CHAPTER 1

THE PASCAL TRIANGLE AND ITS PLANAR AND SPATIAL GENERALIZATIONS

In this chapter we outline some of the history of the Pascal triangie and the binomial
coefficients, and also describe some modern results obtained by mathematicians in recent
decades. We consider, as well, generalized Pascal triangles of s® order, Pascal pyramids and
hyperpyramids, and triangles associated with the Fibonacci, Lucas, and Catalan numbers.
Finally, we discuss generalized binomial coefficients of s* order, multinomial coefficients,

and Gauss-, Fibonacci-, and other analogs of the binomial coefficients.

1.1 THE PASCAL TRIANGLE AND ITS PROPERTIES

One of the most familiar objects in the history of mathematics is the so-called
"arithmetical triangle"”, more commonly known today as the Pascal triangle in honor of the
seventeenth century French mathematician and philosopher Blaise Pascal (1623-1662), who
set forth his results in this area in his Traité du triangle arithmetique [303] (published after
the author's death). Pascal generalized known results, and gave a number of new properties
of the arithmetic triangle, which he formulated in nineteen theorems. [Figure 1 is an example
from Pascal's work.] The various properties of the numbers generated in the arithmetic
triangle were given by Pascal in descriptive form, rather than algebraically, but he made
direct and significant use of the principles he had discovered, e.g., in the method of induction

and the application of the arithmetic triangle to problems in the theory of probability.
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Figure 1

The arithrﬁetic triangle and the additive rules for the formation of its entries were
known in India virtually as we know them today. Its structure was also known to Omar
Khayydm, the Persian mathematician, poet, and philosopher (c.1100). Later, the triangle
appeared in China, and was depicted in a book of Chu Shin-Chien (1303).

In Europe, the arithmetic triangle had been known long before the publication of
Pascal’s work. It appeared, for example, on the title page of a book by A. Apian in 1529,
and was used by many other mathematicians, among them M. Stifel (1544), G. Peletier
(1549). K. Rudolph (1533), N. Tartaglia (1556), J. Cardan (1570), S. Stevin (1585), A.
Girard (1629), W. QOughtred (1631), ané G. Briggs (1633). More on the history of the
Pascal triangle may be found in [17, 28, 31, 44, 50, 89, 90, 122, 141, 147, 241, 257, 265,

291, 292, 320, 379]. 5




The familiar form of the table,

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252
was published more than a century before Pascal's treatise in a work of the outstanding Italian
mathematician Nicolo Tartaglia (1556). Subsequent investigations on the Pascal triangle and
the binomial coefficients, and their connection with the origins and development of
combinatorial analysis are connected with the names of Leibnitz, Bernoulli, Euler, Lucas,
Legendre, and other prominent eighteenth- and nineteenth-century mathematicians.

Interest in the Pascal triangle has not diminished even up to the present, which
accounts for the discovery of new and often unexpected properties related to divisibility and
the distribution of the triangle's elements modulo a prime p, the construction and study of its
fractals and graphs, and its application to important practical problems. We also depend on
the triangle for a model in considering new types of arithmetic triangles, and rectangular,
pyramidal, and other arithmetic tables.

The Pascal triangle is often presented in the form of an isosceles triangle whose sides
are bordered by ones (Figure 2), and such that the remaining elements are the sums of the
two entries just above to the left and right. Tﬁe line numbered n consists of the coefficients

in the binomial expansion of (1+x)". These coefficients are denoted in various ways in the



literature, but here we will use the notation ( ), introduced as far back as Euler's time,

n
m

and/or the notation C?, which appeared in the nineteenth century.

Figure 2

The Pascal triangle may also be presented in right triangular form, as for instance,

a b
1 1
1 1 1 1
1 2 1 1 2 1
1 3 3 1 1 3 3 1

c d
1 1 1 1 1 1 1 1

e T T T
\/4 1 2 3 /r-w %M B /3//*

1 3 3 1 :




Most common is the form

0 1

1 1 I

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

Results on the properties of the Pascal triangle, including some questions of divisibility, may
be found in Uspensky [50], in the literature on combinatorial analysis and number theory
[4, 17, 21, 40, 41, 44, 45, 52, 54, 141, 255, 300, 316], and in mathematical reference
books. The most complete description of the numerous elementary properties of the Pascal
triangle is that of Green and Hamberg [162], with its many tables, figures, and diagrams, and
interesting problems for independent study. Included, for example, is a table of prime factors
of the binomial coefficients up through the 54® row of the triangie.

We should also mention some results connected with direct applications of the Pascal
triangle. T.M. Green [161] considered recurrent sequences connected with the triangle in the

following way. Let the vertex of the triangle coincide with the origin of the usual coordinate
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system, and its elements with the lattice points of the first quadrant. This establishes a

relation between the lattice points (x,y) and the elements of the Pascal triangle:

where n=x+y, r=y. Then, any set of parallel diagonals of the triangle having rational
slopes gives rise to a recurrent sequence, the elements of which are sums of the triangle
elements lying on the corresponding diagonals. That is, comparison of successive diagonals
with the straight lines ax+by=n, where k=-a/b is the given slope, n=0,1,2,..., and

a,b=1,2,..., leads to the sequence T, T,, T,, ... satisfying the relation

where T, is the sum of the numbers on the n* diagonal. The case a=2, b=1 gives the
Fibonacci sequence.

In a series of works, the Pascal triangle has also been directly employed in problems
involving the expansion of functions. Thus, M. Bicknell [71], using the column elements of
the triangle, found an expansion for an exponential generating function; the result is used to
construct the series expansion for some specific functions.

D.C. Duncan [126] showed that the n* diagonal of the isosceles Pascal triangle gives
the coefficients in the McLaurin series expansion of (1-x)™ for all positive n and | x| <1.
This expansion was also obtained in the work of A.R. Pargeter [302]. We also note that this
interesting expansion allows us to find with any degree of precision the value of (1+x)™ for

x <1 and n a positive integer.
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Power series with coefficients situated in the vertical columns of the isosceles Pascal
triangle are considered in the work of A.A. Fletcher [142]. The general expression of these

expansions has the form

S =1 sppsTH2 L2, [T+ x3+___+[2n+r—2 2
d 2 3 n

It can be shown that S, satisfies the recurrence relation

1
== (s
ol

T

+1 _S), T22,

r+2 T,

where §, is the series corresponding to the central vertical column with elements (2:),
n=1,2,..., which are the coefficients in the expansion of (1-4x)™ for x < %.
L.K. Jones [230] estimated the magnitude of the sums of the :reciprocéls of the

elements of the Pascal triangle. For the n® row, if we write
n a2\
a, = E (k) ’

k=0

1
he established an upper estimate of the form 2+O(n), and a Iower estimate of 2; 210 (‘; )

consequently, lim a =2. He also proved that for the k™ diagonal,

—~ (n\" _ %k
E(k) k1

In the work of A.R. Turguette {380, 381] the Pascal triangle is used in the study of

Post sets and the solution of problems of many-valued logic.
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Others have employed the Pascal triangle in the solution of various problems. Thus,
D.A. Holton [214] showed that the dimensions of stable orbits are the coefficients in the
polynomial [1+(r-1)x]", where in the case of the n-dimensional cube r=2, and the orbit
dimensions are found in the I;ascal triangle. In the work of H. Gorenflo [153], it is used to
obtain the lifting force of pulley blocks. R.L. Morton [288] suggested a simple method of
obtaining certain powers of 11 with the aid of the rows of the triangle. J. Wlodarski [395]
showed that certain multiples of the elements of the triangle are related to two well-known
numerical sequences in nuclear physics. G. Hoyer [226] suggested ways of deriving various
formulas and relations among the binomial coefficients directly from the Pascal triangle,
C.W. Trigg [378] considered properties of the sequence of elements of the fifth column of the
triangle, as for example the length of the period of the sequence of low order digits, the sums
of the digits, and so on.

