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PREFACE

The original Fibonacci Primer Series I - XIII
were conceived to acquaint beginning students with
certain information and techniques related to the
Fibonacci numbers and related sequences. We decided
to enclose these articles between two covers along
with —certain other articles from the Fibonacci
Quarterly, selected and edited to round out a
comprehensive offering.

It is hoped that this booklet will be useful to

individuals wishing to study the properties of the

Fibonacci and Lucas sequences but who do not have
access to the back issues of the Fibonacci Quarterly
containing most of the included articles.

Problems which occurred in early Elementary
Problem Sections of The Fibonacci Quarterly are
included as fillers both as a challenge to the
beginning Fibonacci enthusiast and as an illustration
of the wide diversity of problems related to the
Fibonacci sequence.

The Editors are grateful for the help of
Brother Alfred Brousseau, who proofed the entire
manuscript and produced the booklet. The remaining
errors are the responsibility of the Editors.

Marjorie Bicknell

Verner E. Hoggatt, Jr.
Editors

August 1972



cose®eeetL L _



A PRIMER FOR THE FIBONACCI NUMBERS

TABLE COF CONTENTS

Article

EXPLORING FIBC:‘ACCI NUI‘XBERS e @€ e ® & 8 © & e & & o ¥ s % & s o o s 0 o

Brother Alfred Brousseau, St. Mary's College
(FQ 1l:1, Feb., 1963, pp. 57-63)

THE FIBONACCI SEQUENCE AS IT APPEARS IN NATURE & o o o ¢ o ¢ o o o o o

S. L. Basin, San Jose State College
(FQ 1:1, Feb., 1963, pp. 53-56)

PHYLLOTAXIS . L L [ ] L] L] ® o o o L] ® o . e o L] L] L e e o o ..Q L] ] o o L .

Sister Mary de Sples McNabb, Georgetown Visitation Preparatory School
(FQ 1:4, Dec., 1963, pp. 57-60)

A PRIMER ON THE FIBONACCI SEQUENCE: PART I
SIMELE PROPERTIES OF TEE FIBCNACCI SEQUENCE AND MATHEMATICAL INDUCTION

S. L. Basin and Verner E. Hoggatt, Jr., San Jose State College
(FQ 1:1, Feb., 1963, pp. 65-72)

A PRIMER ON THE FIBCNACCI SEQUENCE: PART II
A MATRIX WHICH GEWERATES FIBONACCI IDENTITIES e s o e s o o s s e o

S. L. Basin and Verner E. Hoggatt, Jr., San Jose State College
(FQ 1:2, april, 1963, pp. 61-68) .

FIBONACCI MATRICES AND LAMBDA FUNCTIONS o o o o o o o ¢ o o o o o o o &

Marjorie Bicknell and Verner E., Hoggatt, Jr., San Jose State College
(FQ 1:2, April, 1963, pp. 47-52)

A PRIMER FOR THE FIBONACCI SEQUENCE: PART III

{ORE FIBONACCI IDENTITIES FROM MATRICES AND VECTORS ¢ o o o o o s e e

Verner E. Hoggatt, Jr., and I. D. Ruggles, San Jose State College
(FQ 1:3, October, 1963, pp. 61-65)

'SOME NEW FIBONACCI IDENTITIES o o o s o o o o o o s o o o s ¢ o o 2 b o

Verner E. Hoggatt, Jr., and Marjorie Bicknell, San Jose State College
(FQ 2:1, February, 1964, pp. 29-32)

FIBONACCI NUMBERS AND GENERALIZED BINOMIAL COEFFICIENTS + o o o o o o o

Verner E. Hoggatt, Jr., San Jose State College
(FQ 5:4, October, 1567, pp. 383-400)

Page

13

18

23

27

31

34



Article ) Page

A PRIMER FOR THE FIBCNACCI NUMBERS: PART 1V
FIBONACCI AND LUCAS VECTORS 4 s « o o o o o o o o o o o o o o o o o o 39

V. E. Hoggatt, Jr., and I. D. Ruggles, San Jose State College
(FQ 1:4, December, 1963, pp. 65-71)

A PRIMER FOR THE FIBONACCI NUMBERS:. PART V
INFINITE SERIES AND FIBCNACCI ARCTANGENTS o s o o o o o o o o o s o & L6

V. E. Hoggatt, Jr., and I. D. Ruggles, San Jose State College
(FQ 2:1, February, 1964, pp. 59-66)

A PRIMER FOR THE FIBCNACCI NUMBERS: PART VI
GENERATING FUNCTIONS FOR THE FIBCNACCI SEQUENCES &4 & « o o o« o o o o & 52

V. E. Hoggatt, Jr., San Jose State College, and D. A. Lind, University
of Virginia (FQ 5:5, December, 1967, pp. 4l45-460)

SCCTT 's FIBONACCI SCRAPBOOK L] L4 . L . L L] L] L] L] L] . L] L L] L] . * . L] L] 65

Allan Scott, Phoenix, Arizona - +
(FQ 6:2, April , 1968, pp. 176")

A MCTIVATION FOR CONTINUED FRACTIONS o o o o o ¢ o o o o o o ¢ o o o o 66

A. P. Hillman and G. L. Alexanderson, University of Santa Clara
(FQ 2:2, April, 1964, pp. 145-148)

THE GOLDEN RATIO: COMPUTATIONAL CONSIDERATIONS & o o o o o o o o o o 70

Dmitri Thoro, San Jose State College
(FQ 1:3, October, 1963, pp. 53-59)

GCLDEN TRIANGLES, RECTANGLES, AND CUBOIDS & o o ¢ o o o 2 o o ¢ o o o 74

Marjorie Bicknell, Wilcox High School, and Verner E. Hoggatt, Jr.,
San Jose State College (FQ 7:1, February, 1969, pp. 73-91)

