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CHAPTER 7
COMBINATORIAL ALGORITHMS FOR CONSTRUCTING
GENERALIZED-HOMOGENEOUS POLYNOMIALS.

SOME CLASSES OF NON-ORTHOGONAL POLYNOMIALS

In this chapter, based on some new concepts and definitions - in particular the
generalized power of a variable, and of a monomial - we introduce the so-called generalized-
homogeneous polynomial. We will establish a formula for the maximal number of terms of
the generalized-homogeneous polynomial and find for these polynomials the analog of the
Euler formula. We also introduce the notion of the factorial power, and use it to construct
and study factorial polynomials. For these, we establish differentiation and integration
formulas, and other relations.

We will introduce also the so-called exponent matrix and coefficient matrix, from
which we may develop combinatorial algorithms for the construction of basis systems of
polynomial solutions for generalized polyharmonic equations, and equations with mixed
derivatives; various forms of the Pascal triangle are used in these algorithms. We will
consider polynomial solutions for equations with third-order partial derivatives; more detailed

studies may be found in [5-10, 13, 14] and in [82-87].
7.1 GENERALIZED-HOMOGENEOUS POLYNOMIALS. EULER'S FORMULA

As is known, a polynomial is said to be homogeneous if every term is of the same

degree. We generalize this basic notion, which will allow the possibility of constructing basis



-171-

systems of polynomial solutions for a wide class of differential equations, including those
with mixed derivatives; we use the methods of combinatorial analysis in carrying out this
development. For greater clarity, we will consider the case of three variables; the extension
to any number of variables is presented in [14].

Before we consider any new concepts, let us consider the vectors p, q, r:

P = (PuPala)y 4 = (Gpdoids)s T = (Fylala),

where p and q are nonnegative whole numbers, and r is a positive whole number. We will

assume that r, <r,<r,, and introduce the transformation

g = g2 + ,1{&},
7y | Iy
a4y = 15|22 + 221, | (7.1)
T2 Ta
s ] Pg
= Palm—| + Fudi—\ = ’
43 3_r3 3{r3} Ps

where [A] denotes the integer part of A, and {A} the fractional part. It is not hard to see that

(7.1) is unique, and takes nonnegative whole numbers into nonnegative whole numbers. That

is, suppose that two distinct values p and p” correspond to the same value q,. We can

then put p/ =n, and p” =n+m, with n,m nonnegative whole numbers, and we will have

n+m| _ n
Ty = TIa|—
Ty Ty

n+m

s

T rk{l}, k=1,2 8.

Iy Ty
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We write this in the form

(rg — 1)

n+m| e nim| r, n+m
r 3 r k T k
n n n
= {rg = r}|—| + re|—| + rei—ts
T Ty Te
and note that for any nonnegative whole number a and natural number b it is true that

-

a

b

b

then

|3 Ty

and since 131,20, [":’”] ~[..’§.] > 0, it follows that the left hand side reduces to zero only for

m=0, and so p/ =p” and (7.1) is unique.

Consider also the transformation

] {31}

T3 | 73
pe = ol 2|+ ry {2} | a2
| T3] T3
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Let us represent q,(k=1,2) in the form g =m,r;+s5,, where §,=0,1,...,r;—1. It is not hard to
see that (7.2) is unique for 5,=0,1,...,5,—1, but not for s, =1,,1,.,,...,5;—1. Also, let
Xx=(X,,X,,X5), with p, the power of x,.

Definition 7.1. The number q,, obtained from the transformation (7.1), is said to be
the generalized power (or degree) of the variable x, relative to the pair (7,,13).

If r,=r,=r,, then the generalized power reduces to the ordinary power.

Consider now the monomial x?=x/"x*x.*.

Definition 7.2. The number n=|q| =q,+q,+q;, where ¢, is the generalized power of
the variable x, relative to (r,,I;), is said to be the generalized power (or degree) of the
monomial relative to r==(r,,r,,1;).

Monomials having equal generalized powers relative to the same r are said to be
generalized-homogeneous.

Definition 7.3. A polynomial whose terms have equal generalized powers relative to
some 1=(r;,I,,f;) 1s said to be generalized-homogeneous, and the number n=|q| =q,+q,+¢,
is its generalized degree.

As we know, the maximal number of distinct homogeneous monomials in three
variables with total degree n is N =(n+1)(n+2)/2. Noting this, and using the method of
combinatorial analysis as in [14, 15, 41], we find that the number of generalized-

homogeneous monomials with degree n relative to r=(r,,1,,1;) is given by

Nn(rvra’ra) = %m(m"'-i)r‘irz + (m+'|)fs(r1,r2,r3) (n =mr3"'3)s (7.3)




-174-
where

%(s+1)(s+2), s = 0,1,r -1,

%m(rﬁ'l) tryls-ry+l), 8 = rpor el -1,

£ () =

Jéﬁ(rz“ﬁ‘!-ﬂ * 12‘(27'1 try=s+2)(s-ry+1), 5 = 1y 1yt -2,

L R I S
57172 1 ¥ L # g T3 = 1

If r,=1,=1;=1, then m=n, s=0, f,(1,1,1)=1, and N (1,1,1)=(n-+1)(n+2)/2, so that in this
case the generalized-homogeneous monomial of degree n reduces to an ordinary monomial of
degree n.

