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A PRIMER FOR THE FIBONACCI NUMﬁERS: PART XII

Verner E. Hoggatt, Jr., and Nannette Cox
San Jose State University, San Jose, California

and

: Marjorie Bicknell
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ON REPRESENTATIONS OF INTEGERS USING FIBONACCI NUMBERS

In how many ways may a given positive integer p be written as the sum of

distinct Fibonacci numbers, order of the summands not being considered? The

Fibonacci numbers are 1, 1, 24 3y 5y eco Fn' «esy Where Fl =1, FZ = 1, and

242 Fn+1

but 10 =5+ 5 =1+ 1 + 8 would not be valid. The original question is an

+F, foran2 1. For example, 10 = 8 + 2 = 2 + 3 + 5 is valid,

example of a representation problem, which we do not intend to ‘answer fully

here. We will explore representations using the least possible number or the

greatest possible number of Fibonacci numbers,

1., TEE ZECKENDORF THEOREM

First we prove by mathemasical induction a lemma which has immediate

application.

Temma: The number of subsets of the set of the first n integers, subject
to the constraint that no two consecutive integers appear in the same subset,
is Fn+2, n > 0.

Proof: The theorem holds for n = O, for when we have a set of no integers

the bnly subset is @, the empty set. We thus have one subset and F0+2 = FZ = 1,

For n =1, 2 subsets: {1}, #; ) Fi,=F3 = 2
n = 2, 3 subsets: {l}, ia} ' g ; F2+2 = Fh =3
n =3, 5 subsets: ii,}}, {3}'. {2} ’ il}, g s F3+2 = F5 =5

Assume that the lemma holds for n < k. Then notice that the subsets formed
from the first (k + 1) integers are of two kinds--those contﬁining (k + 1) as
an element and those which do not contain (k + 1) as an element. All subsets
which contain (k + 1) cannot contain element k and can be formed by adding -
(kx + 1) to each subset, made up of the (k - 1) integers, which satisfies the
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constraint. By the inductive hypothesis there are Fk+2 subsets satisfying

the constraint and using only the first k integers, and there are Fk+1

subsets satisfying the constraints and using the first (k - 1) integers.

Thus there are precisely
Frez2 * Frer = Fies = Flesd)s2

subsets satisfying the constraint and using the first (k + 1) integers. The

proof is complete by mathematical induction.

Now, for the application. The pumber of ways in which n boxes can be

filled with zeroes or ones (every box containing exactly one of those numbers)

such that no two "ones" appear in adjacent boxes is Fn+2' (To apply the lemma

simply number the n boxes.) Since we do not wish to use all zeroces (g, the
empty set in the lemma) the number of logically useable arrangements is

Fn+2 - 1l., Now, to use the distinctness of the Fibonacci numbers in our

representations, we must omit the initial Fl = 1, so that to the n boxes we

assign in order the Fibonacci numbers FZ’ F3, PRPN Fn+1’ This gives us a

binary form for the Fibonacci positional notation. The interpretatibn to give
the "zero" or "one" designation is whether or not one uses that particular

Fibénacci number in the given representation. If a one appears in the box

allocated to Fk,.tHEnZFk is used in this particular representation. Notice

that since no two adjacent boxes can each contain a "one", no two consecutive

Fibonacci numbers may occur in the sane representation.
Since the following are easily established identities,

|

g
]
[

F, + F# + eee *+ Fak =

2

using the Fibonacci positional notation the largest number representable under

the constraint with our n boxes is F - 1. Also the number F_ is in the
. n+2 n+l

nth box, so we must be able to represent at most Fn+2 - 1 distinct numbers

with F 3, eeny Fn+1

numbers are used. Since there are Fn+2 - 1 different ways to distribute ones

and zeroes in our n boxes, there are Fn+2 - 1 different representations which

could represent possidbly Fn+2 - 1 different integers. That each integer p

bas a unigque representation is the Zeckendorf Theorem: 1]

subject to the constraint that no two adjacent Fibonacci
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Theorem: Each positive integer p has a unique representation as the
sum of distinct Fibonacci numbers if no two consecutive Fibonacci numbers

are used in the representation.