A PRIMER FOR TEE FIBONACCI NUMBERS: PART VII
INTRODUCTION TO FIBONACCI POLYNOMIALS AND THEIR DIVISIBILITY PROPERTIES 86

Marjorie Bicknell, Wilcox High School
(FQ 8:4, October, 1970, pp. 407-420)

A PRIMER FOR TEE FIBONACCI NUMBERS: PART VIII
SEQUENCES OF SUMS FROM PASCAL'S TRIANGLE o o o o o o o s-0 o o 0.0 o o 98

Marjorie Bicknell, Wilcox High School
(FQ 9:1' Febmary’ 19?1’ pp. 7"}-81)

A PRIMER FOR THE FIBONACCi NUMBERS: PART XfII
THE FIBONACCI CONVOLUTICN TRIANGLE, PASCAL'S TRIANGLE, AND SOME
INTERESTING DETEH‘{INANTS L] L] L] L . L] L] L] L] L] L] L] L] L] L] L] L] L] L) L] L) L] 101’

Marjorie Bicknell, Wilcox High School
(FQ 11:4, December, 1973)

Vi

el X I X X XX XN



'y J O OO 9w

Article

A PRIMER FOR THE FIBONACCI NUMBERS: PART IX
TO PROVE: Fn DIVIDES Fnk. . L] L] L . . L) Ld Ld L] L] L] L] L] . L L] L] . * ° *

Marjorie Bicknell, Wilcox High School, and Verner E. Hoggatt, Jr.,
San Jose State College (FQ 9:5, December, 1971, pp. 529-537)

A PRIMER FOR THE FIBONACCI NUMBERS: PART X
ON THE REPRESENTATIONS CF INTEGERS « o« o o o o o o o ¢ o o s s s s o o

Brother Alfred Brousseau, St. Mary's College
(FQ 10:5, December, 1972)

A PRIMER FOR TEE FIBCNACCI NUMBERS: PART XII
ON REPRESENTATICNS OF INTEGERS USING FIBONACCI NUMBERS & 4 o « o « o &

V. E. Hoggatt, Jr., and Nannette Cox, San Jose State University,
and Marjorie Bicknell, Wilcox High School
(FQ 11:2, 11:3, April and October, 1973)

FI BONACC I NU}IBERS AND GEOMETRY L] L] L] . . . L] L] L] L . . L] . L] . * L] L] L]

Brother Alfred Brousseau, St. Mary's College
(FQ 10:3, April, 1972, pp. 303-318)

A PRIMER FOR THE FIBCONACCI NUMBERS: PART XI

MULTISECTION GENERATING FUNCTIONS FOR THE COLUMNS OF PASCAL'S TRIANGLE

V. E. Hoggatt, ﬁr., and Janet Crump Anaya, San Jose State University
(FQ 11:1, February, 1973)

SOLUTIONS To PROBLEMS. . . . L L L L] L] L] . L L L * L] L L . L d L . L] L] L

vii

Page

111

118

127

146

159

166



L A A A A B A LN



=il A A A A J

EXPLORING FIBONACCI NUMBERS

Brother Alfred Brousseau
St. Mary's College, Ca.

What are currently known as Fibonacci numbers came into existence as
part of a mathematical puzzle problem proposed'by Leonardo Pisano (also known
as Fibonacci) in his famous book on arithmetic, the Liber Abaci (1202). Ee
set up the following situation for the breeding of rabbits.

Suppose that there is one pair of rabbits in an enclosure in the month
of January; that these rabbits will breed another pair of rabbits in the
month of February; that pairs of rabbits always breed in the second month
following birth and thereafter produce one pair of rabbits monthly. What is
the number of pairs of rabbits at the end of December?

To solve this problem, let us set up a table with columns as follows:

(1) Number of pairs of breeding rabbits at the beginning of the given

monthj

(2) Number of pairs of non-breeding rabbits at the beginning of the

month;

(3) Number of pairs of rabbits bred during the month;

(4) Number of pairs of rabbits at the end of the month.

MONTH (1) (2) (3) (&)
January 1 (o] 1 2
February 1 1 1 3
March 2 1 2 5
April 3 2 3 8

© May 5 3 5 13
June 8 5 8 21
July 13 8 13 34
August 21 13 21 55
September 3h 21 34 89
Cctober 55 34 55 14k
November 89 55 89 233
December 1k 89 14k 377

The answer to the original question is that there are 377 pairs of rabbits
at the end of December. But the curious fact that characterizes the series
of numbers ewvelved in this way is: any one number is the sum of the two

previous numbers. Furthermore, it will be observed that all four columns in

1
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the above table are formed from numbers of the same series which has since

come to be known as THE Fibonacci serie

1. EXPLO

st 0,1, 1, 2, 3

RATICN

] 5’ 8’ 13’ 21' eee o

Did anytody ever find out what happened to the "Fibonacci rabbits'" when

they began to é&ie? Since they have been operating with such mathematical

regularity in other respects, let us assume the following as well. A pair

of rabbits that is bred in February of cne year breeds in April and every

month thereafter including February of the following year. Then this pair

of rabbits dies at the end of February.

(1) Eow many pairs of rabbits are there at the end of December of the

second year?

(2) How many pairs of rabbits would there be at the end of n months,

where n is greater than or equal to 127

(See what follows for notation.)