It can be shown from (7.3) that for n-ee,

N, (ryrpre) = ryrp(n+1)(n+2) [ 2r5 . (7.4)

This asymptotic formula allows us to determine (approximate) the number of distinct
generalized-homogeneous monomials for large n and arbitrary 1,,1,,T;.
As 1s known, a homogeneous function of degree A, continuously differentiable in its
domain of definition, satisfies
3

ol
Z X = Slxq, %, %),
%y,

1
f(x1:x2!x3) - 2 po
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which is Euler's formula, and is widely used in various parts of mathematics. If f(x,X,,X,) is

a polynomial P*(x,,x,,x,), the formula takes the form

1 5} d a
P (%, %0%5) = —{% — P"+x,——P"+x,—P"|. (7.5)
(%1:%p:%3) 21 ax, 2 2, 3 o

Let P"(x,,X,,%;) be a generalized-homogeneous polynomial of degree n relative to
r=(1,,5,,T;), with generalized degree n=|q|=q;+q,+q;. It may be shown [10, 14] that any
generalized-homogeneous polynomial may be written in the form

-1 -
Pllapxpxg) = 3, D Plo(eniaxy),
2=0  0,=0
where ¢ =(a,,«,). As the result of a transformation [10, 14] we obtain the analog of Euler's
formula for generalized-homogeneous polynomials:
n1 rp-1

PRy, X %) = E i >y 9 P (x4 %00 ), (7.6)

k=1 k a1—0 m2—0 n+6(r a) a
where

2
3(r, o) _21 ra—r)——-

If r;=1,=1;, then «,=a,=0 and 3(r,«)=0, and (7.6) reduces to the ordinary Euler formula.
The generalized formula (7.6) is used to derive recurrence and other relations for generalized-

homogeneous polynomials.
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7.2 FACTORIAL POLYNOMIALS. ALGORITHMS FOR CONSTRUCTING

"EXPONENT MATRICES"

Consider the simple case of an arbitrary polynomial in one variable

Pn(x) = aox" + ‘11:“:,’3_1 ot a4x +a, (7-7)

where the a; are real numbers. Various operations performed on such polynomials -
differentiation, integration, arithmetic operations - may be considerably simplified by
introducing the factorial powers. We transform the polynomial P (x) to a factorial polynomial

by using the factorial power of the variable x, i.e., we set

The result, which we indicate by P (x) = P_,(x), is that

Pox) = bpx™ + byx®™ 4+ o ap x4 b (7.8

where b,=(n—k)! a,. With any polynomial (7.8), which is said to be the basic factorial
polynomial associated with the polynomial (7.7), we may relate two systems of so-called

associated polynomials

Po® (m=12..mand P, &) (m=1,2,.),

where these are defined by:

Pn—m.!(x) = Oxn—m.] + b’ixn-m—hi toe t bn—m+1x1'1 + bn—ms (7'9)
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Pn+m.l(x) = bexmm,l + b1xn+m—1,l R bn_1JCM+1'] + bnxm,!

1,1 2! 1,1 (7.10)
m-l, me-z, 1
+CpqX + CpinX o L X

n tc

fn+m?

and ¢, ,y,Co42;---,Coum aT€ arbitrary constants.

P ¥nem

We 1ntroduce the associated polynomial to simplify differentiation and integration;

thus,
4 p (x) = P, ix) (7.11)
dxk n,} n-k 1\
f-'-fP,,,](x)dx...dx = Py (%) (7.12)

After carrying out such operations on P, ,(x), the result may again be transformed to an
ordinary polynomial, with the coefficients being related by a,=b,/(n—k)!. The operations of
addition and subtraction of factorial polynomials are as for ordinary polynomials; for finding

products and quotients we use the formulas

xrbyml o n+m ] , (7.13)
m
n,! -1
X - A xn—m,l m<n- (7. 14)
xm™! m ’

It is not hard to extend the idea of the factorial polynomial to the case of more than-one
variable and obtain the relations corresponding to (7.7)-(7.14). The factorial powers,

monomials, and polynomials, as established in [10, 14] and other works, are introduced not
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only to simplify forms; they also are important in obtaining solutions, invariant with respect
to the order, of partial differential equations of high order.

We turn now to the construction of generalized-homogeneous monomials for a given n
and r=(r,,1,,1;). First, we construct the "exponent matrix" for the degree n of the
homogeneous monomial; then, from these elements we exclude any with at least one variable
which has a non-unique inverse transformation. Finally, from the remaining elements we
produce the ordinary powers by using the inverse transformation. An example should clarify
these matters, and we choose the values n=38, r,=2, r,=3, r,==4. The first step is to write
the "exponent matrix", whose elements are the possible triples {q,q.qs} of generalized powers

of the variables x,,X,,%;:

[ 008
107 017
206 116 026

305 216 125 035

Ag =404 314 224 134 044

503 413 323 233 143 0583

602 512 422 332 242 1582 062

701 611 521 431 341 251 161 071

1 800 710 620 530 440 350 260 170 080)]

From the elements of A; we exclude those for which there is at least one g, =m,1;+s,, with
8,2T.. It is not hard to see that these will be the elements with q,=2,3,6,7 or q,=3,7.

Denoting these by {xxx}, we obtain the matrix



[ 008
107

404

&=
I

503

| 800

017
116

413
512

026
125

422
521
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044
143 053
wx 182 062

xx  xxx 161 xxx

440 xxx axx  xax 080 ]

Then, using the inverse transformation we find the matrix with elements {p,;p.p;}

[ 008
107
XXX
XXX
Cy = | 204
303

| 400

Except for the excluded elements, each element of C; corresponds to a generalized-

homogeneous monomial of (total) degree eight relative to r=(2,3,4); that is, the monomial

x;'%,*x,?. The number of such terms is given by formula (7.3), which in this case produces

017
116
xxx
xxx
213
312

026
125

222
321

XXX

XXX

XXX

034
1383 043
xx 142 082

xxx  xxx 151 xx

230 xxx xxx  xxx 0860 ]
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the value 21. (In the special case when the polynomial is homogeneous, the matrices Ay, B,,
C; will all be the same.)

For practical applications, we may also need certain submatrices of C,, also called
"exponent matrices” and generated from "generating elements" (which are elements of C.) as
follows. For «;=0,1,...,1;, and «,=0,1,...,1,, the generating elements are the triples
{e;,0,,n—a,—a,} (these would occur in C)). For each generating element {e,,0,,n—a;—a,}

construct the left triangular "exponent matrix" C,(a;,a,) as follows:

(2) (eq,0,,n—a;—a,) is the upper left corner element;
(b)  1in succeeding rows and columns,
(1)  the first exponent of the tfriple increases by r; from row to row and
decreases by r, from column to column,
2) the second exponent of the triple increases by r, from column to
column,
3) the third exponent of the triple deceases by r; from row to row;
(©) the decreases in (b,) and (b,) determine the size of the matrix, since all

exponents must be nonnegative.

