(-1}
R1 .0 .

Consider now the p-index triangle (2.29) for n=1, m=0, i.e., Rf%. It may be shown

that Rf’% itself consists of p(p—1)/2 triangles TED 1<ngp—1, O<sm<p—n—1, and p(p-+1)/2

nm 7

(k-1

n,m

R

triangles R, "7, 1snsp, O<sm<p—n. As before, each of the T may be replaced by
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Tg‘f;‘), and each of the -R-,(,’f:) may be replaced by R(k 1). Figure 20 shows Té% and Rf’%,

denoted by T, and R,, and the arrangement of the triangles To(koj), Rffo' B ?S’f;", 'ﬁﬁ’f;”,

denoted by T,_,, R, 4, T(I%. Rm

% ./\." AV
2ok A;/\ T

/\\%W\ 7
mw”’!

A%\ _____ ,
//W VAV/\ \ A e

I
; 2p%r

Figure 20

Using the equation given earlier and taking in account that n<p, we find that

—f‘,([k;‘l) = 1 + T(k 1), '}_egka'l) - 1 R(k"")‘

It follows that we can form the "geometric" equations

1 -1) -
Top = +1)Tg5 " + p(p-1)RE",

il

R = DT + Lo 1)RE".
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Denote now by P,(s) and Q,(s) the number of occurrences of the value s in the
respective triangles 7% and RS, where s is the greatest exponent of p such that p* divides

the corresponding binomial coefficient. From the geometric equations above, we can write

the recurrence relations

Pk(S) —;~p(p+1)Pk_1(S) * %P(P'1)Q;c_1(s)s

(2.30)
Qk(s)

2@-10)Pys=1) + Zp(p+1)Q;4(s-1),

where k=2,3,..., and s=0,1,...,k—1 in the first equation and s=1,2,...,k in the second. For
the initial conditions (P,(s), Q,(s) for s=0,1), we enumerate the numbers of zeros and ones in

70 RO

0,0? 1,0°

and find that

Py0) = pp+1)2, P,(1) =0
Q(0) = 0, Q,(1) = plp-1)/2.

The system (2.30) is a special case of the system

X

5 = an-1,S + bYk—1,.S"

(2.31)
Yk

s = DXt Al

1,s-1?

which we solve by the method discussed in {6]. If we further choose

Xo=a X3=0 Y,=0 Y,=5b,

]

then it may be shown by complete induction that the solution takes the form
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where k=23,...; pk,s)=min{s—1, k—s—1}; v(k,s)=min{s—1,k—s}.

It follows then that
.| k p&s) _1 242 S_-I k-5
P _{P* P ’
CH AR

oo (7S (2T () ()

> 2.32)

In particular,

(13 - wn 23 ()5

o = 0. am = (2] (72']".

Here P,(0) is the number of binomial coefficients not divisible by p in the Pascal triangle up
through row p*—1, i.e., the quantity G(p*-1,p) discussed previously in 2.1. The value of
P,(s) is the number of coefficients exactly divisible by p*, i.e,, the quantity H,(p*—1,p).
Consider the Pascal triangle up through row N, where p*<N<p**!'—2. Then, putting
N=np*+¢ for O<nsp—1, 0<f<p*—2, if we know the distribution of the p-index triangle for
the given n,f{ in the part of the triangle above row p*—1, we can find the number of binomial

coefficients exactly divisible by p*, 1sssk.
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The determination of the number of coefficients exactly divisible by p’ in the Pascal"

triangle up through row p'—1 is discussed in [103, 349, 369]. Let

p-1 , p-1
5,(r) = Zﬂ 8;(@, S0 = Z(:) ;(a),

where 6;(a) is the number of binomial coefficients (:) exactly divisible by p/, and ,(a) is the
number of products (a+1)(:) exactly divisible by p’. L. Carlitz [103] has shown, using

generating functions, that

so = > ()2 E 5 e

io- 2 (1) P2 e

Q<2k<r

By a simple transformation, S;(r) and Sj (r) may be written in the form (2.32).