We shall defer. the proof of this until a later section. Now, a
pinimal revresentation of an integer p uses the least possible number of

Fibonacci numbers in the sum. If both Fk and Fk-l appeared in a representa-

tion, they could both be replaced by Fk+l’ thereby reducing the number of

Fibonacci numbers used. It follows that a representation that uses no two

consecutive Fibonacci numbers is a minimal representation and a Zeckendorf

representation.

2. ENUMERATING POLYNOMIALS

Next, we use enumerating polynomials to\establish the existence of at

least one minimal representation for each integer.
An enumerating polynomial counts the number of Fibonacci numbers

necessary in the representation of each integer p in a given interval

Fm <p< Fm+l in the following way. Associated with this interval is a
polynomial Pm_l(x). A tern axd belongs to Pm_l(x) if in the interval

Fm £p< Fm+l s there are a integers p whose minimal representation requires
J Fibonacci numbers. For example, consider the interval F6 =8 <p<1l3 = F7.

Here, we can easily determine the miniral rerresentations

8§ =38
9=1+38
10 =2+ 38
11 =3+ 8
12 =1 +3+ 8

Thus, Ps(x) = x3 + 3x2 + X because one integer required 3 Fibonacci numbers,

3 integers required 2 Fibonacei numbers, and one integer required one Fibonaceci
pumber in its minimal representation. We note in passing that all the minimal
representations in this interval contain 8 but not 5. We now list the first

nine enurerating polynomials.
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FpSP<F,, P _1(x)
m=1 1<p<1 0= Po(x)
m=2 l<p<2- x = P, (x)
m=23 2<p<3 X = Pa(x)
m=4 3<p<5 %+ x = PB(X)
m=5 5<p<8 2x® + x = P (x)
m=6 8<p<13 X + 3x2 + X = Ps(x)
a = 7. 13<p<al 3x° + bxZ & x = Pg(x)
m = 87 21 < p < 3k xh + 6x° + Sxa + X = P7(x)
m=9 34 < p< 55 bt +10x> + 6x% + x = Pg(x)

We shall now proceed by mathematical induction to derive a recurrence

relation for the enumerating polynomials Pm(x). It 1s evident from the
definitions that an enumerating polynomial for Fm <p< Fm+2 is the sum of

the enumerating polynomials for Fm <p<F and Fm+l £p< Fm+2 « Also

m+l
it will be proved that the minimal representation of any integer p in the

interval Fm fp< Fm+l contains Fm but not Fm-l’ If we added Fm+2 to each
such minimal representation of p in Fm <p< Fm+l we would get a minimal

representation of an integer in the interval

Lm+l = Fm + Fm+2 £p< Fm+1 * Fm+2 = Fm+3 ¢

Clearly the enumerating polynomial for this interval is me_l(x) since each

integer p in this interval has one more Fibonacci number in its minimal
representation than did the corresponding integer p in the interval

TpSP<Fy .
Next, the integers p in the interval Pm+2 £p< Fm+3 require an Fm"‘2 in

this minimal representation while all the numbers in the interval

Fm+l < p< Fm .2 have Fm+1 in their minimal representation. In each of these

minimal revorezentations remove the F

msl and.put in an Fm+2' Thg resulting

integer will have a minimal representation with the same number of Fibonmacei
numbers as was required before. In other words, the enumerating polynomial

Pm_l(x) is also the enumerating polynomial for

" 910000
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F - F + F

m+2 o+l

' - =
<p'< Fm+2 F + F L

m+l m+l m+2 m+l

Now, the intervals F <p'<L and L < p'<F are not
- m+ n+3

1 m+l =
overlapping and exhaust the interval Fm+2 <p< Fm+3 « Thus, the

m+2

enumerating polynomial for this interval is-

P (X) = Po(x) + xP ) o (x) Po(x) =0, Py(x) =x,

which is the required recurrence relation.
Now, to show by mathematical induction that the minimal representation

of any integer p in the interval Fm £p< Fm+1 contains Fm but not Fm-l'