Thus, for the current example n=8, r=(2,3,4), the six generating elements are {008},

{017}, {026}, {107}, {116}, {125}, and the corresponding matrices Cy(e,,e,) are



~181-

008
107
C,(0, 0) = | 204 034 Cs(1, 0) =
303 133 ]
400 230 060 ]
017 116
Cy(0, 1) = Colt, 1) =
| 213 043 ] | 312 142
[ 026 125
0, 2) = Gl 2) =
| 222 052 ] 321 151 .

Along with the left triangular matrices A,,B,,C,, and C («,,a,), we may also construct the

right triangular matrices A/,B/,C/, and C/(«,,&,). Thus, C/ has the form

008 |

107 017

xxx 116 026
xx  xxx 125 xx

Cs 204 xxx xxx  xxx 034

303 218 xxx xxx 133 043
xx 312 222 xxx xxx 142 052

xxx xxx 321 xxx xx xx 151 xx

[400 xxx xxx xxx 230 xxx xxx  xxx 060

the generating elements are as before, and (with the construction appropriately modified) the

Cylety, ) are
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008
107
Cs(0, 0) = 204 034 Cs(1, 0) =
[ 303 133
[ 400 230 060
017 | 116 |
Cs(0, 1) = Ca(1, 1) =
[213 043 | [ 312 142
026 | 125
Cs(0, 2) = cld, 2) =
[222 052 [321 151 |

The elements of these matrices may represent not only the ordinary but also the
factorial powers of the variables, as when, e.g., {abc} corresponds to x*'y™'z*'. The
introduction of factorial powers makes it possible to develop algorithms for the construction
of basis systems of polynomial solutions, invariant relative to r,,r,,r;, of partial differential
equations for any n. Both the left and right "exponent matrices” will be used in Section 7.3
for the construction of basis systems of polynomial solutions by means of algorithms in which

the Pascal triangle is used.

7.3 COMBINATORIAL ALGORITHMS FOR THE CONSTRUCTION OF
"COEFFICIENT MATRICES" AND BASIS SYSTEMS OF POLYNOMIAL SOLUTIONS

OF PARTIAL DIFFERENTIAL EQUATIONS.

Algorithms for constructing basis systems of polynomial solutions are often apphied to
various classes of partial differential equations, among which are the polyharmonic,

polywave, and polycaloric equations of Euler-Poisson-Darboux and Beltrami. Here we
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present combinatorial algorithms for constructing basis systems of polynomial solutions for

more complicated equations, in particular:

A = (D' + D + DFulx) = 0, (7.15)

the generalized Laplace equation, and

Vvz) = (11)1”.02r2 + DD +‘Dgapga) ) = 0, (7.16)

the generalized equation of Mangeron type [82-87]. In (7.15), (7.16), x=(%;,%X,,X,), D, ‘g

r=(T,,I;,I;), Where I,<r,<T; are natural numbers,
The author in [14] constructed and studied basis systems of polynomial solutions of
(7.15), the general representation of these solutions being of the form
n m,0 o - [ i+k
r,a1,a2() —n'! E E( 1)lk( )

i=0 k=0

(7.17)

ryi+roktag, [ romergkeas, | n-rgm-rgi-eq-ag, 1
Xy Xo Xa y

g

T

where n,m,«,,a, are nonnegative numbers, and 7 =[ ] In [14] the following theorems

are proved.
Theorem 7.1. For e,=0,1,...,1,—1,a,=0,1,...,r,~1, and m=0,1,...,7 , the
generalized harmonic polynomials (7.17) form a basis system of
PO o
Ny(rmy = 35 Y (1,+1) (7.18)
620 «p=0

linearly independent polynomials satisfying (7.15).
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A Dbasis system of polynomial solutions of (7.16) may be constructed from two general

representations [14] of the form

Ig-m iy
n,mO i
P = 2 (0 2 (1)
i=0 k=0 (7.19)
» x;‘,z‘—-r1k+r1m-m1, ] x’zk"'“:!- V' nergme-rgi-aq-a,, |
2 s
nmU i 3
SR N H
%2 2 g k (7-20)

rikraq, | rpi-roktrgmteg, ] n-rgm-rgi-eq-cg, !
X X4 ] X3 .

It may be shown that for m=0, Pf’fﬂz"Qr"fzi, and for m=1,2,...,/,, (7.19) and (7.20) are

linearly independent.
Theorem 7.2. With «,,«,,m as in Theorem 7.1, the polynomials (7.19) and (7.20)

form a basis system of
-1 -1
N, ofrm) = 2 E (21,+1) (7.21)

031 =0 32=0

Iimearly independent solutions of (7.16).
We note also that in [14] the iterated versions of (7.15), (7.16) are discussed, i.e.,

A'(x)=0, V¥(x)=0. By introducing the normalizing factor (;) and taking account of p in the

exponent, the formulas (7.17), (7.19), (7.20) can be generalized to give polynomial

representations of the solutions of A'(x)=0, V'(x)=0, of the form H22P (x); PI2E ()

and Q:’:’fz(x), in which p=0,1,...,N—1.
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The formulas (7.17), (7.19), (7.20) could be used directly to construct polynomial
solutions, but in the forms given they entail a good deal of calculation. In this connection,
we suggest below a combinatorial algorithm for the construction of basis systems of
polynomial solutions to (7.15) and (7.16), based on the introduction of the triangular matrices
of factorial exponents and "coefficient matrices” in the form of the Pascal triangle, modified
so that coefficients in odd-numbered rows are negative.