Analogous expressions for the number exactly divisible by p' were introduced by
D. Singmaster [349], who used the notations A(«,m), B(a,m); it can be shown, for example,
that B(j,p) = Si(r). The problem was also studied by M. Sved and J. Pitman [369], who
obtained the formulas

D(a,m) = n;v:"j E (ocT‘I) (m—i.t—oc) (g)&'” (p; JM*h-(Ei+1) [p;]’

J

w5 (475 2
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where, in the Pascal triangle up through row p™—1, D(a,m) is the number of binomial
coefficients divisible by p®, and E(a,m) is the number exactly divisible by p®. These formulas
can be transformed into the form of S;(r) or Py(s).

The distribution of binomial coefficients exactly divisible by 2° is shown in Figure 21,
and that for 3° in Figure 22. It is interesting to represent the p-index Pascal triangles by
colors of various shades for s=0,1,2,...; a fragment of a colored p-index triangle for p=2

appears in C.K. Abachiev [1,2].

2434
2 3 371

3
o\3 32
4 32 4/
g

Figure 21
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2.3 DIVISIBILITY OF TRINOMIAL COEFFICIENTS AND
THEIR DISTRIBUTION MODULO THE PRIME p,

AND ITS POWERS, IN THE PASCAL PYRAMID

To study divisibility questions for the trinomial coefficients (n; m,,m,), discussed in
1.5, we need to extend some theorems established for the binomial coefficients in 2.1. We
first note the analog of Lucas's Theorem, the generalization of which to the multi-dimensional
case is given in [121].

Theorem 2.7. Let p be a prime, n,m,,m, nonnegative whole numbers, m,;<n, m,<m,,
and let the p-ary representations of these be n=(aa,;~ay),, m,={'d}, by), m,=(bb?, ~bd),,

where a,#0, O<a, <p, 0<b!<p. Then
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o) = o B3] o 610 fog 817 (o ), @39

r

where (&; b'b?) =0if b'>a or b>>b', O<ksr.

Consider now the Pascal pyramid (cf. Fig. 15). We denote by g(n,p,3) the number of
trinomial coefficients not divisible by p in the n® cross section, and by h(n,p,3) the number
divisible by p. Also let gi(n,p,3) denote the number of these coefficients for which
(n; m;,m,)=j (mod p), 1<j<p—1, and let h,(n,p,3) denote the number of coefficients exactly
divisible by p*; again, these are for the n® cross section. When the whole pyramid down to
the n® cross section, inclusive, is considered, the total numbers of coefficients satisfying the
corresponding divisibility conditions will be denoted by G(n,p,3), H(n,p,3) G;(n,p,3), and
H,.(n,p,3).

Theorem 2.8. Letn = (aa,,-a), be the number of a cross section in the Pascal

pyramid, and p a prime. Then

-1
¢mp3) =[] (k*zf*, (2.34)
=\ 2

where f, is the number of digits k, 1<k<p—1, among a,,a,,...,4,.

The proof of Theorem 2.8 follows from Theorem 2.7. Note that if the cross section
number n=p‘, r=1,2,..., then it follows from Theorem 2.8 that in this cross section only the
three coefficients (n; 0,0), (n; n,0), (n; n,n) are ones, and not divisible by p.

Theorem 2.9. With the same hypothesis as Theorem 2.8, we have

1y p+2Y7 1 b,_.+2J 2.35
G ’ 13 ey b i / ’ ( . )
rp.3) = 35 X (3] Q( 2
where n+1=(bb,_,by),.
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This theorem is proved in the same way as Theorem 2.5. From Theorem 2.9, if

n=p'—1, we note that

61,03 = (72, (2.36)

Since the total number of coefficients in the n® cross section is (“;2), we have that

h(mp,3) - [";2) - (10,9,

and, since the total number of coefficients in the pyramid down through the n® cross section

is (“;3), by the same token,

H(n,p,3) = (";3) - G(n,p,3).

Theorem 2.10. Let p be a prime. Then for n—e
lim[G(n,p,3)/H(n,p,3)] = 0.

The proof of this theorem uses (2.36), and is like the proof of Theorem 2.6. As for the
binomial coefficients, we may formulate two principal problems for the trinomial coefficients.
The first is to obtain the value of gi(n,p,3), the number of trinomial coefficients in the n®
cross section with residue j (mod p), and the value of Gy(n,p,3), the total number of
coefficients with residue j (mod p) in the whole pyramid down through the n® cross section.
The second problem is that of obtaining the distributions of the coefficients with respect to
strict divisibility by p*, for both the cross section and the pyramid, as above.