In references [63, 76, 97, 110, 170, 193, 229, 242, 263, 294, 329] are discussions of
elementary properties of the Pascal triangle, alternate versions of its development, and
geometric interpretations.

The numbers of Fibonacci, Lucas, Catalan, Fermat, Stirling, and others may be
derived and investigated by making use of the Pascal triangle directly [96, 112, 184, 192,

295, 298, 321, 327-329, 337, 394, 396].
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1.2 BINOMIAL COEFFICIENTS AND THEIR GENERALIZATIONS

As we know, the elements of the Pascal triangle are the binomial coefficients, which
were already known before the appearance of the Pascal triangle. However, Pascal was the
first to define and to apply them [303]. Some references on the history of the binomial
coefficients and the binomial theorem are [17, 36, 40, 41, 44, 50, 111, 122, 141, 241, 242,
268, 292].

The binomial coefficients are the simplest combinatorial objects, being defined as the
number of distinct combinations of m elements out of n. They may be obtained from the

generating function as the coefficients in the expansion of the expression

s =3 () gm (1.1
(1 + %) % (m)x ,
where

(n) = --———n!—~—, n=012,.,msn.

m ml (n-m)!

The binomial coefficients satisfy the recurrence relation
n+1 - R + |7 , 0 =1, (1.2)
m m~1 m; \0O
as well as the simple equalities
o)== ()L
0 n ©o\m n-m)’

> (r]-2 3 cr(r]-o

m=0

(1.3)
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Hundreds of identities and relations among the binomial coefficients have been established;
many of these may be found in [4, 21, 29, 42, 46, 52, 158, 233, 248, 292]. The greatest
numbers of identities are collected in the books of J. Riordan [42], B.N. Sachkov [46], H.W.
Gould [158], and E. Netto [292]. In recent decades, new relations among the binomial
coefficient have also been obtained, some of which we mention below.

M. Boscarol [88] obtained for nonnegative integers m and n the relation
(nﬂ’) (m+n—h]
m A R
¥ AL AN R

H. Scheid [338] proved that the number of distinct prime factors of the binomial

n
m

coefficient ( ) 1 not less than (m log 2)/(log 2m) for 2<2m<n.

S.M. Tanny and M. Zuker [371] studied the sequence of binomial coefficients of the

form (“;’) for n=0, O<r<[n/2}], and pointed out its importance for many combinatorial

problems.

G. Zirkel [405] discussed a method for numerically approximating the binomial
coefficients with the help of a table of areas under the normal curve approximating the
corresponding binomial distribution.

In [376], C.A. Tovey discussed the problem of the existence of infinite sets of natural

numbers N, each element of which is equal to t distinct binomial coefficients ( ), where

n
m




-11-

T
n=0,1,2,..., and 1<m<[n/2]. He showed that for t=2, the least such value is the number

120, which equals (1;’) and (126), the number 210, which equals ( °) and (221), would also be

1
4

in this set. The number 3003, for example, has three representations: (14), (15 ), (78)

5 2/

t=2, this problem is solved, i.e., it is known that there are infinitely many natural numbers
e ::::——r:’f

\
|
|
|
|
|

N which have two representations as binomial coefficients. /

G.H. Weiss and M. Dishon [391] proved that in the expansion

—;— {1 ~u - v -1 -2(u+v)+(u~v)2] = i C,, uv’

r=1 s=1

the values of the C,, may be expressed in terms of binomial coefficients:

Cop = (r4s-1)" (’*H) [r+s~1 ]

r Y

Various other new properties appear in references [49, 56, 91, 118, 128, 163, 183,
358, 393]. The binomial coefficients and their various identities and relations play a major
role in the solution of many problems in mathematics, mechanics, and physics. They also

serve as a model for various generalized binomial coefficients. Two of these, the generalized

binomial coefficients of s™ order, (") , and the multinomial coefficients, (n; n,, n,, ..., n.),
m

5

will be discussed in detail in sections 1.3 and 1.4 of the present chapter; a few other

generalizations we mention below.

S.W. Golomb [151] introduced the so-called "iterated binomiafcoefﬁcients" by the

scheme
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o
(@) = ag (ag; ap) = [Z‘]: (a5 a5 ag) = |V, L.,

2 ay
@; ag ~; a5 @) = ((ay; ag -~ Gyq)s @)

For these iterated binomial coefficients, for specified values k and a;, i = 1,2,. ...k, the
author establishes various identities, inequalities, transformation formulas, and asymptotic and
other formulas and relations.

M. Sved [366] introduced a different kind of generalized binomial coefficient as

follows. Let S = [a,, a,, ..., a,] be a set of n distinct elements. The "sequence"”

A =a™ a™ - a®™ is formed from the elements of S taken with multiplicities

(m,,m,,...,m,), and the degree of A is the number {m|=m, + m, + ~ + m_. If we take the

I

o

“subsequence” B = al(k‘) af") - a% where Os<k;<m, to be a subsequence of A, then the

generalized binomial coefficient G,*(m) is the number of such subsequences B of A (G (m) =0
for r<0 and r>n). In elementary number theory the introduction of these coefficients has
the following meaning. Froﬁa the factorization of a natural numbc:;r into its prime factors we
form a sequence, starting with the set of distinct prime divisors, and the degree of the
sequence is the sum of the divisors occurring in the factorization. Then G2(m) enumerates
the set of all divisors of fixed degree; this generalizes a known property of the binomial
coefficients to the coefficients G*(m).

The Gaussian binomial coefficients, also known as the g-binomial coefficients are

defined [48] by:
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mn n-k+1 _
"] “TT 51, o<men (1.5)
My B g¥-1

= 0, m<0, m>n, (1.6)

where m,n are nonnegative integers and q is a real number. We know that the g-binomial

coefficients occur in the expansion

1
q-é-m(m—ﬂxm (1-7)

n n

II (1+q"x) = [n
m=1 m=0

from which it follows that the g-binomial coefficient is itself a polynomial in ¢, which for

q~1 reduces to the ordinary binomial coefficient. These coefficients satisfy the recurrence

n+l| _in n nemed R (1.8)
m L ~iml, ¥ [m—'!L q ' [OL =1

m

In [315] G. Polya and G.L. Alexanderson discuss various combinatorial interpretations
and properties of the g-binomial coefficients, and construct their multinomial analogs.