First, we construct the left and right triangular matrices of factorial exponents for any
n,r=(1,I;,%;), and «,=0,1,...,5;~1, «,=0,1,...,5,—1. Denote the left triangular matrices by
C.(2,0,) and the right by C/(«,,,), and their elements by the symbol (i,k),, where 0<i,k</,.
These matrices then appear as
(0, 0),

1,0, © 1),
2 0), (,1), ©, 2),

Cn(a‘]!aZ) =
0.0, G, G2, - - - @],
©, 0), |
4,0,  ©1),
, @0, ¢1.  ©2
Cn(“v“z) = * * *
[0, 0, - - - @L2, (LD, ©L),

In these matrices, each of the elements (1,k), corresponds to a triple of factorial powers by

virtue of the relation
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(i, k)ﬂ'. -+ {T1i+a1, r2k+0£2, n_rai—rak"a«i “(12}, (7'22)

b

Iy

and the matrices consist of (/,+1) rows, where [_ ={

Thus, for example, let n=15, r=(2,3,4), and take a,=1,a,=0. It is simple to

construct C,5(1,0) and Cl’s(l,O), and the resulting matrices are

1 0 14
138 010 1 3 10
(0 -5 0 6 3 3 6 1 6 6

7 02 532 83862 19 2],

1 0 14

, i 3 010 1 38 10

Ci5(1,0) = 5 06 3 3 6 1 6 6

(7 02 5 32 3 6 2 19 2

‘The other matrices are likewise easily constructed, and there will be a total of r;1,=23=6
distinct matrices of either kind.

We describe now a scheme for constructing a basis system of polynomial solutions for
arbitrary n, first for (7.15) and then for (7.16). For (7.15), only the left triangular matrices
______ C.(ay,e,) are needed, along with the Pascal triangle whose odd rows have negative elements.

To shorten the description, we discuss the case in which C_(«,,«,) has five rows.
Since the algorithm is invariant with respect to the values of the factorial exponents, all

elements of this triangle will be denoted simply by {xxx}. We write this symbolic array and

the Pascal triangle in the form
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1T 1 1 1 1 xxx
4 8 2 1 xxx xx
6 3 1 xoxr xx axxx
4 1 xx xx wox xx

1 xxx xoxx oxxx oxex xxx,

where the negative elements are underlined. Whatever the values of the elements in the
matrix of factorial exponents, the coefficients of the monomials are determined by successive
superpositions of the Pascal triangle. We show the scheme for the (in this case) five positions

of the triangles relative to one another.

1 1 1 1 1-xxx
4 38 2 1-xxx xx
3 1o xox oxmx
4 1oox o oxor oo
1 xx xomx oxxx oo
xxx
1 1 Llewax 1o

Sexxx T.xxx xxx o

doxxx  Jaxxx xxx oxxx xxx
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X XXX
1T 1 T 1o 1oxxx
4 3xx 2xx 1-xx xxx

Baxxx Beaxxx Taxx xoxx  xxx

4 1
1
xxx
XXX X%
_____ i — ook

T Lo T 1o 1-ox

foxxx Joaxxx 2eoxx o axx

& 3 1
4 1
1
XXX
XXX XXX
XXX XXX XXX
XXX xxx XXX xxx

Toxxx 1o 1o 1o 1-xox
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If C,(e,,a,) contains a greater, or lesser, number of rows, the corresponding Pascal
triangle must consist of the same number of rows. And, carrying out this superposition
scheme with all of the r; T, matrices C_(«,,%,), we will form a total of

P

NGy =Y Y (@)

ﬂ1 =0 32’—'0

linearly independent polynomial solutions of (7.15).

To illustrate the procedure described, we form the basis system of generalized-
homogeneous polynomial solutions of (7.15) of degree n=8, with r,=2,1,=3,1,=4. The six
matrices Cy(e,,,) were given in the example of Section 7.2, and we will need the Pascal

triangle in the form

[1 1 1]
2 1
1]

for those matrices having three rows. As a result of applying the algorithm and converting to

factorial form, we will have (by Theorem 7.1) 13 linearly independent polynomial solutions

of (7.15):
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Higo) = 8(x" -5 +x:‘ )
Hioo®) = 81 -xi"xg +2x e 23 xg -afa),
Hyoio) = 81 (x -xf'a +2"),
Hivo® = 81(x" 5" -5 55",
Hi1o() = 81( -z ex g 'xd),
Ho1 @) = 81(x"x" -2 x"x"),
Hio 1) = 81( 'z g o),
Hyv1 @) = 81 (x5 " -2 xg ),
Hyi 10) = 81( oz g ),
Hioz @) = 8 (5" -2 5 "),
Hyoz @) = 81( - ag"xd g 'al),
HEPZ0) = 81 (x 52 e -2 xBx),
Hiz0) = 8( - ag g e agxg”),

If necessary, any or all of the 13 polynomials may be written in ordinary form; thus, e.g.,
Hf’ o) = x5 - 8403512x;,‘\1 + 1680x; .
We turn now to the algorithm for constructing a basis system of polynomial solutions

of degree n for (7.16). In this case we will need both the left and right triangular matrices
C(a;,ez) and C/ (a,,,), and also modified (odd rows have negative coefficients) left and

right triangular forms of the Pascal triangle.
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For brevity, we again discuss the case for matrices with five rows, first for the part of

the algorithm which uses the left triangular matrices C,(a,,,). Denoting, as before, the

elements of the matrix by {xxx}, we write the symbolic and Pascal triangles in the array

1

11
1 2
1 3
1 4

1
3 1
8 4

1

Xxx

XXX XXX

XxXx XXX xxx

XX XXX XX XXX

XXX XX XXX XXX axx

The algorithm for this case is similar to, but differs in detail from, the algorithm for the

previous case. We show the scheme for the five superpositions of the triangles relative to

one another, and which give the constructions for the polynomials P:;";:':(x):

1 xxx
1o
1 xxx
1-xxx

1-xxx

1-xxx -
1 xxx
1 xxx

1 xxx

1 xxx

3 -xxx

4 -xxx

1 -xx
2 xxx
xxx

4

Sxxx 1oaex

6-xxx 4-xxx

1-exxx X
S daxx

6 4

1-xxx




et

ey

XXX
XXX

1 xxx

2 xxx

3

4

r N R
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XXX
XXX

T xxx

3

6

XXX

XXX

XXX

XXX

XXX

XXX

XXx

XXX
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The first part of the algorithm gives us the polynomials P,?’:’:(X) , for m=0,1,2,...