re-examine the preceeding steps. Each minimal representation in the interval

Fm+2 £p< Fm+3 contains Fm+2 explicitly since we added Fm+2 to a repregenta-
tion from the interval Fm L£p< Fm+1 and by the inductive hypothesis those
representations did not contain Fm+l but all contained Fm. Next, for the
representations from Fm+l £p< Fm+2’ all of which used Fm+l explicitly by
inductive assumption, we removed the Fm+l and replaced it by Fm+2 so that each
representation in Fm+2 <P <.Fq+3 contains Fm+2 but not_Fm+l. Thus, if the

integers p 1in the previous two intervals, namely, Fm <p< Fm+l and

F £rp< Fm+ had Zeckendorf representations, then the representations

n+l 2!
of the integers p in the interval Fm+2 L£p< Fm+3 are also Zeckendorf

representations.
Now, notice that Pm(l) is the sum of the coefficients of Pm(x), or the

count of the numbers for which a minimal representation exists in the interval

Fool $P< T But, Pm(l) = F, because Pl(l) = Pa(l) =1 and

Pm+1(l) = Pm(l) + 1oPm_l(1), so that the two sequences have the same beginning

values and the same recursion formula. The number of integers in the interval

Fm+l <p< Fm+2 is Fm+2 - Fm+l = Fn’ so that every integer is represented.

Thus, at least one minimal representation exists for each integer, and we have

established Zeckendorf's theorem, that each integer has a unique minimal

representatidn in Fibonacci numbers. Notice that this means that it is
possible to express any integer as a sunm of distinct Fibonacci numbers. Also,
notice that the coefficients of Pm(X) are the summands along the diagonals of

Pascal's triangle summing to Fn wifh increasing powers as one proceeds up the

diagonals beginning with x.
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3. THE DUAL ZECKENDORF THEOREM

Suppose that, instead of a minimal representation, we wished to write a

maximal representation, or, to use as many distinct Fibonagci numbers as

possible in a sum to represent an integer. Then, we want no two consecutive
Fibonacci numbers to be missing in the representation. Returning to our n
non-empty.boxes, for this case we wish to fill the boxes with zeroes and ones
with no two consecutive zeroes. Here we consider n ones interposed by at most
one zero. Thus, we have boxes to zero or not to zero. These zeroes can occur
between the left-most one and the next on the right, between any adjacent pair

of ones, and on the right of the last one if necessary. Thus, there are

precisely 2" possibilities, or, 2 maximal representations can be written
seey P

using the n Fibonacci pumbers fronm amongfpz’ F)’ on+l

Now, associate with integers p in the interval Fn -1<p< Fn+l -1

an enumerating maximal polynomial P;_l(x) which has a ternm axj if a of the

integers p. require j Fibonacci numbers in their maximal representation.
For exanmple, in the interval FG -=1=7<p<12-= F7 - 1, the maximal

representations are

7=5+2
8§=5+2+1
9=5+3+1
10=5+3+2+1
11 =5+ 3 +2 + 1

Thus, Ps(x) = xh + 3x3 + xz' because one integer requires 4 Fibonacei numbers,

3 integers require 3 Fibonacci numbers, and one integer requires 2 Fibonacci
numbers in its maximal representation. Notice that all maximal representations

above use 5 but none use 8, The first eight enumerating maximal polynomials are:

Fo-1<p<F, -1 | P:_ (%)
m=2 ogp<1 1= Pi(x)
m=3 1<p<2 x = P3(x)
m=54 2<p<h x2’+x=P3(x)
m=5 b<p<? | x> + 2x° = P(x)
m=6 7<p<1l2 'xl‘+3x3+x2.=p5(x)
m=? 12<p< 20 X+ bx' + 3x0 = Py(x)
2 =8 20 < p < 33 €+ 50« 6x v 2 = Py(x)
2=9 33< p<5h 27 + 6x% 4 10x7 & bx* = By(x)

27700000
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As before, we now derive the recurrence relation for the polynomials

P;(x).

Lemma: Each maximal representation for integers p in the interval

Fm -1<p< Fm+l - 1 contains explicitly Fm-l‘

Proof: We can add Pm to each maximal representation in the interval

.

F,o-12<p< Foep -1 and these numbers fall in the interval

F = [}
2F - 1<p' <F ,-1.