Assume that the original pair of rabbits dies at the end of December of

the first year.
2. NAMZES FCR ALL T

The inveterate Fibonacci addict te

I3CNACCI NUMBERS

nds to attribute

to each Fibonacci number. MNention 13 and he thinks F7;

through his mind. But regardless of th

is rsychological

a certain individuality

a \
55 and FlO flashes

guirk, it is conveni=-

ent to give the Fibonacci nuzbers identification tags and since they are

infinitely numerous, these tags take the form of subscripts attached tc the

letter F. Thus O is denoted Fo; the first 1 in the series is Fl;'the second

lis Fa; 2 is F3; 3 is FQ; 5 is FS; etc

. The following

table for Fn shows a

few of the Fibonacci numbers and then provides additional landmariks so that

it will be convenient for each Fibonacci explorer to make up his own table,

n Fn n
o} o} 11
1 1 12
2 1 13
3 2 14
L 3 20
5 5 30
6 8 Lo
?7 13 50
8 21 60
9 3k 70
10 55 8o

Fn

89

144

233

377

6765

8322040
102334155
12586269025
1548008755920
190392490709135
23416728348467685

Iy X X X X X Xuli
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3. SUMMATION PROBLEMS

The first question we might ask is: What is the sum of the first n
terms of the series? A simple procedure for answering this question is to
make up a table in which we list the Fibonacci numbers in one column and

their sum up to a given point in another.

F Sum
1
2
I
7

12

20

13 33

21 sk

oo NN ownm FuwWw KB
co U wmNnH HB

What does the sum look like? It is not a Fibonacci number, but if we add 1
to the sum, it is the Fibonacci number two steps ahead. Thus we could write:

1+2+3+...+34+55(F1°)=1L»3=1L+L+-1=(r12)-1,

where we have indicated the names of the key Fibonacci numbers in paren-
theses. It is convenient at this point to introduce the summation notation.

The above can be written more concisely:

10
Z F, =F, -1
k=1

The Greek letter 2: (sigma) means: Take the sum of quantities Fk’ where k

runs from 1 to 10. We shall use this notation in what follows.
It appears that the sum of any number of consecutive Fibonacci numbers

starting with Fl is found by taking the Fibonacci number two steps beyond the

last one in the sum and subtracting l. Thus if we were to add the first
hundred Fibonacci numbers together we would expect to obtain for an answer

Flo2 - 1. Can we be sure of this? Not completely, unless we have provided

some form of proof. We shall begin with a numerical proof meaning a proof
that uses specific numbers. The line of reasoning employed can then be
readily extended to the general case.

Let us go back then to the sum of the first ten Fibonacci numbers. We

have seen that this sum is F._, - 1. Now suppose that we add 89 (or Fll) to

12
both sides of the equation. Then on the lefthand side we have the sum of the



first eleven Fibonacci numbers and on the right we have

14k -1 + 89 =F -1+F -1

12 11 =333 -1=F

13

Thus, proceeding from the sum of the first ten Fibonacci numbers to the sum
of the first eleven Fibonacci numbers, we have shown that the same type of
relation must hold. 1Is it not evident that we could now go on from eleven to
twelve; then from twelve to thirteen; etc., so that the relation must hold in
general?

This is the type of reasoning that is used in the general proof by
mathematical induction. We suppose that the sum of the first n Fibonacci

numbers is Fn+2 - 1. In symbols:

n
ZFk =Fle2-1
k=1

We add Fn+l to both sides and obtain

n+l
:S Fp =Fqep -1+ Fp = Fn+3 -1
k=1

by reason of the fundamental property of Fibonacci series that the sum of any
two consecutive Fibonacci numbers is the next Fibonacci number. e have now
shown that if the summation holds for n, it holds also for n + 1. All that
remains to be done is to go back to the beginning of the series and draw a

complete conclusion. Let us suppose, as can readily be done, that the formula

for the sum of the first n terms of the Fibonacci sequence holds for n < 7.

Since the formula holds for seven, it holds for eight; since it holds for

eight, it holds for nine; etc., etc. Thus the formula is true for all integral

positive values of n,

We have seen from this example that there are two ﬁarts to our mathe-
matical exploration. In the first we observe and thus arrive at a formula.
In the second we prove that the formula is true in general.

Let us t&ke one more example. Suppose we wish to find the sum of all

the odd-numbered Fibonacci numbers. Again, we can form our table.

n Fn Sum
1 1 1l
3 2 3
5 5 8
7 13 21
9 34 55

11 89 144

acaaae I X X ¥ Xukl
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This is really too easy. We have come up with a Fibonacci number as the sum.
Actually it is the very next after the last quantity added. We shall leave
the proof to the explorer. However, the question of fitting the above results
into notation might cause some trouble. What we need is a type of subscript
that will give us just the odd numbers and no others. For the above sum to

11, we would write

It will be seen that when k is 1, 2k-1 is 1; when k is 2, 2k-1 is 3; etc.,
and when k is 6, 2k-1 is 11. In general, the relation for the sum of the

first n odd-subscripted Fibonaceci numbers would be:

n
D Faea = Fonr
k=1

4, PROBLEMS FOR EXPLORATION

1. Determine the sum of the first n even-subscripted Fibonacei numbers.
2. If we take every fourth Fibonacci number and add, four series are
possible:
(a) Subscripts 1, 5, 9, 13, «..
(b) Subscripts 2, 6, 10, 14, ...
(c) Subscripts 3, 7, 11, 15, ...
(d) Subscripts &4, 8, 12, 16, ...
Determine the sum of the first n terms in each of these series. Hint: Lock
for products or squares or near-products or near-squares of Fibonacci numbers
as the result.
3, If we take every third Fibonacci number and add, three series are
possible:
(a) Subscripts 1, 4, 7, 10, ...
(b) Subscripts 2, 5, 8, 11, ...
(e¢) Subscripts 3, 6, 9, 12, ...
Find the sum of the first n terms in each of those series. Hint: Double the
sum and see whether you are near a Fibonacci number.
ssnns sasss sssss
RESEARCH PROJECT: FIBONACCI  NIM
Consider a game involving two players in which initially there is a
group of 100 or less objects. The first player may reduce the pile by any
Fibonacci number. The second does likewise. The player who makes the last

move wins the game. Can the first player always win the game?