M. Sved in [367] discusses known and new properties of the g-binomial coefficients,
including their geometric significance, and gives for q=2,3,4,5 the triangular tables of these
coefficients analogous to the Pascal triangle. Equations (1.5)-(1.8) summarize the basic
relations for the g-binomial coefficients; these and others are to be compared with the
corresponding formulas for ordinary binomial coefficients.

L. Carlitz [101] generalized various theorems for the g-binomial coefficients to the

multinomial case. R.D. Fray [143] and F.T. Howard [224] studied the question of the
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divisibility of the g-binomials by prime divisors; we will take up divisibility questions at
length in the next chapter.
Another generalization of the binomial coefficients is given by the so-called

Fibonomial coefficients [57],

((n)) FFn 17 -5, n-m+1 (1.9)
m))F F, mF m-1 ~F 1
where the F, are the Fibonacci numbers [20], n and m are nonnegative integers, and

([S]L ) ((ZDF =1 for all n=0,1,2,....

In [57] G.L. Alexanderson and L.F. Klosinski also introduce the Gaussian Fibonomial

coefficients

n
k

| o) ey (L10
b)) - (57-1)

where n,k are nonnegative integers, and
n

el -

These Gaussian Fibonomials satisfy a recurrence relation which for x~1 includes that of the

n

0

=1, n=0,1,2,....

F

Fibonomial coefficients, and similarly for other relations. They also examine the case of a

more general Fibonacci sequence

gn+2 = pgn+1 + qgn: nzol (1'11)
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where g,=0, g,;=1, and p and q are arbitrary.
Other analogs and generalizations of the binomial coefficients will be discussed in 1.4

and 1.5, along with the corresponding analogs of the Pascal triangle.

1.3 GENERALIZED PASCAL TRIANGLES AND

GENERALIZED BINOMIAL COEFFICIENTS

The generalized Pascal triangle of s™ order is the table of coefficients of powers of x
in the expansion
{s-1)n

(1+xrxZraxs) = ¥ [n) x™ 8522, (1.12)
m 5

m=0
The coefficients (;) are known as the generalized binomial coefficients of order s.

For s=2, they become the ordinary binomial coefficients, (“) = (“), and the corresponding
2 m

m

triangular table is the Pascal triangle. (We note that some aunthors speak of triangles of
"kind" s rather than triangle of "order" s.) In the literature, the generalized Pascal triangle is
sometimes referred to as the s-arithmetic triangle.

The generalized Pascal triangle of order s may be written, as is the Pascal triangle, in
the form of a right triangle or an isosceles triangle. For example, we give the generalized

Pascal triangles of order 3 and 4 in right triangle form:
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1 2 3 4 5 6 7

1 1

2 3 2 1

3 6 7 6 3 1

4 10 16 19 16 10 4

2 3 4 5 6 7 8 9 10 11 12
1 1

3 4 3 2 1

6 10 12 12 10 6 3 1

10 20 31 40 44 40 31 20 10 4 1

Figure 3a
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In isosceles form, these are:

1
1 1 1
1 2 3 2 1

1 3 67 6 31

1 4 10 16 19 16 10 4 1

1 2 3 4 3 2 1
1 3 6 1012 12 10 6 3 1

I 4 10 20 31 40 44 40 31 20 10 4 1

Figure 3b

In the first triangle (s=3) of Fig. 3a every element is equal to the sum of three
elements in the preceding row: the number just above and its two neighbors to the left. In
the zero-th column, all elements are ones, and we assume any missing elements to the left are
zeros. Similarly, in the second triangle (s=4) each element is the sum of four elements in
the preceding row: the number just above and its three neighbors to the left. In like fashion
we fill in the rows of the generalized Pascal triangle of any order.

Dozens of papers have been devoted to the properties and applications of the

generalized Pascal triangle and generalized binomial coefficients of order s. We will give
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some of these references after we list some of the basic properties of the generalized binomial

coefficients of order s.

n
mfg

The generalized binomial coefficient ( ) is the number of different ways of

distributing m objects among n cells where each cell may contain at most s-1 objects.

We also note the recurrence relation for the generalized binomial coefficients:

) R () (n) 1.13
()3 el ) -

For s=2, this coincides with the recurrence relation (1.2) for the ordinary binomial
coefficients. The generalized binomial coefficients satisfy many equalities, identities, and

other relations analogous to those for the binomial coefficients. For example,

R R v

(sij%n (n) o c;‘::{): (1}" (:JS _ {O,S=2t

Mmjs 1,5=2t+1.

The relation among the generalized binomial coefficients in successive triangles has

the form:

n = (n k
= , where s>2,
(m).sw-'[ g (k} (m“k)s o=

and (k) _ 0 for k<™,
m-kj, s

(1.15)

! (1.14)
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The generalized binomial coefficient of order s may be expressed in terms of the

binomial coefficients as:

k n-1

Qo) o

We introduce for the multinomial coefficient the notation

n!
(n—m1)! (m1 _mz)l e (ms_1 _ms_z)! ms__.-l !

(n;m1,ni2,...,ms_1) =

in place of the usual (n; n,, n,, ..., n,); more detail will appear in section 1.6. Then it is true

that

(n) =y (mmy,my, .m_4), (1.17)

where n20, O<m<(s-1)n, $=3, and the summation is over all m, such that
m1+m2+“‘+ms_1:m, mkSIIlk_l.

Let C_ = SEIP (;) . Then for any n and s>2, the correct asymptotic formula is

lim c ﬁ _ e _ (1.18)
Sﬂ

The derivation of (1.13)-(1.18) is fairly straightforward and is omitted here.
In the Pascal triangle of order s, denote by N, , the number of generalized binomial
coefficients in the row numbered n, and by Q,, the total number of coefficients in the triangle

up to and including row n; then
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N,, = ns-1)+1, Q,, = Jz—(n+‘i)[(s—1)n+2]. (1.19)

For s=2, N, ,=n+1, and Q,, = %(a+1)(n+2).
The generalized binomial coefficients have other interesting properties, as well; in
succeeding chapters we will consider their divisibility properties, and the construction of their
fractals and graphs. The applications of these triangles and coefficients in various
mathematical contexts originated in the 1950's, and below we list in chronological order some
works which were fundamental in this period and up to the present.
In considering these works, we must emphasize the original articles of J.E. Freund
[144], and J.E. Freund and A.N. Pozner [145], in which they construct the generalized
Pascal triangle, set forth the recurrence (and other) relations for the generalized binomial
coefficients (which they denote by N, (r,k)), and apply the results to some occupancy
problems. J.D. Bankier [64] also used the results of [144] to find the coefficients in the
expansion of (x*-x)(1+x-+x3*.
V.E. Hoggatt and M. Bicknell [200,203] obtained difference relations and derived
formulas for the sums of the elements in the generalized Pascal triangle which lie on the
diagonals. A.K. Gupta in [164] explicitly expressed generalized binomial coefficients of
arbitrary order by means of binomial coefficients. J.M. Deshouillers [117] derived
asymptotic formulas for the generalized binomial coefficients, with integral estimates of their
increase with increasing n.