For the construction of the polynomials Q*™°(x), m=1,2,...,J,, we write the symbolic

5,

triangle and the Pascal triangle in the form

1

11
1 2 1 XxXx
138 8 1 XXX XK
1 4 6 4 1 xx xx xx

We show the scheme for the four (m begins at 1) superpositions of the triangles relative to

one another, and which give the constructions for the polynomials Q2 T:(X):

xxx  1-xxx
xx  1-xxx 2-xxx
xxx  Jexxx Soxx 3eox

1 4 6 4

1xxx
1 xxx
1 -xxx

1 xxx




XXX

XXX

AXX

XXX

AXX

~194-

XXX

XXX
XXX

1 xxx

NCE S

XXX

Lrxxx
1 xxx

1

1-xxx

1oxxx

]

[

[
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In practical applications of this Pascal triangle algorithm one must write out the starting form

clearly, and carry out carefully these patterns using the elements of C (a,,a,) and C/(e,,a).

Writing out all the matrices C (a,,a,) and C'(«,, &), a total of 21, T,, and applying
the algorithm, we will, by construction, have a total of
r1-1 fz-li

Nipnn) = ), 3 (@,+1)

=0 &y=0

linearly independent polynomial solutions of (7.16).

As an example, we form the basis system of polynomial solutions of (7.16) of degree
n=_8, with r,=2,5,=3,1r,=4. The Pascal triangles needed are
[ 1
1 1 1

1 2 1L, 1 1

The first of these (left triangular) is used in connection with the matrices Cy(ex,, ), and the

second with the matrices C/(a,,« ), constructed in Section 7.2:
Cs (O) 0): Czi;(.I =O)r CS(Oi 1)! Ca(1 ’ 1)! Cs (0!2)! C8(1 !2) ’

and

Ca(0,0), Ca(1,0), Ca(0,1), Ca(0,2), Ca(1,2).

As a result of the first part of the algorithm, we will have 13 linearly independent

polynomials P f;‘l‘ ()
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8,0,0 8! _21 41 _31 4! _A4l 21 81, 6!
Pyloo() = 8!(353 ~X{ Xg' —Xp Xz +Xp +2%] Xp' +Xp ).
81,0 21 41 41 21 3,1
3 Pgloo(x) = 8!(x1 X3 "X TX Xp ),
820, \ _ a4
] Pgoolx) = 8lxy",
' 8,0,0, v _ 1,170 8181 _1,1 31 31
Py1)o(x) = 8!(-"61 X3 X Xg % X Xy ),
81,0 3,1 8,
Pyyolx) = 8lxi" x5,
0
]

_-’:gm

oo

—

X,
Il

8l 1,1 7,1 2,1 1,1 8] 4,1 3,1
HXo X3 —X4 Xo Xg —Xo Xa |y

21_1,1_8,!
8lxi" xy" x5,

LI LI 61 81 1,1 21 1,1 41 21
8!(x ),

2,

oL

=)

—

&
1

2%

e

-0

p—

Xa
il

1 %2 X3 TXq X X3 Xy Xp A3

3! 1,1 21
8!x1 Xo Xg ,

8!( 2,1 g1l 2,1

.-’:'im

gl ¥

~o

Ra)
1]

2
Xo X3 1 X2

21 21 21
8lxy" x5 x5",

L 21 51 31 21 1,1 51 1,1
8!(x ),

0 21 51 21
X3 ~Xa X3 ],

.:‘;an

Po

—

Ka)
il

:';joo

O

—

Ka)
1]

o
~o
N Mo Mo No
-
o ——
It

1 Xz Xz —X{ Xp Xz —Xq Xg X3

3! 21 1.1
8lxy" x5  x3".

23,

-

p—

)
Il

Applying the second part of the algorithm results in seven linearly independent polynomials

8,m,0 .
Qi 0
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Qiio0() = 81z -2 -x5"),
Q'5,0(5) =

Qi) = B,

Qairin () = 8lx g ",

Qio1() = 8lxg"xg",

Qio2() = 8lxp"x3",

8,1,0 SRR
Q412 (x) =8!x1 Xp X3 .

In all, we obtain 13 polynomials Pf;::::’ (x) and 7 polynomials Qi’n‘:'i(x) , for a total of
20 linearly independent generalized-homogeneous polynomial solutions of degree eight for
(7.16); this agrees with the number given by

1 2
N8 =% ¥ (@, + 1),

=0 a2=0
where

I - 8"'“1 —0‘.2
@ 4

and a simple calculation gives N, ,(r,8)=20. As before, we note that any of these

polynomials may also be represented as a polynomial with ordinary powers of the variables.
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7.4 POLYNOMIALS OF BINOMIAL TYPE AND RELATED POLYNOMIALS

A sequence of polynomials {f,} is said to be a sequence of binomial type if

£y =% [’;]ﬁ(xm-,-(y), 7.23)

i=0

where n=0,1,..., and f,=1. Classical polynomial sequences of binomial type are, e.g., x*,
(%), =x(x=1)~(x—n+1), and x(x—na)*'. The theory of polynomial sequences of binomial
type was developed by G-C. Rota and R. Mullin [331], who gave a complete characterization
of these sequences, worked out algorithms for determining their corresponding constants, and
discussed some enumeration problems. R.B. Brown [95] gave an example of considerable
combinatorial interest in this connection; he also generalized some of the results in [331] and
considered the ring structure of sequences of binomial type. L. Brand [91] discussed
functions of binomial type for negative factorials, i.e., sequences of the form

X). =[x+ 1)(x+2)-(x+n)]'. Using polynomial sequences of binomial type, the author
[7-10] constructed and studied binomial and trinomial polynomials.