THE FIBONACCI SEQUENCE AS IT APPEARS IN NATURE

S. L. Basin
San Jose State College, San Jose, Calif.

1. INTRODUCTION

The regular spiral arrangement of leaves around plant stalks has
enjoyed much attention by botanists and mathematicians in their attempt to

unravel the mysteries of this organic symmetry. Because of the abundance of

literature on phyllotaxis no more attention will be devoted to it here.

However, the Fibonacci numbers have the strange habit of appearing where
least expected in other natural Phenomena.
demonstrate this fact..

The following snapshots will
(See [1] and [3] for discussions of phyllotaxis.)

2. THE GENEALOGICAL TREE OF THE MALE BEE

We shall trace the ancestral tree of the male bee backwards, keeping
in mind that the male bee hatches from an unfertilized egg. The fertilized
eggs hatch into females, either workers or queens.,

The following diagran clearly shows that the number of ancestors in any
one generation is a Fibonacci nurber. The symbol (m) represents a male and
the symbol (f) represents a female.

f. ‘ f. f Cf f f 13(&f, 5m)
mrTlIT Ty e
n T T T

|
m

m-—'——f m—,—f 5(3f, 2m)
£ f. 3(2f, 1m)
11'1 f, 2(1f, 1m)
fl 1(1f, Om)
]

3. SIMPLE ELECTRICAL NETWORKS

Even those people interested in electrical networks cannot escape from
our friend Fibonacci. Consider the following simple network of resistors
known as a ladder network. This circuit consists of n L-sections in cascade
and can be characterized or described by calculating the attenuation which
is simply the input voltége divided by the output voltage and denoted by A,

the input impedance Zi and the output impedance Z.. (See [4].)

o]
6
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Proceeding in a manner similar to mathematical induction, consider the

following ladder networks.

n = 1: R Z, = R,
Wr Zi=Pl+R2
R
23 %2 Z, A =R/R,+1
n = 2: 7 = Rg(Rl M Rz)
s o 0= R + 2r, |
1 1
—AM W, ‘ . - Rl(Rl+2R2)+R2(R1+R2)
i~ R, + 2R,
Zy R, R, 2, 1 2
2
= .
2
R.(R, + 2R.)) + R(R, + R,)
N N LA | 2 2R T Ry
' o~ (R1 + RZ)(Rl + BRZ)
R R
Ay, S, 5, 2 2, 43
- M\ . -R1+5R1R2+6R1R2+R2
i~ 2 2
RS + LR.R, + 3R
z; R, R, Ry, Z, 1 172 2
3 2 2 3
A= R] + 5RiR, + 6R1R2 + R;
>
R3

Now suppose all the resistors have the same value, namely, Rl = R2 = 1 ohm.

We have by induction:

2n-1 2n+l
2. = — Z=-—-, A=(F +F)=F .
(0] F2n i F2n 2n-1 2n 2n+1l

In other words, the ladder network can be analyzed by inspection; as n is
allqwed to increase, n =1, 2, 3, 4, ..., the value of Zo for n L-sections
coincides with the nth term in the sequence of Fibonacci ratios, i.e.,
/1, 2/3, 5/8, 13/21, ... . The value of A is given by the sum of the

numerator and derominator of ZO. The value of Zi is also clearly related to

the expression for A and ZO'



L4, SOME REFLECTIONS (Communicated to us by Leo Moser)

The reflection of light rays within two plates of glass is expressed in
terms of the Fibonacci numbers, i. e., if no reflections are allowed, one
ray will emerge; if one reflection is allowed, two rays will emerge; if
two reflections are allowed, three rays will emerge; ..., and if n

reflections are allowed, F _, rays will emerge. (See [6].)

Number of Reflections
2 3

|4 L A i
VA WL T
la/ V\;V\& NIV

Number of Emerging Rays

/

1

|

Y
\
;

FOR ADDITIONAL READING

1. H. S. M. Coxeter, Introduction to Geometry, John Wiley and Sons,
1961, pp. 169-172. A complete chapter on Phyllotaxis and Fibonacci nunmbers

appears in easily digestible treatment.
2. N. N. Vorobyov, The Fibonacci Numbers, Blaisdell, New York, 1961.
(Translation from the Russian by Halina Moss) This booklet discusses the

elementary properties of Fibonacci numbers, their application to geometry,

and their connection with the theory of continued fractions.
3., Robert Land, The Language of Mathematics, John Murray, London, 19€0.
Chapter XIII, pp. 215-225. A very interesting chapter including some

phyllotaxis.

4, S. L. Basin, "Appearance of Fibonacci Numbers and the Q Matrix in
Electrical Network Theory', Mathematics Magazine, March, 1963,

5. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton
Mifflin Mathematics Enrichment Series, Houghton Mifflin Company, Boston,
1969. An introductory study of the Fibonacci numbers and their properties

and relationships to algebra and geometry, as well as an entire chapter on

phyllotaxis and on the Golden Section.
6. Leo Moser, Elementary Problem B-6. Solution by J. L. Brown, dJr.