V.E. Hoggatt and G.L. Alexanderson [197] worked out a method for determining

partial sums of generalized binomial coefficients:
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N
S(ns,qr) =Y ( n ) , N=[—(S_1 )n—r].
i=0 \T*ig /g q

In the special cases s=2, q=3,4,5,8; s=3, q=5, the expressions fé1j the sums take the form
of simple formulas involving the Lucas numbers, or the Pell-Lucas numbers, or their powers.
These partial sums are also considered, for s=2,3,4,6, in C. Smith and V.E. Hoggatt [354-
356].

T.B. Kirkpatrick [239] took the ascending diagonals of the generalized Pascal triangle
to be the lines of a ﬁew triangle; iterating this operation R times, he obtains the additive

triangle of order s and "degree” R. He then shows that if the diagonal sums of the elements

of this triangle form the sequence {T;}7, this sequence has the recurrence relation

Tyeg-tiret = Iy * Tyup + Tyupp + =+ + Tye-1)r>

where k22, Rz1, and T,=T,=--=Ty,,=1.

In [78-80], R.C. Bollinger considers a number of properties of generalized Pascal
triangles (there called Pascal-T triangles) and their coefficients. In [78] he constructs
{modified) Fibonacci sequences of order k and uses them to solve various enumeration
problems, which he calls "k-in-a-row" problems. In [79] the connection between the
generalized binomial coefficients and the multinomials is found to have the form

C (nk) = n ,
NEED
where the sum is taken over all n,,n,,...,n,, satisfying n,+n,+--+n_=m and

On;+1n,+-+(m-1)n,=k. Also given is the recurrence relation



22

n

c,n®) =Y (") C, . (. k). (1.20)
=0 \J
In [80] Bollinger generalized the Mann-Shanks primality condition [274] for a natural
ww Mann and Shanks gave this novel criterion in terms of the
displaced entries of the Pascal triangle as follows. Each row of the Pascal triangle is
displaced successively two places to the right, so that the n+1 entries in row n occupy
columns m=2n to m=3n. Also, we underline the entries in row n which are divisible by n.
Then the criterion is: column number m is a prime if and only if all the entries in column m

are underlined. The table below shows how this works for the Pascal triangle (the triangle of

order 2).

0 3 2% 3% 4 5% 6 T* 8 g 10 11 12 13* 14 15 16 17*
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Using (1.20) and a theorem of G. Ricci [322], Bollinger in [80] shows that if the same
'displacements are applied to the generalized Pascal triangle of order three (so that the 2n+1
elements in row n occupy columns m=2n to m=4n), and the entries are underlined in the

same way, then it is again true that the column number m is a prime if and only if all the
entries in column m are underlined. The table below shows how this works for the triangle
of order three. He also conjectured that the criterion is true for the generalized Pascal

triangle of any order.

. g 6 1 2 3 4 5 6 T 3 9 10 11* 12 13* 14 15 16 17*
of 1
1 1 1 1
2 1 2 3 2 1
3 13 6 7 & 3 1
4 1 4 10 16 1% 16 10 4 1
5 1 5 15 30 45 51 45 30
6 1 6 21 50 S0 126
7 1 7 28 17
8 1 8

R.C. Bollinger and C.L. Burchard in [81] showed there is, for the generalized

binomial coefficients, an analog of Lucas's Theorem for the binomial coefficients, namely,
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r

C,mk) = Y I C.lnss)(mod p),
(spr-ws;)  i=0
where p is a prime, n = (0.,~00,),, k = (kk,kiko),, 0<m;<p, Oslq<§, 0<k<(m-1)n, and
the summation is over all s; for which s,+s,p+-+sp =k, Ossis(m;l)n. If we denote by
N,(n,p) the number of generalized binomial coefficients for which C_(n,k)=0 (mod p) and
apply the extended Lucas's Theorem, the authors found exact formulas for N_(n,p) in the

cases m=p and m=p’. Let (p-I)n = (aa,,~a,a,),; then

N, (mp) = (1+a9)(1+a))~(1+a),

N, (np") = N,(n(p*-1)/(p-1),p).

They also established, for the generalized Pascal triangle of order p, that for large n "almost
all" coefficients C,(n,k) are divisible by p.

Other questions connected with the application of the generalized binomial coefficients
and generalized Pascal triangle of order s are discussed in [119, 154, 164, 212, 231, 232,

243, 287, 308, 314, 357].
1.4 LUCAS, FIBONACCI, CATALAN, AND OTHER ARITHMETIC TRIANGLES

In sections 1.1 and 1.3 we discussed Pascal triangles and generalized Pascal triangles
of order s. We now turn our attention to the construction and application of other forms of
arithmetic triangles: the triangles associated with the names of Lucas, Fibonacci, Catalan,

Stirling, and others.
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M. Feinberg [138] constructed the arithmetic triangle whose elements are the
coefficients in the-expansion of (a+2b)(a+b)™; the result is what might be called the Lucas
triangle, in which the sums of the elements on the ascending diagonals give the sequence of
Lucas numbers 1,3,4,7,11,18,29,....

The Lucas triangle and its properties were studied in detail by H.W. Gould and W.E.

Greig [160]. In this triangle (nine rows of which are shown below), the elements satisfy

. ‘ 0 1 2 3 4 5 6 7 8 9
1 1 2
""" 2 1 3 2
..... Sr )’?j j‘j
3 1 4 5 2
4 1 5 9 7 2
5 1 6 14 16 9 2
6 1 7 20 30 25 11 2
7 1 8 27 50 55 36 13 2
8 1 9 35 77 105 91 49 15 2
9 1 10 44 112 182 196 140 64 17 2
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the recurrence relation

An+1,k) = A(nk) + A(n,k-1), (1.21)

with initial conditions A(L,0y = 1, A(1,1) = 2, and A(n,k) = 0 for k<O or k>n. The

relation between the numbers A(n,k) and the binomial coefficients is

A(nf) = (Z] . (Z:; ] (1.22)

There are also four criteria given, the proofs being based on the properties of the Lucas
triangle and its elements, for deciding whether a given natural number d=z2 is a prime.

V.E. Hoggatt [194] constructed a new triangle from the Lucas triangle by shifting the
i column down k places (k=1,2,3,...), and derived various results, including the Lucas
numbers, for the elements of this triangle.