Let r be a natural number, and let s=0,1,...,r~1. Then the polynomial of binomial

type
eyt = Y (?) x My

i=0

may be written in the form
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ol = 3 [g] (k) —

s=0 k=0

(7.24)

The right side of (7.24) may be considered as a sum of r polynomials, corresponding to

Using factorial powers, and taking the n! outside the summation, we write out two
classes of polynomials:

n-3

-
G;':;O(x, ) = nl E xrk+s,1},n~rk-s.!,

k=0

&

H;?;O(x,}') - n' E (_-’)erk-rs.!.yn—rk—s,l.
k=0

Then, putting in the summation the normalizing factor (:), where p =0,1,...,[$], we obtain

&

G:;P (x,y) = gl Z (k) xrk+s,lyn—ric—s.l, (7_25)
k=p p

H;‘;P (x’y) = pl Z ( 1)k( ] rk+s] n—rk—sl (726)
k=p

‘The polynomuals (7.26), (7.27) are called p-binomials. Omitting the details of the
derivations of the numerous properties of these polynomials, we give their formulas for

differentiation, indefinite integration, and some recurrence relations.
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Differentiation formulas for the p-binomials with respect to the variables x-and y are

of the form

(x 1 .y).l 50,

G:;jip (x| y) + n r--1 (xl y)

xy), s=01,..,r-1,

a ) il
=Gl y) = nGY

a 3,

'é; :g(x!J’) =n

a +, B=i,

5y e (3) = nGr

o np _ n -1,p
Ex'Hr,s (xly) = ni, r,s-1 (x!y) 5+0,
d

0

n, -1, n-1,p-1
_Hr,(f(x!y) = "an P(x' ) - nHrr-P (x!y)!

L H" (x,y) = nH, P (x,y), s=0,1,...,7-1
dy
For p=01in (7.27), (7.28) we get
:rj‘l 1(x!y) = :r11_1 (x,y) = 0.

! 7.27)

, (7.28)

Replacing in (7.27), (7.28) the power n by (n+1), and the index s by (s+1), and

integrating both sides with respect to the differentiation variables, we obtain (to within an

arbitrary function independent of the variable of integration) the indefinite integrals of the p-

binomials;

[ G xy)dx

[ Ry

1 ~ n+i,
m Gr.s+1p (%),

.,_LG"*‘P( s
n'i-

(7.29)



-201-

[ P y)de = B (),
n+l 7
(7.30)
[ B2 @ = —L B2 (),
n+i

From the differentiation and indefinite integration formulas, it is not difficult to obtain
by integration by parts formulas for the indefinite integral of a product of two p-binomials;
the values of definite integrals may also be calculated.

Using Euler's formula for a homogeneous function of degree n,

Flry) = % Lrrey) « 2 LFry),
n n dy

9
ox

and (7.27), (7.28), we can derive the recurrence relations

GIP () = 2GI 1P (xy) + ¥G P (x,y), s+0,
s 1Y)+ YG (1.31)

G (5y) + 3GI T ) + Y6 &),

rr—

G]3 (x,5)
HY? (%) = xHI P (%) + yHL: P (%,y), s%0,

(7.32)
HY(xy) = —xHP (xy) - xHLSW (%) + YHIS P (5,)-

Again from (7.27), (7.28) we may obtain differential equations whose solutions are p-

binomials. Using the first two formulas in (7.27) and calculating the r™order derivative of

the function G7;P(x,y) we find
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-
ax’ axf*(a (G Y))

= (n=s+1,1),

g1 (8 n-s,
[Zem |

r.s'1

6"*“1 n--.: -1, rl S-
= ooy 5 G5 ) + G )

= (41,0, (G ) + G (),

from which we have
a;is L) = (-r1,1),G57 (1) + (a-r+1,1),6577 7 (x,).
And, using the third formula of (7.27), we find

—ér—G”'p(x,y) (n-r+1,1),G " (x,7),

rons
Oy”

and subtracting this equation from the previous one we obtain

4 _ c n,p _ n-r,p-1
(Bx’ ay") s ®Y) = (r-r+1,1) G (x,).
Here we assume that n—r20, p21. If n<r, then the right hand side is certainly zero. Let

n>pr; then from this formula we will have
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P
( o i] G::sp(xny) = (n_pr+111)prG:;pr,o(x!y)i p#0,
3" |

axr
g _ 2 16™ ) = 0.
axf ay!‘

If n<pr, the right side of the first equation is certainly zero. Thus, the p-binomial GP(x,y)

is a polynomial solution of

+1
g _g u(x,y) = 0,
axr ay]‘
for nzpr, s=0,1,...,r—1.

A similar argument shows that the p-binomial H P (x,y), for nzpr, s=0,1,...,1—1,

gives a polynomial solution of

g gy
+ L,y = 0.
(ax' ayf) v(x,y)

If r=2, s=0,1, then we obtain a basis system of 2p-+2 polywave polynomials G, (x,y), and
the same number of polyharmonic polynomials H}?(x,y), which for p=0 reduce to the
corresponding wave and harmonic polynomials G;+*(x,y) and HJ*'(x,y).

Note that by taking linear combinations of p-binomial polynomials, we can obtain
polynomial solutions of various classes of differential equations. Consider, for example, the

differential equation of order 2m

“(s3) = 0 (.39

+
axmaym ax2m ay2m

(a% P
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we will construct a basis system of polynomial solutions using linear combinations of the p-.
binomial polynomials G:'." (x,y). Omitting the details of the choice of these combinations, it

can be shown that the linearly independent polynomials

Pyo(xy) = G (x)) ~ Galrni®y), s = 0,1,2,...,.2m-1, n>2m,

form a basis system of 2m linearly independent polynomial solutions of (7.33). In fact, let

ssm—1; then

62”‘ 8,0 n=2m,0
Gam (%) = (n-2m+1, 1), G o (%, 7),
axmaym 3 ,s( )’) )2m 3m,2m ( }’)
82"‘ n, n—2m,
— e Oome03) = (-2m1, 15,670 3),
" o, n-2m,
_____ —ayameam‘;(x.y) = (n-2m+1, 1)5,Gams"" (5,7),
Fm om0 n-2m,0
Gapmss(6:¥) = 0-2m+1, 1), Gs. 0" (%)),
axmaym 3m, s( y) ( 2m T 3m, ( y)

a?_m

n0 ~2m,
—é—x—EGfim.mw(xl)’) = (n-2m+1, 1)2171Ggm.2m2.s(x!y)!

aZm

gy—.‘.;cé';,ffm(x.y) = (n=2m+1, 1)5,Gpmmes (57)-

Thus, it follows that the polynomials P>° (x,y) satisfy (7.33) for s=0,1,...,m—1. Ina

2m,s

similar way, it can be shown that these polynomials also satisfy (7.33) for s=m, m+1, ...,

2m—1.