The solution of the first problem we may think of as depending on determining the
residues of the three elements in the corners of the triangular elements in the (n—1)* cross

section. Obtaining g;{(n,p,3) and Gj(n,p,3) then reduces to the formulation of the
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corresponding recurrence relations and their solutions. As examples, we show the
distributions of the trinomials mod 2 in Figure 23, and mod 3 in Figure 24, through the 12"
€ross section.

An algorithm for constructing the distributions of the trinomial coefficients with
respect to strict divisibility by p¥ for any cross section is as follows. Let n be the cross

section number, and construct the Pascal triangle for ( ), Osm,<n. Using the algorithm of

section 2.2, construct the "triangular distribution” of the binomial coefficients (for strict
divisibility by p*) for this triangle. Then, based on the equation (n; m,,m,) = (: ) (;‘ ), add

to each of the elements of the rows of the "triangular distribution” the elements of the base

row rotated counterclockwise by 90°. The result is the desired distribution.

Figure 23
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Figure 24

We note that the distribution of the trinomial coefficients with respect to divisibility by
P’ in the cross section n=p'—1 coincides with the corresponding distribution of the binomial
coefficients in the Pascal triangle whose base is row n==p’—1, for any r.

As examples we show the distributions of the trinomial coefficients with respect to

strict divisibility by 2" in Figure 25a, and by 3* in Figure 25b, for the 20" cross section of

the Pascal pyramid.
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Figure 25
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2.4 DIVISIBILITY OF THE MULTINOMIAL COEFFICIENTS

BY THE PRIME p AND ITS POWERS

Questions of divisibility specifically for the multinomial coefficients, the determination
of the number divisible, or not divisible, by a prime or power of a prime, in a cross section
of the hyperpyramid or the whole hyperpyramid, and problems related to these topics are
treated in [14-16, 18, 67, 121, 225, 275, 348]. The discussion of these results again begins
with the extension of Lucas's Theorem [266] to the multinomial case, which is given in L.E.
Dickson [121]; it will also be useful to represent the multinomial coefficients in the form
(1.41), and denote them by (n; n,,n,,...,n,).

We write the p-ary representations

n = (a8, a), n =0 ! bri-I bg)., (2.37)

where a,#0, O<a, <p, O<b! <p, Osksr, 1<ixs.

Theorem 2.11. ILet p be a prime, n and n; nonnegative whole numbers with p-ary

representations (2.37). Then

r

T1 (ag b/B7-B;) (mod p), (2.38)

k=0

(75 nysnoy )

in which (3; b'bZ-b?) = 0 if b'+bZ+-+h*=#a.
It follows from Theorem 2.11 that (n; n,,...,n,)=0 (mod p) if and only if

bk1 +bk2 +--+b?=a for all values of k.
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Known and new methods for determining the highest power of the prime p which
divides a multinomial coefficient are presented in detail in the article of R.J. Martin and
G.L. Mullen [275].
Theorem 2.12. If p is a prime, the multinomial coefficient (n; n,,...,n,) is divi;ible by
p' if and only if
s
E@n) - Y E@n)) > v,
i=1
where E(p,n!) denotes the highest power of p which divides n!.

Let n and n; be written in p-ary form (2.37), and form the system of equations:

1
by + -+ b = egp * 4y,

1 s
g + by * - + by = &4 + ay,

| (2.39)

+ b+ + b, = +
€2 r-1 -1 = €.4P a1

1 5
€g,4 +b +- +b’ =a.

Then R.D, Fray in [143] proved the following result.

Theorem 2.13. The highest power of the prime p which divides (n; n,;,n,,...,n,) 1s

given by

v = eo +81 + o o+ 8!‘—1'

where the values e ,...,e_, are chosen from among 0,1,...,s—1 so as to satisfy (2.39).
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If we put S(n) = a,+a,+-+a, and S(n) = b, +b]+-+b’, then it ‘may be shown [225]

that

v = p—i? [S(n) +S () +-- +S{n) - S (n)]. (2.40)

In [275] Martin and Mullen worked out a new, more effective method for calculating

v, based on obtaining the residues of ny,n,,...,n, modulo distinct powers of p. Denote by n/
the residue of n, ( mod p), for i<iss, 1gj<h, where p"<n<p"*!, h=[log n/log p]. Then the
following theorem is from [275].