H. Hosoya [216] constructed the arithmetic triangle (Figure 4) for the numbers {f_}

satisfying the equations

fm.n = fm—‘l.n + fm—E,n
(1.23)

fm,n_ =fm—1,n-‘i +fm—2,n—2 ’ m22, mznz0

with initial conditions f,, = f;, = f;, = f,, = 1. He showed that f_ = ff

nonen

(m=n=20),
where f, is the n* Fibonacci number, and called the resulting triangle a Fibonacci triangle.
He studied the topological properties of its graph, obtained using the triangle, and applied the

results to the classification of chemical formulas.
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Figure 4

J. Turner [382] suggested and studied what he called the Fibonacci-T triangle.

J. S4na in [335] considered a sequence {g. .} like that of Hosoya [216],

i

gm,n

o
Sm-1,n * gm—Z,n

(1.24)

gm,n = gm—1,n—1 + gm-—2,n—2’ m22’ mznzO

with initial conditions g4,=2, g,,=1, g,,=1, g,,;=2, and constructed the arithmetic triangle
in Figure 5, which he called a Lucas triangle. It has properties analogous to those obtained
in [216]; some of these are investigated, and also the graph equivalent to the Lucas triangle is

constructed.
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11 8 9 9 8 11
18 13 15 14 15 13 18

29 21 24 23 23 24 21 29
Figure 5

The elements of these Fibonacci and Lucas triangles have a recurrence relation of the form
(1.23) or (1.24), in which each element is the sum of two preceding elements on an ascending
or descending diagonal. Other relevant references here are [11, 138, 207].

M. Sved [367] also discussed the arithmetic triangle whose elements are the Gaussian

binomial coefficients [ﬂ . and obtained the Gaussian triangles for q = 2,3,4,5.
q

L.W. Shapiro [342] constructed the arithmetic triangle whose elements are the

numbers B, satisfying the recurrence relation

By = By + 2Bn—1.k R e S

with the conditions B, ;=1, B, =0, B,.=0, m>n+1. The first several rows are shown

below.
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X
\\\\\\\ 1 2 3 4 5 6
n
1 1
2 2 i
3 5 4 1
4l 14 14 6 1
s| a4 48 27 8 1
61 132 165 110 44 10 1

The sequence of numbers {C,} = {1,2,5,14,42,132,...} in the first column are the Catalan

2n

n

numbers C = nLﬂ ( ) It is not difficult to show that the solution of the recurrence relation

is B =£(§y;mdﬁnk:L

n.k o\n

B, =C, = 1 ( 2n) _ 1 (2n)_ (1.25)
n

n-1 n+l \ n

The article also shows that the B, , may be expressed as a sum of products of Catalan

numbers by means of the formula B , = E C C]: -C,, where the summation is over values

for which i,+i,+--+i,=n. As a result, each element of the Catalan triangle may be
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expressed in terms of the Catalan numbers; the name arises because of this connection.
Various properties of the Catalan triangle, analogous to those of the Pascal triangle, are also
discussed.

D.G. Rogers [328] studied questions connected with renéwal sequences which led to
various generalized Pascal and Catalan triangles. These are connected with the introduction

of the generalized Catalan sequence {C,(n)}, where

) = — ((t+1)n),n20, £>0. (1.26)
4

For t=1, we have C,(n) =C,, the Catalan numbers. The introduced sequence and the related
generalized Catalan triangle are applied in the solution of some combinatorial problems.
A number of authors have constructed arithmetic triangles by choosing as their

elements the numbers which satisfy a recurrence relation of the form

fin+1,m) = p(n,m) f(n,m-1) + q{n,m)f(nm) .27

with appropriate coefficients p, q and initial conditions.
C. Cadogan [98] considered the case of this equation where p, q € R and with initial
conditions f(0,k) = d, € R; he found then,
n
fk) =Y (n) p"™ g™ f(0,n-m). (1.28)
m=0 m
By choosing as the values of the d, the cases: d,=1, d,=0 (k=0); .doma, d;=d, d,=0
(k#0,-1); d, = a(m-1)*, k<0 (d, =0, k>0), the author constructs the corresponding Pascal

triangle, a triangle with elements which form an arithmetic progression, and a triangle with
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elements which form a geometric progression. The results are also generalized to the three-
dimensional case.

In [240] M. Klika considered (1.27) for integer-valued functions p(m), q(n) and initial
conditions £(0,0)=1, f(i,j)=0 for i<j, j <0, where 1,j are nonnegative whole numbers, and
constructed the corresponding generalized Pascal triangle P(p,q). For p=q=1 we get the
Pascal triangle itself, and for p=m+1, q=1 the triangle whose elements are the Stirling
numbers of the second kind; the author also discusses the triangle P(p,q) for various other
conditions. In [227], S.K. Janardan and K.G. Janardan also investigate this kind of Stirling
triangle.

H. Ouellette and G. Bennett [301] considered the triangle whose elements are the
absolute values of the Stirling numbers of the first kind.

In a dissertation [24] V.N. Dokina studied the special cases of (1.27) consisting of:
p=1L,q=u,; p=1, ¢=p,: p=1, g=p,+p,, and initial conditions equal to unity. He formed
the corresponding triangles consisting of generalized Stirling numbers of the first and second
kind, and Lah numbers. He also extended the discussion to the case when p(n,m) and q{n,m)
are not merely numerical, but are operators operating on a linear space of polynomials in t
with real coefficients. In these cases the elements of the generalized Pascal triangle are
functions of t. The results are applied to various probability problems, problems connected
with population growth, and others.

V.L. Jannelli [228] constructed and studied the triangle formed from the coefficients
in the éxpansion of (x+a)(x+a,)-(x+a,). Fora, =0, a,=1, ..., a,=-(n-1) the author arrives
at the triangle of Stirling numbers of the first kind; other cases, when a, =k, are discussed in

[120, 133].
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In [333], M. Rumney and E.J. Primrose studied the triangle whose rows are the

coefficients in the expansions of 1, 1+x, (1+x)(2+x), (1+x)(2+x)(3+X),...; a portion of

this triangle is:
m
0 1 2 3 4 5
n
0 1 |
s
). 1 1 1 f' >
.77 ¥ J/_i.{ ; (
b 2 2 3 1 6 Al b
' 5
L 1y 3° 9% 19
L1 3 6 11 6 1
70 4| 2% 50 35 10 1
5 120 274 225 85 15 1
The elements, denoted by e, satisfy the recurrence
en+1,m = en,m-'l * (n+1)en,m! (1.29)

which gives a simple rule for forming the triangle. It is also not difficult to show that

/ o €pm = (m+1)}, )
m=0 i

and other relations are given. The authors also study in great generality the triangle

composed of the numbers in the harmonic series.
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C.W. Puritz [318] generalized the binomial coefficient (:) to the case of n negative,
using the notation C(n,m). He used the arithmetic and symmetry properties of the recurrence

C{nm) = Cin+1,m) - C(n,m-1)

and found that

Clenym) = (-1)" ("*';‘1 )

writing out a portion of the complementary Pascal triangle as below.