P
We can also add Fm to each maximal representation in the interval

F =1<p<F,~- 1 and these numbers fall in the interval

m-1

- ' -
F 1<p'<2F -1.

m+1l
These two intervals are non-overlapping and exhaustive of the interval

F

mel - LS P <TFpp -1

Thus, each maximal representation in this interval contains explicitly Fm'
Thus, the enumerating polynomials P;(x) for maximal representations

satisfy

P;(x) = x[P;_l(x) + P;_Z(x)], Pi(x) =1, Pé(x) = x ,

and again P;(l) = Fn. This establishes that each non-negative integer has

at least ore maximal representation.
Returning to the tabtle of the first eight polynomials P;(x), by laws of

polynomial addition, adding the enumerating maximal polynomials yields a count
of how many numbers require k Fibonacci numbers in their maximal representa-

tion. So, it appears that

(=)
z P2 (x)
n=1

P(x) + P3(x) + P3(x) + PR(x) + P3(x) + ... s PR(x) + ...
3

= 1 + x + (x2 + %) + (x3 + 2x2) + (xk + 3x7 + xa) + eve

3 k k

1+ 2x + #xz + 8x7 +  cee +2X 4+ e

(That this is indeed the case is proved in the two leamas following the Dual

Zeckendorf Theorem.) In other words, 2k non-negative integers require k
Fibonacci numbers in their maximal representation. But requiring that each
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integer has at least one maximal representation exhausts the logical
possibilities. Thus, each integer has a unique maximal representation in

distinct Fibonacci numbers, which proves the Dual Zeckendorf Theorem [2]:

Theorem: ©Each positive integer has a unique rerresentation as the sunm
of distinct Fibonacel nurkters if no two consecutive Fibonacci numbers are

omitted in the representation.
Lemma: Let fl(x) = 1, fz(x) = x, and fn+2(x) = xfn+1(x) + fn(x) be
the Fibonacci polynomials. Then

P(x?) = x"11 (x), n2o.

Proof: We proceed by mathematical induction. Observe that

P3x®) = 1 = 201, (x),
Pé(xa) = x% = xlfz(x).
P;(xa) = xz[P;_l(xz) + P;_a(xa)] .
Assume that
P2 2 =X (x)
P (x%) = "3 (x)
Thus,
P;(xa) =‘x2Exn-2fn_l(x) + xn'sfn_a(x)]
= x"xe 0+ 1 L0] = i (o),
oo
Lemma: :E: alx) = 1—%—3;

Proof: The Fibomacci polynomials have the generating function

:E: £ (x) t°

Now let x = t, and then by the previous lemma,

1 - Xt - t

0000

0
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©o [=-}
= Z £ (x) xn-l = z P‘(xz) = 1 .
1l - xa - xa n 1l - 2x2
n=1 n=1
Therefore,
= ' 1 2
» _ _ n.n
zz Pn(x) = T 3% < L+ 2% + XS + vee + 27X + oo .
n=1

Notice that the polynomials P;(x) have as their coefficients the summands

along the rising diagonals of Pascal's triangle whose sums are the Fibonacei
numbers but in the reverse order of those for Pn(x). In fact, the minimal

enumerating polynomials Pn(x) and" the maximal enumerating polynomials P;(x)

are related as in the following lemma.
Lemma: 4 P (x) = X" Px(1/x) form > 1.
Proof: This relationship will be proved by mathematical induction.

m=1 P (x) x'[P}(1/x)]

1
L]
"

x = x2(1/%) = x°LP3(1/x)]

n = 2: Pa(x)

m = 3t P,(x)

24 x=0(L/x + 1/x°) = xBEPS(l/x)]

3
Assume that
P _,(x) = <=t Pi_l(l/x) .
P (x) = X F(1/x) .

Then, by the recurrence relations for the polynomials Pn(x) and P;(x).

P, .(x) Pk(x) + x Pk_l(x)

k+1l

SPp(1/x) + xRy ) (1/%)

4L/ 0P (/%) ¢ By (1/%0)

k+l
x Pﬁ*l(l/x) M

which establishes the lemma by mathematical induction.
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Then, both the minimal and maximal representations of an integer are
unique. Then, an integer has a unigue representation in Fibonacci numbers
if and only if its minimal and maximal representations are the same, which

condition occurs only for integers of the form Fn -1, n>3 [3].