Theorem 2.14. The multinomial coefficient (n; n,,n,,...,n,)=0 (mod p*) if and only if

h - -
3 1 wland v en?

— gt -t Ho) 2 V.
i1 p’

it follows from Theorem 2.14 that for v=1, (n;n,,...,n,)=0 (mod p) if and only if for some
value of j, (nj+nj+-+nl)yzpi.

D. Singmaster [348] discussed the question of the least value of n for which
(n; n,...,n,) is divisible by p*, and obtained the following theorem.

Theorem 2.15. Let the power v of the prime p>s be represented in the form
v=3a(s—1)+b, where 0 <b<s—1. Then the least value of n for which (n; n,,...,n,) is
divisible by p* is n=bp**'.

He also considered [352] various properties of the multinomials and proved the

following result.
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Theorem 2.16. The multinomial coefficient (n; n,,...,n,} in which n is strictly
divisible by p*, and n; is strictly divisible by p", is divisible by p** if t<v, where t=min{t}.

The problems of determining the number of multinomial coefficients not divisible by
p, or divisible by p*, are discussed in {15, 16, 18, 2251; in these problems it is sometimes
convenient to use the form (1.43) for the multinomial coefficients.

Let g(n,p,s) be the number of multinomial coefficients (n; n,,...,n,) not divisible by p
in the n™ cross section of the Pascal hyperpyramid, and h(n,p,s) the number divisible by p.
Also, let gi(n,p,s) be the number congruent to j (mod p); then we have

g(n,p,s) = g1(n,p,S) + g2(nlp!S) o F gp_1(n,p,s).

Likewise

h(n,p,s) = h‘i(n!p!s) + h2(n,p,s) toee ¥ hq(n,p,s),

where h,(n,p,s) denotes the number of multinomial coefficients (n; m;,m,,...,m_,) in the n®
cross section divisible by p*, and g=max{v}. For the total numbers of coefficients in the
hyperpyramid satisfying the corresponding conditions we use the notations G(n,p,s), H(n,p,s),

Gy(n,p,s), and H,(n,p,s). Then

G(n,p,s) = G1(”!P’S) o p—‘t(n’p’s)!

H(np,s) = Hy(np,s) = ~ + Hnp.s).

Theorem 2.17. Letn = (aa,,...a,), be a cross section number in the hyperpyramid,
and p a prime. Then
p-1 WUNIRY ‘
gnps) = I1 (“S 1]1, 2.41)

k=1 s-1
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where f, is the number of digits k among a,,...,a,. In the proof of Theorem 2.17 we use
Theorem 2.11 and a corresponding transformation; as a result, (2.41) differs from the
representation obtained in [18, 225].

In {225], F.T. Howard extended the results in [100, 103, 222, 223] and obtained
formulas for the quantities 684(s,n), 6,(s,n), 0,(s,n), where these are the numbers of
multinomial coefficients strictly divisible by p°, p', p*. For 6,(s,n), v >2, he constructed the
corresponding generating function and found explicit expressions for 8,(s,n) for certain values
of n.

Denote by C(i) the coefficients in the expansion of (1+x+x*+-+x"1)® in powers of x,
where p is a given prime, and s is the "dimension” of the multinomial (n; n,,...,n). Howard
proved that

Clasbp) - g 3 () 2.42)
In (2.42), which is analogous to (1.16) for generalized binomial coefficients, a and b satisfy
O<a<p, O<b. Using only the coefficients C(i) and the p-ary representation n=(a,a.;~a),,

Howard [225] proved a theorem containing the following formulas:
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0y(s,m) = Cl(ay)Cla,)..Cla,),

r-1

On5) = 3 Clag)-Cla)ClarPIC e —1)Claa) - Cla),

r2 r-1
B, (5m) = Z; Clp+a)Cp+a;,~1)Cla,~1)4; + Z; C(2p+a)C(a;.1~2)B,

r-1

-3
+ Y. Y Clp+a)Cla,~1)Clp+a)Cla,. - 1)H,;.

=0 k=j+2

The values A;, B, H;,, mentioned in [225], may be written in the form

A,‘ = PleiC(ai+2)l Bi = Plei’ Hi,k = Pleka’

where

P, = ! c(aj)l Q; = C(a)C(a,4), Q, = ClapClay.q).