Fibonacci Quarterly, Vol. 1, No. 4, December, 1963, pp. 75-76.
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PHYLLOTAXIS

Sister Mary de Sales McNabb
Georgetown Visitation Preparatory School

When Nehemiah Grew remarked in 1682 that "from the contemplation of
plants, men might be invited to Mathematical Enquirys," [5] he might not have
been thinking of the amazing relationship between phyllotaxis and Fibonacci
numbers, but he could well have been§ for the phenomenon of phyllotaxis,
literally "leaf arrangement," has long been a subject of special investigation,
much speculation, and even heated debate among mathematicians and botanists
alike,

By right it is the botanists who deserve the credit for bringing to light
the discovery that plants of every type and description seem to have their
form elements, that is, their branches, leaves, flowers, or seeds, assembled
and arranged according to a certain general pattern; but surely even the old
Greek and Egyptian geometers could not have failed to observe the spiral nature
of the architecture of plants. Many and varied and even contradictory are the
theories on this fascinating phenomenon of phyllotaxis, but it would be beyond
the scope of this paper to investigate them here; instead we shall simply try
to describe the manifestation of it in the interval-spacing of leaves around
a cylindrical stem, in the florets of the sunflower and, finally, in the scales
of fir cones and pineapples.

Before we proceed to consider the actual arrangement of the form elements,
hawever, it is interesting to note the relationship between the number of petals
of many well-known flowers and the Fibonacci numbers. Two-petalled flowers
are not common but enchanter's nightshade is one such example. Several members
of the iris and lily families have three petals, while five-petalled flowers,
including the common buttercup, some delphiniums, larkspurs and columbines, are
the most common of all. Other varieties of delphiniums have eight petals, as
does the lesser celandine, and in the daisy family, squalid and field senecio
likewise have eight petals in the outer ring of ray florets. Thirteen-petalled
flowers are quite common and include the globe flower and some double delphin-
iums as well as ragwart, corn marigold, mayweed, and several of the chamomiles.
Many garden and wild flowers, including some heleniums and asters, chicory,
doronicum, and some hawk-bits, have twenty-one petals, while thirty-four is
the most common number in the daisy family and is characteristic of the field
daisies, ox-eye daisies, some heleniums, gaillardias, plantains, pyrethrums,

and a number of hawk-bits and hawkweeds. Some field daisies have fifty-five

9
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petals, and Michaelmas daisies often have either fifty-five or eighty-nine
petals. It is difficult to trace this relationship much further, but it must
be remembered that this number pattern is not necessarily followed by every
plant of a species but simply seems to be characteristic of the species as a
whole. »

Fibonacci numbers occur in other types of patterns too. The milkwort
will commonly be found to have two large sepals, three smaller sepals, five
petals and eight stamens, and Frank Land [4] reports that he found a clump of
alstroemerias in his garden in which one plant had two flowers growing on each
of three stalks and that, where the three stalks grew out from the top of the
main stem, a whorl of five leaves grew out radially; while another plant had
three flowers on each of five stems with a whorl of eight leaves at the base
of the flower stalks. ' ‘

The Fibonacci number pattern, however, which has received the most
attention is that associated with the spiral arrangement of the form elements
of the plants. In its simplest manifestation it may be observed in plants and
trees which have their leaves or buds or branches arranged at intervals around
a cylindrical stem. If we should take a twig or branch of a tree, for instance,
and choose a certain bud, then by revolving the hand spirally around the branch
until we came to a bud directly above the first one counted, we would find that
the number of buds per revolution as well as the number of revolutions itself
are both Fibonacci numbers, consecutive or alternate ones depending on the
direction of revolution, and different for various plants and trees. If the
number of revolutions is = and the number of leaves or buds is n, then the
leaf or bud arrangement is commonly called an m/n spiral or m/n phyllotaxis.

Hence in some trees, such as the elm and basswood, where the leaves along a

twig seem to occur Qirectly opposite one another, we speak of 1/2 phyllotaxis,
whereas in the beech and the hazel, where the leaves are separated by one-third
of a revolution, we speak of 1/3 phyllotaxis. Likewise, the oak, the apricot,
and the cherry tree exhibit 2/5 phyllotaxis, the poplar and the pearv3/8,
while that of the willow and the almond is 5/13. Much investigation along
these lines seems to indicate that, at least as far as leaves and blossoms are
concerned, each species is characterized by its own particular phyllotaxis
ratio, and that almost always, except where damage or abnormal growth has
modified the #rrangement, the ratios encountered are ratios of consecutive or
alternate terms of the Fibomacci sequence.

when the form elements of certain plants are assembled in the form of a
disk rather than along a cylindrical stem, we have a slightly different form
of phyllotaxis. It is best exemplified in the head of a sunflower, which
consists of a number of tightly packed florets, in reality the seeds of the

‘flower. Very clearly the seeds can be seen to be distributed over the head in

ey X X X X X0
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two distinct sets of spirals which radiate from the center of the head to the
outermost edge in both clockwise and counterclockwise directions. These spi-
rals, logarithmic in character, are of the same nature as those mentioned
earlier in plants with cylindrical stems, but in thoée instances, the adjacent
leaves being generally rather far apart along the stem, it is more difficult
for the eye to detect the regular spiral arrangement. Here in the close-packed
arrangement of the head of the sunflower, we can see the phenomenon in almost
two-dimension;l form. As was the case with the cylindrical-stemmed plants,

the number pattern exhibited by the double sets of spirals is intimately

bound up with Fibonacci numbers. The normal sunflower head, which is about
five or six inches in diameter, will generally have thirty-four spirals winding
in one direction and fifty-five in the other. Smaller sunflower heads will
commonly exhibit twenty-one spirals in one direction and thirty-four in the
other or a combination of thirteen and twenty-one. Abnormally large heads have
been developed with a combination of fifty-five and eighty-nine spirals and
even a gigantic one at Oxford with eighty-nine spirals in one direction and a
bhundred and forty-four in the other. In each jinstance the combination of
clockwise and counterclockwise spirals consists of successive terms of the
Fibonacci sequence.