In general, the representation of an integer in Fibonacci numbers is not
unique, and, from the above remarks, unless the number is one less than a
Fibonacci number, it will have at least two representations in Fibonacci
numbers. But, one need not stop here., The Fibonacci numbers FZn and F2n+1

can each be written as the sum of distinct Fibonacci numbers 1, 2, 3, 5,
8, «vey, in n different ways. For other integers p, the reader is invited

to experiment to see what theorems he can produce,
We now turn to representations of integers using Lucas numbers.
L. THE LUCAS CASE

If we change our representative set from Fibonacci numbers to Iucas
numbers, we can‘find minimal and maximal representations of integers as sums
of distinct Lucas numbers. The Lucas numbers are 2, 1, 3, &4, 7, 11, ...,

defj.ned by Lo = 2’ Ill = l, La = 3, Ln+1 = Ln + Ln-l’ n Z 1. (See Brown [68].)

The derivation of a recursion formula for the enumerating minimal

polynomials Qn(x3 for Lucas numbers is very similar to that for the
polynomials Pn(x) for Fitonacci numbers. Details of the proofs are omitted
here. Now, for integers p in the interval Ln <p< Ln+1 s the enumerating
minimal polynomial Qn_l(x) has a term dxj if 4 of the integers p require

J ZLucas numbers in their minimal representation. For example, the minimal

representation in Lucas numbers for integers p in the interval

11 = L, < p <Lg =18 are:

5
11 = 11
12 =11 + 1
13 =11 + 2
1b =11 + 3
15 =11 + &
16 =11 + 4 + 1

17 =11 + 4 ¢+ 2

so that Qq(x) = 2x7 + bx® + x since 2 integers require 3 Lucas numbers,

‘4 integers require 2 Lucas numbers, and one integer requires one Lucas

number. Notice that L5 = 11 is included in each representation, but that

AERE XaX X X
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= 7 does not appear in any representation in this interval. Also notice

that we could have written 16 = 11 + 3 + 2. To make the minimal representa-
tion unique, it is necessary to avoid one of the combinations L0 + L1 or
Ll + LB; we agree not to use the combination Lo + L2 =2+ 3 in any
minimal representation unless one or both of Ll and L} also appear. The

first nine Lucas enumerating minimal polynomials follow.

Lp <P <Llpy %oy (¥
m=1 1<p<3 ' 2x = Qq(x)
m=2 3<p<h o x = Q(x)
m=3 b<p<? 2x% + x = Qy(x)
m= 4 7<p<il ‘ 3% + x = g (%)
m=5 11 < p <18 2% + bx® 4 x = Q(x)
m=6 18<p<29 5x° + 5x° + x = gg(x)
@ =7 ‘29Sp<‘+7\ le’+9x3+6x2+x=q6(x)
m=38 47 < p < 76 7xl++ll+x3+7x2+x=Q7(x)
m=9 76 < p < 123 250 + 16x" + 20x° + 8x2 + x = Qg(x)

Similarly to Pn(x), by the rules of polynomial addition and because of the

way the polynomials Qn(x) are defined,
Qn+l(X) = Qn(X) + XQn_l(x) ) QOCX) = 2x Ql(X) = X,

is the recursion relation satisfied by the polynomials Qn(x). Here we have
the same recursion formula satisfied by the polynomials Pn(x). but with
different starting values. Notice.that Qn(l) = Ln .« As before, Qn_l(;) is

the sum of the coefficients of Qn-l(x)’ or, the count of the numbers for which
a minimal representation exists in the interval Ln <p< Ln+l s which contains
exactly Ln+l - Ln = Ln-l integers. Thus, each integer has at least one

minimal representation in distinct Lucas numbers.
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Now, let us reconsider the n boxes. To have a minimal representation,
we wish to fill the n boxes with zeroes or ones such that no two ones are

adjacent and to discard the arrangement using all zeroes. As before, there

T 000000 )

are Fn+2 - 1 such arrangements. Now, establish a Lucas number positional

notation by putting the Lucas numbers LO‘ Ll, Lz, L3, evny Ln-l into the

n boxes. Again, the significance of the ones and zeroes is determinati'on of

which Lucas numbers are used in the sum. But, notice that Lo + L2 = Ll + L3 ’