-205-

To construct p-trinomial polynomials we use the expansion of a trinomial in the form

n i

x+y+z n o _ ( )x i-k_n-i
(r+y+2) ;0: g% bick Sitk
o 2]

XX Y X,

rk+sy  ri=rk+ss n=ri=s;=-s.
x xSy 2, 1792

Using factorial powers of the variables and inserting the normalization, we distinguish

two classes of p-trinomial polynomials:

l: n-5y-55

Gres®y2) =n Y, 3 m (7.34)

i=p k=0 \P

% % rk+sy, Iy ri-rk+ss, IZ R~ri-5y-3p,!

‘-’1‘32
r.'a‘1 Sz(x!ysz) = n‘ ,sz; g ( 1)”1:( ) (7-35)

rk+sy, b ri-rk+se, ) n-ri-sy-ss.!
Yy 21, 17521

In these expressions, s,=0,1,...,r—1, s,=0,1,...,r—1, and p=0,1,...,[(n~s,—s,)/T]. Their

differentiation formulas are;
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6 n-1,
-a—x- r’:, 32(x y.Z) = nGr;.':‘—}‘:,sz(x’y'z)’ Sy * O'

J n-1, n-1,p-1
e r‘O.s'z(x »z) = nG.,_ f,z(x,y,z) * nGr.r—p,sz(x y,z)
26 (xyz)=nGn1p (x,2), s, # 0

6y r‘s1 s\ e 1 84,85-1 W 1 /s 2 ’

a n-1 n-1,p-1

5 rs, Q(X,y,Z) = nG, s, pl 1(x,,2) + nG, s1,f—1 x32),
2622, (533 = nGIL Ena)

o r's1 s;FahZ) = Mg o, K Vs 2]y

N (x,y,2) = nH., A x»z), s =0

S Tisus2 Vs risy-1,s, VXX 5y ’

6 -1, -1,p-1

'a—x r O 25 (x Vs Z) = —anr 1Psa (x, }’,Z) - nH:;r—{sz (x,y,z) ’
g (,3,2) = nH2 0P (%,9,2), S, # 0

ay r’S, Sp VS FspSp=1 W i)y L2 ’

a i n-1,p -1,p-1

ay r s, O(x Y Z) - nH T8, 1(1 y,z) 51,r—1 (x y,z)
I ,9,2) = nH "2 (x,7,2).

82 rs1 Sp ! I 5,89 V7

The indefinite integral formulas for the polynomials G:j{”h(x,y,z) , Up to an arbitrary

function not dependent on the variable of integration, take the form

1 +1,
fGr 54 sz(x:ylz)dx = m’ :zs1;l;’s2(x ¥ Z)

1 1,
f r;sy,8 (x Y z)dy "";z"_"'_"':l"' G:: 51-52"'1 (x,y, Z),

1 n +1,
f r; S1,sz(x }’,Z)dZ m r s,,ia(x y,z)



-207-

Using the differentiation formulas, and Euler's formula as before, recurrence relations

for the polynomials (7.34) take the form

_1.
Gr S1 52 (x y’z) xG::.ﬁ“I; 52(x y|Z) + yGr :1 -1 (x!y!z)

r.s sz(x }’,Z) 54 * Os 8o # Or

n-1,p 1,p-1
xGr;r—‘i sz(x }’,Z) +Xx nr :lpsz (x,y,z)

Grio.s,(%:3,2)

n-1,p

+ ¥G oo (62) + 260 @YD), s * O,

n-1, n-~1,
G:’.f; o(x,y,z) - xGr s-1, 0(x »Z ) + yGr:s1,f-1 (x!ysz)
n-1,p-1 -1,
+ yGr:.'.',,f-‘l (JC,}’,Z) + ZG:;.:.‘,g(xsysZ)l sy # 0:

. -1, -1,p~1
Grn;g,o(x-y.z) = xGrn; r-{o(x»)’:z) * JCGrn; r-io (x,5,2)

-1, n-1,p-1
+ 3Grol my2) + ¥GLo ) (62) + 2608 (5 y2).
Corresponding integration and recurrence formulas for the polynomials HM?, (x,y,Z) may be
derived in similar fashion.
Various methods of constructing polynomial solutions for partial differential equations,
including the Laplace, polywave, polyvibration, and polyharmonic equations, may be found

in [82-87, 215, 290, 317, 374, 400, 406].

7.5 OTHER CLASSES OF NONORTHOGONAL POLYNOMIALS

As is well known, orthogonal polynomials in one variable have been studied in great.

“detail, and widely applied in problems in mathematics, mechanics, and physics; two excellent
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summaries are the books [48, 370]. An extensive bibliography, containing a survey of over
500 works, is given in the detailed book of P. Nevai [293], dedicated to the memory of Geza
Freud.

We consider here nonorthogonal polynomials in one independent variable, whose
coefficients in expansions in powers of x are binomial coefficients, Fibonacci and Lucas
numbers, and other special quantities. We first discuss two classes of polynomials suggested
in [10], and of interest from the point of view of constructing solutions to differential
equations of Sobolev type, which arise in various mechanics contexts.

We define the polynomials by

SRR <N £ 20 ey . (7.36)
Frs ) = g (k+m) e
m,n . - _z\E [ BEY ksl (7.37)
QrE = X (1 (m)" ,

where m,n are any nonnegative integers, and r=1,2,..., s=0,1,2,....

We will give differentiation, indefinite integration, and recurrence formulas for the
polynomials (7.36); those for the polynomials (7.37) are similar.