.
2
=]

Also given is 9,(n) for the values n=a-+bp, n=a-+p?, n=a+2p?, n=a-+bp-+p’.

N.A. Volodin [18] developed a formula for the number of multinomial coefficients not
divisible by p, and for the number divisible by p, in the form of a sum of products of
binomial coefficients. Methods for obtaining the number of multinomial coefficients not
divisible by p in the Pascal hyperpyramid, are given in [15, 16, 18].

Theorem 2.18. Let the base of the Pascal hyperpyramid of dimension s be the n®

cross section, and p a prime. Then

r _qyi d b .+s-1
G(np,s) = % : b _. (p s 1) [ r*S ]’ (2.43)

where n+1=(bb, ;-by),.
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~ The proof of Theorem 2.18 is analogous to the proofs of Theorem 2.5 and Theorem
2.9, If n=p"—1, rz21, from (2,43) we find that

Gp'1, p, 5) = (p+z-1] (2.44)

The total number of multinomial coefficients in the n® cross section of the Pascal

hyperpyramid of dimension s is (‘“‘f) . Thus,

8

h(np.s) = (n+s-1) - g(n,p,s).

s-1
Likewise,
H(np,s) = ("“) - G{n,p,s),
S
since (“:") is the total number of coefficients in the Pascal hyperpyramid of dimension s and

whose base 1s numbered n.

Theorem 2.19. If p is a prime, then for n-e,

lim{G(n,p,s) [ H(np,s)] = 0.

The proof of Theorem 2.19 is like those of Theorem 2.6 and Theorem 2.10, and uses (2.44).

The problems of determining G;(n,p,s) and H,(n,p,s) (using the usual notation) may

also be formulated for the multinomial coefficients.
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2.5 GREATEST COMMON DIVISORS AND LEAST COMMON MULTIPLES OF

BINOMIAL COEFFICIENTS. FACTORIZATION

We consider here some questions associated with the greatest common divisor (GCD)
and the least common multiple (LCM) of those binomial coefficients which are arranged in
some definite pattern in the Pascal triangle.

On the basis of the known equation
[n-—1 ( n n+1) _ (n-1 n n+1
m m-1) \m+1 m-1/\{m+1 m
H.W. Gould [159] stated the conjecture that
GCD n-1 , n , n+i - GCD n-1 ’ n ’ n+1 ’
m m-1 m+1 m-1 m+1 m

which was proved in various ways by A.P. Hillman and V.E. Hoggatt [187], D. Singmaster

[3501, and E.G. Straus [364].

C.T. Long [262] discussed the triangle V, of binomial coefficients of the form

VIR

=2)
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If we denote the GCD of all elements in this triangle by d, and the GCD of the three corner
elements by D, he proved that: d=D=p if n=p; d=p, D=p* if n=p° (s> 1); d=1, D=n for
all n#p°, where p is a prime and s is a whole number,

Let n=p/'p,*-p" and k be whole numbers satisfying 1sksmin{pi°‘}, 1<i<r, and
denote by m the product of all divisors of n of the form p*, where p*<sk<p**!. T. Tonkov

[49] proved that

oo (3} (- ()} -

In [345] G.J. Simmons showed that there are infinitely many values of m for which
m! is a divisor of (;), but m!p for p<m does not divide this coefficient. He further proved
that for given N,m, there exist infinitely many n such that GCD {(:), N} =1.

J. Albree [56] proved that for 1smsn—1, if GCD{m,p}=1, then GCD{(:)}=p’,

where s is the highest power for which p® divides n.

=)l e Gk el ()
) () GRG0

Then H.M. Edgar [128] proved that

LCM{a,b,c} = LCM{d,e,f}.
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In [393], 1.S. Williams showed that for powers of primes p, where p"<n+1 spi“i” ,

(1) - )

where the product is taken over all primes p;sn+1.

R. Meynieux {280] discussed questions connected with the LCM of binomial
coefficients, and with determining the powers of primes which occur in the factorizations into
prime factors of binomial coefficients. A typical result is as follows. Let A, be the power of
the prime p in the factorization of (:1), let p.p(n) = sm;p lp; for m<n/2 let p (n) be the largest
prime such that A,=u_; and let p(n)=inf p (n) for p belonging to the set of primes occurring
in the factorization. Then p(n)z(n--1)/3 and lim[p(m)/n]=1/3 for n-e,

Problems connected with the factorization into prime factors of the binomial
coefficients, asymptotic estimates, and other topics are treated in the works of P. Erdos [132,
133], P. Erdds and R. Graham [134], P. Erdos, H. Gupta, and S.P. Khare [135], H. Gupta
and S.P. Khare [168], and S.P. Khare [237], among others. Omitting details, we summarize
three of these papers. Khare [135] proves a theorem on the factorization of binomial
coefficients and gives tables of such factorizations for special conditions imposed on n and m.