which would make more than one minimal representation of an integer possible,
To avoid this problem, we consider the first four boxes and reject L0 + L2

whenever that combination occurs without Ll or L3' If such four boxes hold

0 1 0 1l

3 Ly ;I

L

then there are (n - 4) remaining boxes which ‘can hold F, _o cozpatible

arrangements. Thus, rejecting these endings eliminates Fn-a arrangenments,

making the number of admissible arrangements Fn+2 - Fn_2 -1-= Ln -1, -
But the Lucas sequence begins with LO = 2, so that the number Ln is in the

box numbered (n + 1). Therefore, using the first n Lucas numbers and the
two constraints, we can have at most Ln - 1 different numters represented,

for

L1+L3+uan+Lak-l=L2k"2.,

1]
[

La + L# + L ] + Lak-z

and the Lo + L2 ending was rejected,

Then, we can have at most Ln - 1 different numbers represented using _

) (

L eoey Ln-l’ but the enumerating minimal polynomial guarantees that

o’ I‘l’
each of the numbers 1, 2, 3, .oe, Ln - 1, has at least one minimal representa-
tion. Thus, the minimal representation of an integer in Lucas nucbers, subject
to the two constraints given, is unique. This is the Lucas Zeckendorf Theorem.

For the maximal recresentation of an integer using distinct Lucas numbers,

again we will need to use adjacent Lucas numbers whenever possible. In our n
boxes, then, we will want to place the ones and zeroes so that there never are

two consecutive zeroes. Also, we need to exclude the ending Ll + L3 in our

representations to exclude the possibility of two maximal representations for

an integer, one using Lo + L2 = 5 and the other L1 + L3 = 5. We will use the
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combination Ll + Ls only when one of Lo or L2 occurs in the same maximal
representation.

Now, let the enumerating maximal polyncmials for the Lucas case for the

» J
interval Ln <p< Ln+1 be Qn_l(x). where dx'Y is a term of Q;_l(x) if 4 of

‘the integers p require J Lucas numbers in their maximal representation.
For example, the maximal representation in Lucas numbers for integers p in
the interval 11 = L. < p < Lg = 18 are:

5

11 =7+3+1

12 =7 +3 +2

13 =7+ 3+2+1

1 =7 + b+ 2 +1

15 =7+ 4+ 3 +1

16 =7 + 4 + 3+ 2

17 =7 +4+3+2+1

so that Qa(x) = x° + Axk + 2x3, since one integer requires 5 Lucas nunbers,

L integers require 4 Lucas numbers, and 2 integers require 3 Lucas nunobers

in their maximal representation, The first nine polynomials Q;(x) follow.

Lpsp<Lp, Py (¥
m=1 1<p<3 | 2x = Qg(x)
m= 2 3<p<h 22 = Qi(x)
m=3 ‘h <p<7? X0 + 2x° = Q3 (x)
m=b 7<p<1l ‘ e 3% = Q3(x)
m=5 11<p <18 . 2+ bxt 227 = Q(x)
m =6 18 < p<29 x6 + 5x5 + Sxk = Q;(x)
m=7 29<p<h? x7 s 6x% 4 9x% & 2x" = Qg(x)
m=8 L7<p<76 x8 e 77+ 1t 4 700 = (%)
m=9  76<p<123 20+ 8x3 4 20x7 4 26x° 4 27 = Qg

The recursion relation for the polynomials Q;(x) can be derived in a

similar fashion to P;(x), becoming
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Q;+l(x) = x[Q;(x) + Q;-l(X)] ’ Qa(x) = 2x , Qi(x) = x2.

Notice that the same coefficients occur in the enumerating minimal Lucas

polynomial Qn(x) and in the enumerating maximal Lucas polynomial Q;(x). The

relationship in the lemma below could be proved by mathematical induction,
paralleling the proof of the similar property of Pn(x) and P;(x) given in the

preceding section.

Lemma: Qu(x) = Xt G(1/x) form21.