It is easy to establish the formulas

ﬁl’x-P;j‘;"(x) =PI, s+ 0,
(7.38)

P = B,

[ Prr@ds = PR ), (7.39)
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m+1 n( ) - m+1 n- 1(x) + P:;"(x). (7.40)

From (7.38)-(7.40) we may derive other relations, including integrals of products of two

polynomials for values of m,n,s the same or differing. We calculate, for example, the r™

derivative, which is needed in applications; we have

dr* d*
r ( = ns
dx s ) dx™* dx® B 3 6
dr-:-1 dr-s1 mal,n- m4l.n-
er-s1dx ()=d_xr-s1 ”"11 1()_ 1 1(x)’

that is,

d m.n m+1,n-1
_Pr.; (x) = Pr.s ' (x)'
et "

In a similar way, we could consider the extension of these polynomials, as in

P:;n;P.Q(x) - i (k) [”+m) xrk+rq+s.l’
P

k=p k+m

QTP (y) = E (- 1)1;( ) (mm) sl

k=p k+m

which also have convenient analytic and computational properties.

We include now a short review of references dealing with the construction and study

of Fibonacci, Lucas, and other generalizéd polynomials.

V.E. Hoggatt and M. Bicknell [202] considered Fibonacci, tribonacci, and more

general r-bonacci polynomials, defined by the relations
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R_(,_a)(x) = R-(m)(x) = = R4(x) = Ry(x) = 0,
Ri(x) =1, Ry(x) = x™,

Rn+r(x) = xr—1Rn+r-1 (x) + xr_szr—Z(x) o Rn(x)'

For r=2, the polynomial R,(x) reduces to the Fibonacci polynomial F (x), and for r=3 to the
tribonacci polynomial T,(x). They showed that the r-bonacci polynomial R (x), written with
descending powers of x, has as coefficients the coefficients in the n® ascending diagonal of

the generalized Pascal triangle of order r, i.e., the coefficients in the expansion

(1+x+x2++x™ ", n=0,1,2,....

The general representation of R (x) has the form

[r-1)n-1)ir)
R = % (

n=j-1 ) D7
j=0 r

J

where (;‘) =0 for j>n. For r=2,3, this gives

e-ty2] , . _
Rw= Y [T e,

=0

[2{n-1)/3] .
nw= 2 (M e,
j=0- J /3

They also studied Q;matrices, generating r-bonacci polynomials.
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V.E. Hoggatt, M. Bicknell, and E.L. King [207] defined four sequences of

polynomials: the Fibonacci polynomials f,(x), the Lucas polynomials /(x), and the

polynomials g (x), h (x) satisfying

gO(x) = 0' 81 ('x) = 1' gu+2(x) = XEn+ (x) - gn(x)!
Bo®) = 2, 1y (3) = %, @) = Tyt () - By(0),

and established various identities and relations among these.
In [212] V.E. Hoggatt and J.W. Phillips used the generalized binomial coefficients
C,(p,), r22, p=0, and the Fibonacci and Lucas polynomials

L) =1, 50 =% [,G) = 2oy * 20,

L{x) = x b{x) = x2+2, L,(x) = xl,_4(x) + ], »(x),

to define new classes of polynomials in the form of the sums

pie-1) )

Y 0C,En0m 0 Y e by Culpir) (1;)

n=0 n=0 r

V.E. Hoggatt and C.T. Long [211] introduced the so-called generalized Fibonacci

polynomials

uy(x,y) = 0, ug(x,y) = 1, 4,0(xY) = xu (xy) + yu, (xyh n=0,1,2,...

They showed that these polynomials have a number of properties analogous to the Fibonacci

sequence, and studied some of their divisibility properties.
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A. Krishnaswami [244] discussed a class of functions which he called Pascal
funcﬁoﬂs, the coefficients of which are formed from the Pascal triangle diagonals; he showed
that the Fibonacci polynomials are a special case of the Pascal functions.

H. Hosoya [217, 219] studied some interesting analytic, combinatorial, and graph
properties of orthogonal polynomials, including those of Chebyshev, Hermite, and Laguerre.

In a cycle of papers: A.N. Phillipou [310]; A.N. Phillipou, C. Georghiou, G.N.
Phillipou [311, 312]; A.N. 'Phjllipou, F.S. Makri [313]; and G.N. Phillipou and C.
Georghiou [314] considéred generalized Fibonacci polynomials, and Fibonacci polynomials of
order k. A review of these works and a bibliography is given in the detailed article of A.N.

Phillipou [310]. A sequence of polynomials {’f:I ® (x)}:_o is said to be a sequence of Fibonacci

polynomials of order k if £fF(x)=0, f{¥(x)=1, and

-

. .
Y x40 ), 2<n<k+,
i=1

fn(k) (x) =1

k
Y 2Bk, nak+2.

=1

If we set £9(x) =0 for ~(r—2)sns—1, then £9(x) =R,(x), nx—(r—2), i.e., reduces to the r-
bonacci polynomial mentioned earlier. In [311], the explicit representation of these

polynomials is obtained in a form involving multinomial coefﬁcients,'

Ryt +nk) xk(51 "'""""k)'"' n>0.

Mw=X (

yeeilly n1 LR ] nk
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In [312, 313] other properties are studied, and an application to probability theory is given,
and [314] is a further consideration of their properties, including their connection with the

generalized Pascal triangle of order k, whose coefficients are defined by

Ag% = 1,Aéf),,, =0, m=21,

m
E A,Sj.i)1'm_l-, 0$m<k.
i=0

k-1

E A:Et)‘!.m«ti mzk,
i=0

\

where n21. They showed that

[n=n/k]

Fri@ =Y 4% " n=0,
i=0

and that

@ o)

=0

V.E. Hoggatt and D.A. Lind [210] discussed the question of the so-called height of

the Fibonacci polynomial
2] '
£ = 3 (T,

and its connection with these functions, where the height is taken to be the largest coefficient

of the polynomial. They proved that the heights of two successive polynomials lie either in
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the same column, or in neighboring columns, of the Pascal triangle. In the latter case,
m(n)/m(n+1)=Kk/h(k), where m(n) is the height of f,(x), and h(k =%(k+1 +/5k2-2k+1 ) if
m(n+1) lies in the k® column. They also showed that F/F,_,, fc;r n22,_ and L /L_,, for n24,
may be represented as the quotient of the heights ‘cf twq successive polynomials whose
heights do not lie in the same column.

Other discussions related to some classes of non-orthogonal polynomials may be found

in the references [124, 198, 273, 283].