Included also is a discussion of the case where (;) has m prime factors, e.g., (:) =723,
(‘40) =2-3-57, and so on. In [168] it is shown that (’f) is greater than the product of the

first n primes for 2<n< 1794, and less than this product for n>1794. And [237] gives tables
of factors of n! for n<1000. '
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The factorizations of the binomial coefficients ( ) up through n=>54 are given in the

book of T.M. Green and C.L. Hamberg [162]. Matters related one way or another to this

topic are also cfliscuss'ed in [108, 130, 140, 166, 169, 279].
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CHAPTER 3
DIVISIBILITY AND DISTRIBUTION MODULO p IN GENERALIZED PASCAL

TRIANGLES, AND FIBONACCI, LUCAS, AND OTHER SEQUENCES

n
ma

In this chapter we consider divisibility of generalized binomial coefficients ( ) . We

give the analog of Lucas's Theorem, and prove some theorems on the divisibility by a prime
p of generalized binomial coefficients in a given row of the generalized Pascal triangle of
order s for s=3 and p=2,3. We also discuss the distribution of these coefficients for the
moduli 2 and 3, and the situation for n-e.

Divisibility and distributions for a prime modulus are also considered for Fibonacci,
Lucas, and other sequences, as well as periodicity of these sequences with respect to a prime

modulus.

3.1 DIVISIBILITY AND THE DISTRIBUTION MODULO p OF GENERALIZED

BINOMIAL COEFFICIENTS

In section 1.3 we discussed generalized Pascal triangles of order s, the elements of

which are the generalized binomial coefficients (m) , and considered their recurrence and

other relations analogous to those of the binomial coefficients. Not a great deal of work has
appeared on questions of divisibility and distribution of these coefficients, but we first turn to
the analog of Lucas's Theorem, and some related results, given by R.C. Bollinger and

C.L. Burchard [81].



-106-

Theorem 3.1. Let p be a prime, and n and m nonnegative whole numbers,
Osmsn(s—1) with p-ary representations n=(aza, ,~a,),, m=(bb,,-b,),, where a»0,
O<ay, b, <p. Then

n T (%

where the summation is carried out over all indicies i, for which i,+i,p+i,p*+-+ip'=m,
O<i <(s—1a,.

We note that if the latter two conditions are not satisfied, then (:) = () (mod p). The
authors prove this theorem and give some related examples in [81]. They also discuss the

n
Mg

question of the number N,(n,p) of generalized binomial coefficients ( ) # (0 (mod p) for the
two cases s=p and s=p", where p is a prime.

Theorem 3.2. Let (p—1)n have the p-ary representation (c.C,.;~C,),. Then in the
generalized Pascal triangle of order p, the number of coefficients in row n which are not
divisible by p is

N,(np) = I1 (1+c,). (3.2)

From Theorem 3.2 it also follows that if s=p*, then

Np" (n’p) = Np[n(pv—1)lp—1’p] = Nz[n(pv“.])!p]- G-3)

and, further, that for n—~e almost all coefficients ( ) are divisible by p.

n
m
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Theorem 3.3. Let r be a natural number. Then in row n=p" of the generalized

Pascal triangle of order s, we have

(n] = 1{(mod p), m = ip”, (n) = O(mod p), m = ip™. 3.4
m 8 m g

The proof of this theorem is based on the analog of Lucas's Theorem in polynomial form,
and the result is used in the construction of fractal generalized Pascal triangles.

Theorem 3.4. Let p be a prime. In the multinomial coefficient (n; m,,m,,...,m, ) let

n and m, be written as

_ (@ ® &, &
n = (arar"1 ...a1 ao)P, my = (br br_-‘ b1 bo )P,

where a+0, O<a <p, 0<b®<p. Then

where the summation is over all b® satisfying

b + p® w o  BETN =y,

Unlike the Pascal triangle, in which the rule for forming the binomial coefficients mod
p, and their distribution, depends only on p, the distribution of the generalized binomial
coefficients depends on both p and s. Thus, we will only consider here the-distribution Qf
these coefficients for s=3, p=2,3; the method itself may be used for other values of s and p.