Also, the polynomials P;(x) and Q;(x) are related as follows:

Lemma: * _(x) = x P*(x) + x> P* (x) , n>1,
enma =1 n n-2 -

which could be proved by mathematical induction. Notice that the lemma above

becomes the well-known identity, Ln-l = Fn + Fn-a s when x = 1,

© Now we return to our main problem.
By laws of polynomial addition, if we add all polynomials Q;(x), the

coefficients in the sum will provide a count of how many integers require X

Lucas numbers in their maximal representation. Then, it would appear that

o
> a0
n=20

Qa(x) + Qi(x) + Qé(x) + Q;(x) + Q&(x) + eee + Qi(x) PO
4

2x + x2 + (x3 + 2x2) + (xl+ + 3x3) + (x5 + bx o+ 2x3) + eee

2x + 3x2 + 6x3 + leh + 24x5 + cee + B'Zk'axk + oeee

so that 3°2k-2 integers require k Lucas numbers in their maximal representa-

tion, k > 2. A proof that this is the correct computation of the sum of the
polynomials Q;(x) follows.

Lemma: If Qa(x) = 2x, Qi(x) = xa, and Qﬁ(x) = x[Qﬁ_l(x) + q;_2<x)1. then
Q;_l(xz) = xn*l[fn(x) + £ 5(x)]

where fn(x) are the Fibonacci polynomials.

BEREEY X X X Nk
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Proof: To begin a proof by mathematical induction, observe that

2 1+1

2x° = xa( 1+1) =x [fl(x) + f_l(x)]

n=1: Qé(xa)

xq = xB(x + 0) =.x2+1[f2(x) + fo(x)]

n= 2: Qi(x?')

Assume that the lemma holds for (n - 1) and {n - 2). Then

x20qr_) (2) + qp_p(x)]

Q;(xa)

REMe () v £ (0] + PTG+ 13000}

K 2Oxr_(x) + £, GO + [xfy_5(x) + £,.50x))

= xn+2[fn+l(x) * fn_l(x)],

establishing the lemma by mathematical induction for n 2 1.
Using known generating functions for the Fibonacci polynomials as before,
[--]

2
zf(") 1:m-]. ____t_____’
n 1 - xt - t2

n=1

\
[
L ]

z e _(x)t"tt = 47 - xt)
n=2
- 1 -xt -t

Adding,

2 oo
£°(2 - xt) _ n+l
— = E Cr (x) + £, _5(x)]t .

1l - xt -t =1
Setting t = x,
2 b = &
2X = X - Z n+l - Z . 2
-;—:-;;3 = x [fn(x) + fn_a(x)] = Qn_l(x ) .
n=1 n =1

Therefore,
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o 2 2
St = B cae g e oA
n=20

To see the reason for the peculiar coefficients 3°2k-1, examine the eight

possible ways to fill the first four boxes with zeroes and ones. Then see
how many numbers requiring n ZLucas numbers in their maximal representation
could be written. In other words, consider how to distribute n ones

without allowing two consecutive zeroes. The eight cases follow.

Count of Possibilities (n > &)

[
o

L

[
W

[
n

2n-lt

excluded
o3

o r K K

2=
2"-3
273

o ¥ O K K M O K

O O K H K O K P
H B = K+ O

H ¥ K O K H O B

Summing the seven useable cases gives

502873 4 2u20H 623 J 30272 nyu,
possible maximal representations. The endings with a zero in the left-most

box would require that the L# box contain a one, while all would have either
a L# or a L5 appearing in the representation. The endings listed above do

not give the numbers reguiring 1, 2, or 3 Lucas numbers in their maximal
representation. So, the endings given above do not include the
representatiéns of 1 through 9, 11 and 12, which give the first three terms

2x + 3x2 + 6x3 of the enumerating maximal Lucas polynomial sum and explain
the irregular first term in the sum of the polynonials Q;(x). The numbers
not included in the count of possibilities above follow.

BERERY ¥ ¥ ¥ YK
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L4 L3 L2 L1 LO representing:
0 0 1 0 1 } ox
0 0 0 1 2
(o] o] 1 1l 3
) 1 1 o b 3x°
(o] 1 (o] 1 5
0 1 1 1l 6
1 (o] 1l 1l ?
1l 1l 1l 0 8 6x3
1 1 o 1 9
1 0 1 1 (0] 11
1 (o} b 0 1l 12

Now, the enumerating maximal polynomial guarantees that 3-2k-2

integers require k ZIucas numbers in their maximal representation, but

examining the possible maximal representations which could be written using

k Lucas numbers. shows that at most 3-2k'2 different representations could be
formed. That is exactly one apiece, so the maximal representation of an
integer using Lucas numbers subject to the two constraints, that no two_,

censecutive Lucas numbers are omitted and that the combination L3 + Ll is not

used unless LO or L2 also appear, is unique.