One other interesting manifestation of phyllotaxis and its relation to the
Fibonacci numbers is observed in the seales of fir cones and pineapples. These
scales are really modified leaves crowded together on relatively short stems,
and so, in a sense, we have a combination of the other two forms of the phenom-
enon; namely, a short conical or cylindrical stem and a close-packed arrange-
ment which easily enables us to observe that the scales are arranged in
ascending spirals or helical whorls called parastichies. In the fir cone, as
in the sunflower head, two sets of spirals are obvious, and hence in many cones,
such as those of the Norway spruce or the American larch, five rows of scales
may be seen to be winding steeply up the cone in one direction while three
rows wind less steeply the other way; in the common larch we usually find eight
rows winding in one direction and five in the other, and frequently the two
arrangements cross each other on different parts of the cone. In the pineapple,
on the other hand, three distinct groups of parastichies may be observed; five
rows winding slowly up the pineapple in one direction, eight rows ascending
more steeply in the opposite direction, and, finally, thirteen rows winding
upwards very steeply in the first direction. The fact that pineapple scales
are of irregular hexagonal shapes accounts for the three sets of whorls, for
three distinct sets of scales can consequently be contiguous, and hence,
constitute a different formation. Moreover, Fibonacci numbers manifest them=-
selves in still another way in connection with the scales of the pineapple.

If the scales should be numbered successively around the fruit from the bottom
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to the top, the numbering being based on the corresponding lateral distances
of the scales along the axis of the pineapple, we would find that each of the
three observable groups of parastichies winds through numbers which constitute
arithmetic sequences with common differences of 5, 8, and 13, the same three
successive Fibonacci numbers observed above. Thus a spiral of the first group
would ascend through the numbers O, 5, 10, ...; one of the second group through
the numbers O, 8, 16, ...; and, finally, a spiral of the third group would wind
steeply up the pineapple through the numbers O, 13, 26, ee. «

In all these many and varied ways, then, in the number of petals possessed
by different species of flowering plants, in the interspacing of leaves or buds
around a cylindrical stem, in the double spirals of the close-packed florets
of sunflowers, and in the ascending spirals or parastichies of the fir cone
and the pineapple, we hayve encountered number patterns which again and again
involve particular terms of the Fibomacci sequence. These Fibonacci number
patterns or combinations occur so continually in the varied manifestations of
phyllotaxis that we often hear of the "law" of phyllotaxis. However, it must
be admitted that not all four-petalled flowers are so rare as the four-leaf
clover is reputed to be, and that other combinations also occur, notably in
those species exhibiting symmetrical arrangements. Moreover, in the cases of
fir cones and some large sunflowers, where the spiral pattern can be verified
more carefully, deviations, sometimes even large ones, from the Fibonacci
pattern have been found. If this is at all disturbing to the modern botanist,
it is not at all so to the Fibonacci devotee, for whom the whole phenomenon,
if not a "law'", is at least, in the words of H. S. M. Coxeter [1], a

fascinatingly prevalent tendency!
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4 5 3 = 5 8 s 5 3 * O

V. E. Hoggatt, Jr., raised a large sunflower in Santa Clara, California,
which exhibited Lucas numbers 76 and 123 in its spiral arrangements. The
Llucas numbers 1, 3, &4, 7, 11, 18, 29, 47, 76, 123, ..., which have the same
rule of formation as the Fibonacci numbers, seem to occur when Fibonacci numbers

do not in phyllotaxis, at least frequently enough to be interesting.
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A PRIMER ON THE FIBCNACCI SEQUENCE: PART I

S. L. Basin and Verner E. Hoggatt, Jr.
San Jose State College, San Jose, Calif.

SIMPLE PROPERTIES OF THE FIBONACCI SEJUENCE AND MATEEMATICAL INDUCTION

The proofs of Fibonacci identities serve as very suitable examples of
certain techniques encountered in a first course in college algebra., With
this in mind, it is the intention of this series of articles to introduce
the beginner to the Fibonacci sequence and a few techniques in proving some
number theoretic identities as well as furnishing examples of well-known
methods of proof such as mathematical induction. The collection of proofs
that will be given in this $eries may serve as a source of elementary

examples for classroom use.
1. SCME ZIMFLE FROPERTIZS CF TZ= FIBCNACCI SERUENCE

By observation of the seguence 1, 1, 2, 3, 5, 8, «¢., it is easily
seen that each term is the sum of the two preceding terms. In mathematical

language, we define this sequence by

- - - o +
(1) Fl =1, F2 =1, and Fn+2 =T Fn

for all intecers n. The first few Tibonacci numbers are:
i, 1, 2, 3 5, 8 13, 21, 34, 55, 89, 1L, 233, 377, 510, 987, ...

The Lucas numbers Ln satisfy the same recurrence relation but have

different starting values, namely,

(B) L, =1, L, = 3, and L =L + L

1 2 n+2
for all integers n. The first few Lucas numbers are:

1’ 3’ 4' 71 lll 187 29' L"?’ 76’ 123, 199’ 322’ 521, 8L|’3, l}sh, e ece

The following are some simple formulas which are called Fibonacci

Number Identities or Lucas Number Identities for n > 1.

13
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(1) Fy+ Fp +Fyv oo #F = F -1
(2) Ly +Ly+Lg+ ee. L =L 5= 3
(3 F .y - Fo= (-D"
() L, L, - Lo =50
(5) I'n = Fn+1 * Fn-l
(6 5'Fn = Ln+l * Ln-l
&)) ' Fonsl = F:+1 * Fi
(8 Fon = Fas1 = Fao
(9) FZn = FnLn
(10) Fn+p+1 = Ib'.‘n-o»lppd-l * Fan
(11)  F{ + F5 + F5 + ou + F2 = FF ..
(12) L2 - 5.F2 = 4(-1)"
(13) F_ o= (<D™
(14) L = (-1

2. MATEEMATICAL INDUCTICN

Any proofs of the foregoing identities ultimately depend upon the
postulate of complete mathematical induction.