Let p=2. We introduce the following definition.



-108-

Definition 3.1. Let the natural number n be written in binary form. We will say that
n contains a block of type k - denoted by <1>, - if its binary form contains a string of k
consecutive ones which has at least one zero on both the left and the right.

Clearly, any natural number n written in binary form consists of q,>0 blocks of type k
for k=1,2,...,t, where t=t(n). For example, the binary form of n=315837 is
1011001000110111101, which contains q,=3 blocks of type 1, q,=2 of type 2, q;=0 of type
3, and g,=1 of type 4. We note also that the binary forms of distinct natural numbers may
contain identical numbers of the same kinds of blocks.

Theorem 3.5. In the generalized Pascal triangle of order 3, let the row number n be
written in binary form, in which there are g, >0 blocks of type k, 1<k<t. Then the number of

odd trinomial coefficients in row n is given by

P(n) = U U UM, U, = 1[2¥2-(~1)1). (3.5

1
3

The proof of this theorem follows from Theorem 3.4 and the solution of the recurrence
relation U, =U, ,+2U,, with the initial conditions U,=1, U,=3; it is not difficult to show
that the solution is given by the expression for U, in (3.5).

The total number of coefficients in row n is 2n+1, so that the number of even
coefficients is Py(n) =(2n+1)—P,;(n). And, if there are N rows in the generalized Pascal

triangle, there will be a total of (N+1)* coefficients, and the total number of even coefficients

will be given by

N
Qu(n) = (N+1)% - X_; Py(n).
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If we apply the elementary rule defining evenness/oddness to the sums of three ferms
occurring in the recurrence relation for the trinomial coefficients, and write out the triangle,
we will have the distribution of even and odd coefficients in the Pascal triangle of order 3.

. We show this in Figure 26 for N=2°+1=17 rows, where the odd coefficients are denoted by

ones and the even coefficients by dots.

1
111
1@1?1 a

1 1v1v1 i

1 . 1 . 1

Figure 26 Figure 27

Let us denote by A, the isosceles triangle (Figure 27a) whose altitude, measured by
the number of rows from base to vertex ihclusive, is h,=2"; the length of whose base is
d,=2""'—1; and the number of whose base row is n=h,~1=2"—1, r=0.

Also, denote by B, the isosceles trapezoid (Figure 27b) whose altitude is h,=2"";
whose upper and lower bases have lengths d,=2"'+1 and d, =2"+2""—1; and the number of
whose base row is n=2""—1, r>1.

In Figure 26, it is not difficult ‘to see the triangles A,,...,A,, and the trapezoids

B,,...,B..
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For the following theorem, we will need the Fibonacci numbers, which may be
calculated by the known formula of Binet,

|
— ’ !
\ \/g 2 2 \*\
\
R — . e =)
or expressed by means of the binomial coefficients

(3.6)

We note that the Binet formula [392] may be extended to the case of the sequence
{G,}, where

and

Theorem 3.6. Let the row number of the base of the generalized Pascal triangle of

order 3 be n=2"—1. Then for any natural number r, the number of odd trinomial
coefficients in this triangle is given by

Q1 (2?‘_1) = 27’Fr+2.

3.7
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Proof: It follows from Theorem 3.3 that in row n=2"!, which lies inside A_, there are

three odd coefficients: (“) for m=0,2"* 2°. Each of these .gives rise to a triangle A_,, the
mj3

base of which has length 2°*—1-and lies on the row n=2"'+2"2—1. The following row,
27'+2%%, according to Theorem 3.5, has five odd coefficients: for m=0, 272, 214272,
274272, 2°+27", From this, we can establish that the coefficient for m=2"1+2"2 gives rise to
a triangle A, and each pair of coefficients for m=0, 2% and m=2"+2"%, 2°4+2", gives rise
to a trapezoid B, ,. Thus, the triangle A can be written as a "geometric" sum of the triangle
A, with base row 2* —1, four triangles A,,, and two trapezoids B, (Figure 27a). Likewise,
B, is the geometric sum of two trapezoids B.; and two triangles A, (Figure 27b).