- S. CONCLUDING REMARKS

Much interest has been shown in the subject of representations of integers
in recent years. Some of the many diverse new results which arise naturally
from this paper are recorded here with references for further reading.

That the Fibonacci and Lucas segquences are complete has been shown in
this paper, although the property was not named. A segquence of positive

integers, al. 85y ooy By s is complete with respect to the positive

integers if and only if every positive integer m is the sum of a finite
number of the members of the sequence, where each member is used at most once
in any given representation. (See [4], [5]. ) For example, the sequence of
rowers of two is complete; any positive integer can be represented in the
binary system of numeration. However, if any power of 2, for exa=zple, 1 = 2 N
is omitted, the new sequence is not complete. It is surprising that, for the

Fibonacci sequence where a, =an, n>1, if any one arbitrary number Fk is

missing, the sequence is still complete, but if any two arbitrary Fibonacel
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numbers FP and Fq are missing, the sequence is incomplete [4].

The Dual Zeckendorf Theorem has an extension that characterizes the
Fibonacci numbers. Brown in [2] proves that, if each positive integer has a
unique representation as the sum of distinct members of a given sequence
when no two consecutive members of the sequence are omitted in the representa-
tion, then the given sequence is the sequence of Fibonacci numbers.

Generalized Fibonacci numbers can be studied in a manner similar to the
Lucas case. A set of particularly interesting segquences arising in Pascal's
triangle appears in [6]: the sequences formed as the sums of elerents of
the diagonals of Pascal's left-justified triangle, beginning in the left-most
column and going right one and up p throughout the array. (The Fibonacci
numbers océur when p = 1.) Or, the squares of Fibonacci numbers may be used
(see [7]), which gives a complete sequence if members of the sequence can be
used twice. Other ways of studying generalized Fibonacci numbers include
those given in (8], [91, [10], and ([11].

To return to the introduction, Carlitz [12] and Klarner [13] have
studied the problem of counting the number of representations possible for a
given integer. Tables of the number of representations of integers as sums
of distinct elements of the Fibonacci sequence as well as other related tables
appear in [14). The general problem of representations of integers using the
Fibonacci numbers, enumerating intervals | ang positional binary notation
for the representations were given by Ferns [15] while [16] is one of the
earliest references following Daykin [8]. The suggested readings and the
references given here are by no means exhaustive. The range of representation

problems is bounded only by the imagination,
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hd he * NINE FIBCNACCI FUZZLERS he he .

B-29 (Proposed by J. A, Fuchs) Prove that F,o < 2" for n > 3.

B-41 (Proposed by David L. Silverman) Do there exist four positive
Fibonacci numbers in arithmetic progression?

B-42 (Proposed by S. L. Basin) Express the (n + 1l)-st Fibonacci number

Fn+l as a function of Fn' Solve the same problem for Lucas numbers.
B-44 (Proposed by Douglas Lind) Prove that for every positive integer k
there are no more than n Fibonacci numbers between nk and nk+l .

B-47 (Proposed by Barry Litvack) Prove that for every positive integer k
there are k consecutive Fibonacci numbers, each of which is composite,

B-58 (Proposed by Sidney Kravitz) Show that no Fibonacci number other
than 1, 2, or 3 is equal to a Lucas number, -

B=-62 (Proposed by Brother Alfred Brousseau) Prove that a Fibonacci number
with odd subscript cannot be represented as the sum of squares of two Fibonacei

numbers in more than one way.
B-95 (Proposed by Brother Alfred Brousseau) What is the highest power of
W
2 tkat exactly divides FlF2F3 oo FlOO?

g-2 (Proposed by L. Moser and L. Caglitz) Resolve the conjecture: There

are no Fibonacci numbers which are integral squares except O, 1, and 1li44,