First one has a formula involving an integer n. »For some values of n
the formula has been seen to be true. This may be one, two, or, say,
twenty times. Now the excitement sets in. Is it true for all positive n?
One may prove this by appealing to mathematical induction, whose three
phases are:

A. Statement P(l) is true by trial. (If you can't find a first true

a I alay ¥ X ¥ Xui
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case...why do you think it's true for any n,.let alone all n? Here you need
some true cases to start with.) An example of a statement P(n) is
l+2+3+ e +n=n(n+ 1)/2. It is simple to see that P(1l) is true;

that is, that 1 = 1(1 + 1)/2.
B. The truth of statement F(k) logically implies the truth of P(k+l).

In other words, if P(k) is true, then P(k+l) is true. This step is commonly
referred to as the inductive transition. The actual method used to prove
this implication may vary from simple algebra to very profound theory.

C. The statement that 'The proof is complete by mathematical induction?.

As an example, let us prove identity (1). Recall from (A) that

F, = 1, F, = 1, and Foo=Fq1* Fn' Statement F(n) is

2 2 n+

P(n): . Fl + FZ + F3 + ..: + Fn = Fn+2 - 1.

i i = = = = - =F, - 1.
A. P(l) is true, since Fl 1, FZ 1, F3 2, so that Fl 2 -1 Fs 1

B. Assume that P(kx) is true; that is,
P(k): Fl + Fa + F3 + e + Fk - Fk+2 - lo

From this we will show that the truth of P(k) demands the truth of PF(k+l),

which is
(1 . il I3 7 = r -
P‘(.‘("‘l). (.l + 1'2 + 23 +* e + Fk) + Fk+l = fk +3 l‘

Since we assume P(kx) is true, we may therefore assume that, in P(k+1l), we
That is, P(k+l) may be

-

may replace (Fl + F2 *Fybeen v Fk) by (Fk+2 -1).

rewritten as

) -1=F - 1.

(F k+3

k+2 ~ 1+ Fk+l = (Fk+2 * Fk+1

This is now clearly true from (A), which for n = k + 1 becomes
Fres = Froz * Fieane
C. The proof is éomplete by mathematical induction.

3. A BIT OF THEORY (Crarer's Rule)

Next we need a bit of determinant theory. Given a second order

determinant, by definition
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The following theorem can be proved using the definition and simple algebra.

THECREM: For any real numbers x and y,

ax + by b ax b

= xD
cxX d

cx + dy d

Suppose a system of two simultaneous equations possesses a unique solution

ax + by
cx + dy
is satisfied if and only if x = Xq and y = Yoo This is specified by saying

that

ax. + by, = e
(c) { ° °
eX, + dyo =

(xo, yo); that is,

[
(2]

are true statements. From our definition of determinant and the theoren,

for x = Xq and y = Yor we may write

axy + byo b e b
xoD =

CXq + dyo d

where we used (C) to rewrite the determinant. Thus,

A A WA
X0 1E di _ If d) and Jo =~ .= £ s D#0,
D : la b| D a
c d c d

which is Cramer's Rule.
Algebraically, we see that we must take D # 0. Geometrically, D =0

if the graphs of the two linear equations are distinct parallel lines
(inconsistent equations) or if the graphs are the same line (redundant
equations). If the graphs (lines) are not parallel or coincident, then the

common point of intersection is (xo, yo).

4., A CLEVER DEVICE IN ACHIEVING AN INDUCTIVE TRANSITICN

Now, to apply our theory in a proof by mathematical induction, suppose
we write two examples of definition (A), for n = k and for n = k -1,

obtaining Fk+2 = Fk+1 + Fk and Fk+l = Fk + Fk-l' and then let us try to

solve the pair of simultaneous linear equations,

Y YmX ¥ Y

X Y X X

MAAAAAA
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(D)

Fraop = Xy * ¥
F

kel T ¥ Y-
This is silly because we know that the answer is Xq = 1 and Yo = 1, but

using Cramer's Rule we note:

Frel  Tre2
2
(E) oo e Fral | Feen T Fefieo
yo‘ = F F = 2
el " FeFry - Fo
i Fea1

Let us now use Mathematical Induction to prove Identity (3) which is

. 2 _ n
P(n): Fly1Fpoq = Fp = (-1)

If we note that Fo = 0 is valid, then P(1): FZFO - Fi = (-1)1 = =1
is true, and part A is done.
Suppose F(kx) is true. From (E) and the inducion hypothesis,

22 oo -2 -
1. k1 T TkTke2 Frel T TxTxe2
= 2 - Kk
FeerFimr = Fie (-1)
2 k+1

so that F(x+1): Foeof - Fk+l = (=1) is indeed true! Thus part B

is done. The proof is complete by mathematical induction, and part C is

done.
411 of the other identities given in this article can be proved by

mathematical induction. To test your understanding, you should prove several

of them.

Problem B-1 (Proposed by I. D. Ruggles) Show that the sum of twenty

consecutive Fibonacci numbers is divisible by FlO'
B-2 (Provosed by Verner E. Hoggatt, Jr.) Show that

+ .ces + U = 1lu

b *u n+10 n+?

n+l n+2
1 . . . N =
holds for generalized Fibonacci numbers such that un+2 = un+l + un,
where u, = p and us, = q.
5-3 (Proposed by J. E. Eouseholder) Show that Fn+24 is congruent to

Fn (modulo 9), where Fn is the nth Fibonacci number.



A PRIMER ON THE FIBONACCI SEQUENCE: PART II

S. L. Basin and Verner E. Hoggatt, Jr.
San Jose State College, San Jose, Ca.

A MATRIX WHICH GENERATES FIBCNACCI IDENTITIES

The proofs of existing Fibonacci identities and the discovery of new
identities can be greatly simplified if matrix algebra and a particular
2 x 2 matrix are introduced. The matrix approach to the study of recurring
sequences has been used for some time [1] and the Q matrix appeared in a

thesis by C. H. King [2]. We first present the basic tools of matrix algebra.