If we denote by a, the number of odd coefficients in A, and by b, the number in B,,

we can, on the basis of the arguments given above, write the system of recurrence relations

a, =a,.q +4a,, + 2b 4 3.8)

b, = 2b, ¢ + 2a,,
where r>2 and the initial data is a,=1, a,=4, b, =2, determined by the number of odd
coefficients in Ay, A,, and B,. The solution of (3.8) may be expressed in terms of the
Fibonacci numbers as

a, =2F., b =27F,. 3.9

Substituting (3.9) in (3.8), and using the fact that F.,=F,.,+F,, it is easy to show that (3.9)
1s correct. Thué, Qy=a,=2F_.,, and the proof is complete.
If n=2"—1, then the total number of trinomial coefficients in triangle A, is 2%, and

thus the number of even coefficients, using (3.7), is given by
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Q2 -1) = 2¥-2°F, . (3.-10)

Then, using (3.7) and (3.10) we can show that from some r onward Q,(2°—1)> > Q,(2"—1).
Thus, Q,(2*—1)=128, Q,(2*—1)=128; Q,2"—1)=12032, Q,(2"—1)=4352;
Q,(2"°—1)=1048576, Q,(2'°—1)=147456.

Theorem 3.7. For n~e, lim {Q;(n)/Q,(n)]=0.

Proof: Since Q;(n) and Q,(n) are nondecreasing functions of n, then for

27— 1<n<271—1,

Q)] Qalm) < Q(27-1)/Qx(27-1).

Consequently,

im Qy(n)/Qy(n) < lim Qy(2""1-1)/Qy(2'1).

Using (3.7) and (3.10) we find that
QU2 -1)[ Q1) = 2'F, 4/ (2 -2F,.,)
= 2F, /(@' -F,.,)
< Fo 5l (2"-F,.5)

= 1/((2rlFr+3)—1)'

But for r—~ee, lim 27/F, ,; =, and so

M Qy(m)/ Qyr) < lim Qy(2"-1)/Q,(2"-1) = O,

which proves the theorem.
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We consider now the distribution of the trinomial coefficients in the generalized Pascal
triangle of order 3 with respect to the modulus p=3.

Definition 3.2. Let the natural number n be written in ternary form. We will say that
n contains a 1-block —of type k - denoted by <1>, - if its ternary form contains 2 string of k
consecutive ones which is bounded on the left by at least one zero or one two, and on the
right by at least one zero.

Definition 3.3. With n in ternary form, as above, we will say that n contains a 2~
block of type i - denoted by <2>, - if it contains a string of i consecutive twos, ignoring
imbedded ones, which is bounded on the left and right by at least one zero or by ones.

In connection with definition 3.2, note that strings of consecutive ones which precede
twos are not considered. Thus, in n=(211122), we ignore the three ones, and count what
remains as a block of type <2>,. |

Example: Suppose n in ternary form is n=2012210211202221101221. To count
blocks in n we first exclude ones which precede twos. As a result, we find the block form of

n to be

<n> = <202210220222110221 >,

and say that n contains two <12, blocks, one <1>, block, one <2>, block, three <2>,
blocks, and one <2>, block.

Theorem 3.8. In the generalized Pascal triangle of order 3, let the row number n
when written in te¥‘nary form consist of p,20 blocks <1>,, 1<kxs, and ¢; blocks <2>,

1<i<t. Then in row n the number of trinomial coefficients not divisible by three is
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s t )
Nio) =TT Ve TT W v =85 w, = 3.3 (3.11)
k=1 in1
To prove Theorem 3.8, as in Theorem 3.5 we use the three-dimensional analog of
Lucas's Theorem, and find the expressions for V, and W, as the solutions of the
corresponding recurrence relations.

In Figure 28 we have written out, using the modulus p=3, the rows of the triangle up

through row N=15, in which the coefficients not divisible by three appear as 1's and 2's, and

those divisible by three are represented by dots.

Ay
8y, Ep;
A1 Fpes Y “Tr-s
b
5.,
A N e
[
Br—z Bl"-i" Br-r
Figure 28 Figure 29

Denote by A, the isosceles triangle (Figure 29a) whose height, width of base, and row

number of the base are, respectively,

ho= 1@+, d-9, n=594L r=0.

1
2

o