-4 1 -4 10 -20 35
-3 1 -3 6 -10 15
-2 1 -2 3 -4 5
-1 1 -1 1 -1 1
0 1 0 0 0 0
1 1 1 0 0 0
2 1 2 1 0 0
3 1 3 3 1 0
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Other variants of the Pascal triangle, in which the elements come from the coefficients

in the expansion of

(a=b){atb)(a=xb) - {ax(-1)"D),
were considered by P. Sahmel [334]. For n=2m and n=2m+1, we obtain the corresponding

expansions of (a>b%)" and (axb)(a®-b%)™.

a a a+b b
a a 2a+b a+b b
a a 3a+bh 2a+d a+2b b

a a 4a+b 3a+b 3a+3b a+Zb b
Figure 6

H.W. Gould [156] constructed and studied the Pascal triangle (Fig. 6) in which the

elements are defined by the recurrence relation

m m

CTH-'I - (:"«1 + J_+_(2_j)f: C’::, nz"l, mz(}, (1.30)

and the conditions

cd=¢Cj =a C] =b, C* =0 for m>n, m<0,
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The cases a=b=1 and a=1, b=2 are studied in detail. The coefficients are denoted by A"

in the first case and by B? in the second, m=0,1,2,...,n. Using (1.30), the following values

are calculated for n=0,1,2,....

n ""k n —k'—-{ n

Az = (nk ],Azm =(" k )’AO i 1’A11 -

Br = M n—k' " - _n1 "‘k"1,3".—,1,31=2_
2% n—k( k ) T k-1 | & !

The A” and B2 can be used to express the Fibonacci and Lucas numbers as

F,=2 AlandL_ =X B® for n>0. It should be noted that
m={}

Y C, = aF,,, + bF,, n>0,

m=0

Y (-)" C, = aF,_, + bF, 4, nz1.
m=0

In [77] M.B. Boisen considers two tables A and B,

Ay
833 d34
dp dp3 Ay
dyy dyp dy3 Ay
[
b2 by,
Dys by by

b14 b24 b34 b44



36-

where the a's and b's are integers, and defines the superposition of A on B, which then

generates the sequence C = {c, ¢,, ...} with elements of general form

—

£
2] -k

(1.31)
& - Qr s By g
k=0 fak+d
With the sequence {c;} defined he takes the following approach. Let
Px) = ay + agx + - + ayx
and let G,(x) be the generating function of the k™ column of table B, k=0,1,2,.... Then

2 P(x)G(x) is the generating function of {¢}. Several examples are considered in which A
i=0 )

and B are chosen to be the Pascal triangle or its generalizations; in one of these, for example,
the sequence {c;} tumns out to be the Fibonacci sequence.

C.K. Wong and T.W. Maddocks [399] studied the numbers M, , satisfying the

recurrence relation

Mk+1,r+1 = Mk+1,r + Mk,r+1 + Mk.r (1_32)

with initial conditions My, = M,, = M,, = 1. The numbers M, ,, for which the condition

M, = M, clearly holds, constitute an analog of the Pascal triangle (Fig. 7).
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Figure 7

In this triangle, k is the number of the line parallel to the right side of the triangle,
k=0,1,2,..., and r is the number of the line parallel to the left side of the triangle,
""" r=(0,1,2,.... If we introduce the number of the line parallel to the base of the triangle and
denote it by n=0,1,2,..., then the law of formation of the elements is simple: any value in
----- the 0™ row is the sum of the two elements above in the (n-1)" row and the element directly
above in the (n-2)™ row. Thus, 41 is the sum 9+25+7. The author also shows that the
sums of the elements on the ascending diagonals form the "Tribonacci” numbers, 1, 1, 2, 4,
7, 13,24, 44, ...

M. Bicknell-Johnson in [73] writes on the Leibnitz harmonic triangle (Fig. 8), whose
diagonals are the products of the reciprocals of the n® row elements by the reciprocals of the

row numbers (assumed to begin with one) in the Pascal triangle. The sums of the row

elements, and of the ascending diagonal elements are found.
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e L N S
1 2 3 4 5 6
1 1 1 1 1
2 6 12 20 30
1 1 1 1
3 12 30 60
1 1 1
4 20 60
1 1
5 30
1
6
Figure 8

D. Logothetti [259] formed a new, truncated triangle (Fig. 9) (without a vertex) by

taking groups of four elements at the vertices of a thombus in the Pascal triangle and forming - )

the numbers
o = (3)+ (7]« (3) - (7

where n=1,2,3,..., k=0,1,2,...,n.
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Figure 9

Although there is no symmetry, the triangle and its elements have interesting properties, as,
c.2.,

I(nk) = I(n-1,k-1) + I(n-1,k),

n h

Y IR = 3.2, Y (-1 I(mb) = O,

k=0 k=0

R

Ex+)E+ 1) = ¥ Ik xmE,

k=0

The truncated triangle of Fig. 9 may be considered as a special case of a more general

triangle (Fig. 10).
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a 2a+1 a+2 1
a 3a+1 3a+3 a+3 1

a 4a+1 6a+d4 4at+6 a+4 1

Figure 10

Here, the elements G(n,k) are the coefficients of x™* in the expansion of (ax+1)(x-+1)*!, and
satisfy the recurrence G(n,k) = G(n-1,k-1) + G(n-1,k), G(n,0)=a, G(n,n)=1.

H. Harborth [173] considered triangies composed of plus and minus signs, to every
pair of which is assigned a (+) or a (-) sign according to Pascal's rule. Such a triangle for a
given n contains N = 4n(n+1) signs and we assign for that n the signs in the first row. His
results solve the Steinhaus problem [53] on the existence of numbers n, where n = 0,3 (mod 4),
for which the generated triangle has plus signs as half of its elements. For example, for
n=11 Figure 11 shows such a triangle, with 33 of its 66 elements being plus signs. Variants

of this problem were also solved and studied by M. Bartsch [65].
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+
Figure 11
Arithmetic triangles of Stirling numbers of the first kind S, satisfying the

recurrence S = S® — nS™ where S = 1, and S™ =0 for n<1, m<1, m<n,

have the form

Lo pi°

[Jw]
J
—

6 11

I
[

274

—t
[
b
)
Ln

85 15 1

|

where the negative elements are underlined.
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Triangles of Stirling numbers of the second kind o/, satisfying o = o™ + mo®™,

where o = 1 and o™ =0 for n<1, m<1, m<n, have the form

1
1 1
1 3 1

1 15 25 10 1
1 63 301 350 140 21 1

P. Hilton and J. Pederson [188-190] obtained new arithmetic and geometric properties

of the binomial coefficients ( ), including the case of negative values of m and n, by

extending the definition as follows:

(n
\r

‘”) = (-1 [”*“1] for n>0, r20,
\F r

) = 0 for n20, r>n, r<0,

‘") = (-1)™ (’“1) for n>0, r>0.
\ T n-1

As a result of this generalization the authors construct the hexagon (Fig. 12) consisting of the

binomial coefficients for both positive and negétive values of m and n, and call it the Pascal

hexagon.
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They considered the geometric properties of the Pascal hexagon and other figures such as the

arrangement in Figure 13.
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Figure 13

In [191] they also discuss the Leibnitz harmonic coefficients and the q-binomials for positive

and negative values of m and n, as well as describing the properties of the Pascal hexagon
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and constructing the generalized star of David, the harmonic triangle, and the Pascal
hexagon.

K. Dilcher [123] replaced the partial differential equation u, = u, + u, by a
difference equation and, after appropriate normalization, constructed the triangle in Figure
14, which is a kind of generalized Pascal triangle of order three (discussed in 1.3). The
elements C, , of this triangle (cf. Fig. 14) in the n® row are combinations of three elements in

the (n-1)" row and one in the (n-2)* row, according to the recurrence

c =C, + C

nyn

+ Cn = 2Cn—2,m’ CO,O = 1.

~1.m-1 -1,m n-1,m+1

Figure 14

These coefficients may also be generalized by introducing the parameters A, v, in which case

they satisfy
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Av v -1 Av Ly Av
Cn,m = (1 + " ] (Cn—1,m-1 + Cn—‘],m + Cn-1,m+1)

- (1 . 2 "'1] A ch
n

where Cn"f;;' = Chv 5 for A=2, v=1, C! = C,n- The properties of the C}* and their
arithmetic triangles are considered in detail.

Arithmetic triangles also appear in the references [69, 109, 120, 125, 281, 357, 3853,

396].

1.5 PASCAL PYRAMIDS AND TRINOMIAL COEFFICIENTS

As we have seen, the binomial coefficients (;) arise as a result of the expansion of
(1+x)", and can be written in the form of a Pascal triangle of one sort or another. If we

write the binomial in terms of x,, X,, the expansion takes the form

If we denote the trinomial coefficients by (n; m,, m,), where n, m,, m, are nonnegative

integers, and set

n!
: - 1.33
S e T g o (-3

we can write the expansion of (x,+X,+%,)" in the form
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Korxy+x) = Y Y (my mymy) x, ag x;2 . (1.34)

my=0  my=0

The trinomial coefficients are often written as

(m; nyy ny, ny) = ___“_51!__, ny+n,+ng = n; (1.35)
nydnng!
however, in many contexts in which one constructs and uses multi-harmonic, multi-wave, and
other polynomials, the representation (1.33) is more convenient than (1.35), since (1.33)

orders the polynomial terms and trinomial coefficients of the Pascal pyramid and its cross

sections (Figure 15).

Figure 15
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It 1s not difficult to show that the trinomial coefficients of (1.33) satisfy the recurrence

relation

(n+1; my,my) = (m; my,mp) + (n; my~1, my) + (n; my=1, my-1) (1.36)

with initial conditions (0; 0,0) = 1, and where (n; m,,m,) = 0 for n<0, m, or m,<0,
m,>n, m,>m,. We can also verify from Figure 15 the presence of three axes of symmetry.
Much like the binomial coefficients, the trinomial coefficients satisfy the conditions

(n; 0,0) = (n; n,0) = (n; n,n) = I, and the equations

(n; my,my) = (n; my,my-my,),

(r; m1,m2) = (m h—my +m2,m2), ’ (1.37)

(n; my,my) = (n; n-my, n-my).

Some special sums are

n Hy n my
Y mmem) =8 Y Y (1) mymy) = 1 (1.38)
my=0  my=0 my=0  my=0

and the analog of the Cauchy summation formula is
oo Ky

Y Y (i kuk)(ng mikmaky) = (ny+ng memg). (1.39)

k=0 kp=0

The Pascal pyramid can be considered as a regular tetrahedron, or as a pyramid with
unequal dihedral angles as shown. In the n® cross section (n=0,1,2,...) parallel to the base,
which is itself a triangle, we arrange the ‘2{n+1)(n+2) coefficients (n; m,,m,). At the outer

edges the entries are ones, and each of the sides (faces) is itself a Pascal triangle. The
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relation (1.36) allows us to conclude that each interior element of a cross section is the sum
of three elements in the triangular element which forms the (n-1)" cross section.
The rule for constructing the elements in the n® cross section can also be thought of in

terms of the equation

(n; my,my) = (n': ] (m1), (1.40)

where n=0,1,2,...; m,;=0,1,2,...,n; m,=0,1,2,...,m,. This says, in effect, that we get the
entries in the n® cross section by taking the ordinary Pascal triangle for that n, rotating its last
row counterclockwise through the angle =/2, and then multiplying the resulting row entries on
the rows of the triangle, as shown for n=4 by the example in Figure 16(a); the result is
Figure 16(b). If the cross section is considered an equilateral triangle its axes of symmetry

are as shown in Figure 17.

a

7 /

4 7ot
& .7 -2 .f
4 .7 -3 .3 .
71 .
ol -4 6 d
7

2

Figure 16 Figure 17
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When the cross sections are taken to be right triangles, an algorithm for constructing the
entries is given in [6].

These ideas can be extended to the multi-dimensional case. In particular, the
coefficients in the expansion of (x,+x,+X,+x,)* form a four-dimensional Pascal pyramid,
bounded by five tetrahedrons. Analogously, we can think of multi-dimensional Pascal
pyramids bounded by Pascal pyramids of dimension one less.

Pascal pyramids and hyperpyramids have been used in the solution of problems on
probability theory, polyharmonic polynomials, generalized Fibonacci sequences, and so on.
The ideas of the construction and use of these objects appear in the works of many authors,
and below we give a brief chronological survey of some of these papers and the results
obtained.

One of the first occurrences of the Pascal pyramid, apparently, is in the work of E.B.
Rosenthal [330], who suggested and wrote out the trinomial coefficients in an array which he
called a Pascal pyramid.

The author of the present volume worked out an algorithm for constructing the cross
sections of the Pascal pyramid, discussed the multi-dimensional case, and applied the results
to the construction of harmonic and polyharmonic polynomials, and polynomial solutions to
some problems in elasticity theory [5,6].

G. Garcia [146] geometrically formed the Pascal pyramid in the course of considering
the coefficients in the expansion of (a+b+c)", and discussed the possibility of extending the
example to the four-dimensional case.

A note of M. Basil [66] considers some properties of the trinomial coefficients written

in the form of a Pascal pyramid.
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R.L. Keeney [236] derived an algorithm for the construction of the elements in the
cross sections, noted their symmetry, and the possibility of extension to the multi-dimensional
case.

A note of S. Mueller [239] discusses the relations among the trinomial coefficients by
means of the Pascal pyramid.

J. Staib and L. Staib [359] gave an algorithm for constructing the cross section
elements in the trinomial case, and discussed the question of extension to the multi-
dimensional case.

V.E. Hoggatt {195] discussed Pascal pyramids having as the elements of their cross
sections the numbers in the expansion of (a-+b+c)?, and gave as the generating function of

the columns

xPmraRp M n( m +n]
n

(1 - ax)m+n+1

mn

He also showed that

(-] o N 1
G = Gmn = !
2, g " 1-ax-bxP-cx?
and particular choices of the parameters give the generating function for the Fibonacci
numbers (a=1, b+c=1, p=q=2), the Tribonacci numbers (a=b=c=1, p=2, g=3),
generalized Fibonacci numbers (a=b=c=1, p=t+1, q=2t+1), and other sequences.
In [341] A.G. Shannon used the Pascal pyramid to construct the Tribonacci numbers

by summing the diagonal elements.
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M. Alfonso and P. Hartung [58) emphasized the analogies between the Pascal pyramid
and Pascal triangle, and used this approach to obtain some results in probability theory.

J.F. Putz [319, 320] discussed in detail the extension of the Pascal triangle, and the
construction and properties of fhe pyramid, there called a Pascal polytope. He obtained a
graphical representation, and also established the possibility of applying the polytope to the
study of k-Fibonacci sequences. In [319], he generalized all 19 theorems of Pascal to the
multi-dimensional case.

J. Shorter and F.M. Stein [343] constructed the Pascal tetrahedron, examined its
properties, and discussed the possibility of extension to the multi-dimensional case.

The question of studying some special function values with the help of the pyramid is
discussed in [267] by H.F. Lucas.

R.C. Bollinger {79] obtained some results on generalized binomial coefficients of
order m, discussed the construction of the pyramid and its cross sections, and gave a method

for computing the trinomial and multinomial coefficients.
1.6 MULTINOMIAL COEFFICIENTS AND PASCAL HYPERPYRAMIDS

As we know, the multinomial (also called polynomial) coefficients occur in the
expansion of the polynomial (x,+x,+--+x%,,)% the usual notation is (n; ny,n,,..., n.}, which

stands for the form

n!

M, Ry Hpy -y Rt) = —————
SR ) nydnl--nt (1.41)

where ny+my+-+n = n . (1.42)
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The combinatorial sense of the multinomial coefficient may be expressed as: (n; n,,n,,...,n,)
gives the number of ways that n different objects may be distributed among s cells, where the
number of objects in the k™ cell is n,, k=1,2,...,s.

Here we will denote the multinomial coefficients by (n; m,,m,,...,m,,), defined as

1
(n; m :m s“'lm - ) = dd ’ (1'43)
e T em ) oy ~m) - (i, —m,_)Im ]

and introduced in [6]. Using this definition, condition (1.42) will be satisfied, and we have

the ordered expansion

n

Hx,n) = (xg + % +~ + x,_)"

yp

Z E E (?1; My, Mo, -y ms_1) .

my=0 my=0 my_4=0

W T L e (1.4
We use (1.43) and (1.44) in the ordered construction of the Pascal hyperpyramid of
multinomial coefficients, polyharmonic and other polynomial systems, and in discussing
relations among the coefficients themselves. The multinomial expansion (1.44) appears in the
literature of combinatorial analysis, algebra, statistics, and number theory [22, 23, 25, 38,
47].

We mention some basic formulas (omitting the proofs) for the multinomial coefficients
(1.43), and then turn toa review of some references devoted to multinomial coefficients, the

multinomial theorem, and connections with related matters. .
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The recurrence relation is

(r+1} mymy,m_y) = (n, my,mg, -, m_q) + (n; my=1,my, -, m )
+ (o my=1,my=1, - m_ ) + -
+ (n; m1 _1,7712—1,"‘,Tns__a—“,ms_-‘)

+ {m my=t,my-1, 0 my 1), (1.45)

with initial condition (0; 0,0,...,0) = 1, and (n; m,,...,m,,) = 0 for n<0, or m, <0, for at

least one value of k, and for m; >n, m,>m,,. The coefficients also satisfy the conditions

(n; 0,0,-,0) = (; n,0,-,0) = (m; n,n,0,-,0)

(n; n,n,~,n) =1,

and s equalities, the first and last of which are

() gy ) = (5 my g,y oy _p =M _y)

(1.46)
(nmy my,,m_y) = (1 R-m,_, R~ _ o B~ My, N —My).
We have also the summation formulas
n ny Mme_p
02 3 (momyemey) = ST
my=0 my=0 m,_4=0 (1.47)
n my Mme_a
E Z E 5(m1""’ms—1)(n; m1’""ms—1)
my=0  mp=0 m,_4=0
0, s=21
- {1, §=21+1, (1.48)

my~mg+mg=my+ - +(=1)m, 4

where &(my,,m,_q) = (-1)
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We obtain (1.47) from (1.44) by taking x,=x,=-=%,,=1, and (1.48) by taking

Xg =Xy ==Xy =1 and X; =X = =Xyy4 =-1, where 1(s) = 2 [s_;]

The multi-dimensional analog of the Cauchy summation formula is

2 (g Ky ) (g my—kyymy—Fkp,~,m _q~k, )

= (Rt Mgy Mg ), (1.49)
where (n;m;,-,m,,)=0 if at least one of the m,_<0.

As mentioned in the book of E. Netto [292], the multinomial theorem was first
mentioned in a letter from Leibnitz to Johann Bernoulli in 1695. Its proof has been given by
a number of authors using various methods, one of which is the combinatorial argument.
There are many works devoted to the study of the multinomial coefficients, and reviews of
earlier results may be found in [41, 122, 292, 322, 372]. Below, we give in chronological
order a survey of some results from recent decades.

With the coefficients written in the form

nl
i«]! izl e ir! (ﬂ _k)i

y Iy vig++i =k

for i;<i,<<i sn-k<n-2, P. ErdSs and 1. Niven [136] obtained a formula for f(x), the number

of coefficients less than the positive number x, of the form

£6) = (1 + y2)x¥ + OG),

Two works of S. Tauber [372, 373] are devoted to the study of the multinomial

coefficients in the form (1.41). The first gives material of a historical nature and establishes
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basic summation formulas; the second contains proof of some summation formulas similar to
those for binomial coefficients.

M. Abramson [55] discussed the multinomial coefficients in the form (1.41), and
established the basic formulas and relations by using their combinatorial interpretations.

In the author's book [6], he studies the multinomial coefficients in the form (1.43),
establishes their basic relations, and gives applications to the construction and study of multi-
dimensional harmonic and polyharmonic polynomials.

V.E. Hoggatt and G.L. Alexanderson [196] defined for each mulﬁnonzial coefficient
(1.41) the s(s-+1) neighboring coefficients for which their product is N™, where N is an
integer such that there exists a partition of these coefficients into s sets of (s-+1) coefficients
whose product equals N, and where any such set may be obtained from another such set by a
cyclic permutation of indices.

In [296] A. Nishiyama discussed values f(n) which occur as sums of multinomial
coefficients (n; j,,...,j,), when the j, satisfy some condition. For example, for p=2 we have
the binomial coefficients, and if the condition is that they should lie on the Pascal triangle
diagonals, then f(n) is the Fibonacci sequence.

D.L. Hilliker [185] extended the binomial theorem for complex values, established by
Abel in the binomial case, to the multinomial theorem, and gave [186] various representations
of the expansion of (a,+a,+--+a)" by means of binomial coefficients.

A.N. Philippou [309] proved a theorem on the representation of the terms of the
Fibonacci sequence of order k, {f®} by means of multinomial coefficients. The result is

] .
1 = O (g +ny ety ny g, my), 120,
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where the summation is over all nonnegative numbers n,,...,n, for which n,+2n,+-+kn, =0.
Further results on the multinomial coefficients connected with questions of divisibility
and other properties may be found in [14-16, 18, 67, 121, 225, 261, 275, 348, 352], a

review of which we turn to in the following chapter.