1. THE ALGEBRA CF (TWO-EY-TWO) MATRICES

The two-by-two matrix A is an array of four elements a, b, ¢, d:

A= a b
c d
The zero matrix Z and the- identity matrix I are defined as

(o o) 1 o)
Z = 0 0 and I = 0 1/

The matrix C, which is the matrix sum of two matrices A and B, is
b
C=A+B= a ) . [ f) _ 2t b+ f)
c d g h c+ g d+h
The matrix P, which is the matrix product of two matrices A and B, is
a b) e f ae + bg af + bh)
P = AB = c d g h/) \ce + dg cf + dh

The determinant D(4) of matrix A is

a b
D(A) =| dl = ad - bec.

c
Two matrices are equal if and omly if the corresponding elements are equal.

That is, for the matrices A and B above, A = B if and only if a = e, b = {,

c =g, and d = h. :
The proof of the following simple theorem is left as an exercise in

algebra.

18
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THEOREM: The determinant D(F) of the product P = AB of two matrices A
and B is the product of the determinants D(A) and D(B). That is,
D(P) = D(AB) = D(A).D(B).

2. THE Q MATRIX

The Q matrix and the determinant of Q are

1 1l
Q= (1 o/ amd  D(Q =-1.
. (0] 1 0 (0]
If we designate Q = I, the identity matrix, themn Q = Q =Q Q =IQ =QI =QQ .

Definition: Qn+1 = anl, an inductive definition where Ql = Q. This

provides the law of exponents for matrices.
It is easily proved by mathematical induction that

where Fn is the nth Fibonacci number, and the determinant of QP is (-l)n.

3. MORE PROOFS

We may now prove several of the identities very nicely. Let us prove
identity (3) from Part I:
2 n
FrerFa1 - Fp = (-1)
. n . n n n
Proof: Evaluate the determinant of Q in two ways. D(Q ) = D (Q) = (-1)7,
but by definition of determinant, D(Q®) = F_ .F_ . = Fi.

n+l n-1
Now let us prove identity (7), P2n+i = F§+l + Fi. Since QP+1Qn = Q2n+1,
F\/F F F .F .+ FF F2 .+ F°
n n+l n+l n n+2 n+l n+l " n+2 n n+l n+l n
QR = -
Fn Fn- Fn+l Fn FnFn+2 + Fn-an-c-l FnFn+l M Fn-lF

can also be written as

2n+1 _[Fone2  Fonn

F2n+1 ) Fan

Q

Since these two matrices are equal, we may equate corresponding elements,

so that
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F2n+2 = Fn+1Fn+2 + FnFn+l (Upper Left)
(7) Fope1 = Fi+1 + Fﬁ (Upper Right)
Fope1 = Fpn B2 * Fo1Fna (Lower Left)
F,, = FFia* Fn-an ' (Lower Right)

establishing identity (7) as well as two others with some simple algebra.
If we accept identity (5), Ly =Fpa* F _y» then

F = FF

2n pFn+1 * Fa1tn = FpFpa * F ) = FLl»

n=-1"n n-1 nn

which gives identity (9). From Freo = Fk+1 + Fk' for k = n'- 1, one can write

F =F

n ne1 = Fn-1® 8° that we also have identity (8):

2 _ g2

) = Fn+1 n-1

(8) Fon = Fn(Fn+1 * Fn-l) = (Fn+l = Fn-l)(Fn-rl * Fn-l

It is a simple task to verify that Qa = Q + I, leading to
n+2 n+l n AR A .
Q = Q + .Q and Q =9 Fn + 1 Fn-l'

where Fn is the nth Fibonacci number and the multiplication of matrix A, by a

number q, is defined by

QA = q(a b\ _/2q bq
c d cq dg
4, GENERATION OF FIBONACCI NUMBERS BY LONG DIVISION

1 2 n-l
N - > = Fl + Fax + ij + eee + an + oo
- X = X

In the process of long division below

l -x = x2 ) 1l

there is no ending. As far as you care to go the process will yield

Fibonacci numbers as the coefficients.

aTeabd "
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5. Fn_AS A FUNCTION Of ITS SUBSCRIPT

It is not difficult to show by mathematical induction that

P(n): | F_ =ﬁ (l—;ﬁ)n - (1+'/2-)n

This can be derived in many ways. P(1l) and P(2) are clearly true. From

Fe = Feax * B

P(k-2): F o = ;—i— (1_;_1/2")1:-.2 (%1’5)""2
P(k-1): Ry = J__Z;__ ( ;_;_._-y"g)‘“{ '(_]___2__42')1:-1

Adding, after a simple algebra step, we get

e ) - (T

k-1 k-2 © 3

Observing that

l—£ﬁ+l=3£@=(1;{5—)zand ].;__6+1=3£‘V5=(151’5_)2

it follows simply that if P(k-2) and P{k-1l) are true, then for n = k,

P(k): F =F ) +F _,= ‘_/_%_{(1_5_15)]‘ - (%2)1:

making the proof complete by mathematical induction.
Similarly, it may be shown that

The formulas given 1or Fn and Ln in terms of the subscripts are called the

Binét forms for F_ and L _.
—_— n n

Now let us use the Binét forms for F and Ln to prove identity (9),

F = FnLn' a second ways

2n

and the inductive assumption that P(k-2) and P(k-1l) are true,
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n
n

2 5 = FnLn‘
6. MORE IDENTITIES
(15) F =-1_(1+‘r5)n-(1'15)n
n 1ﬁ; 2
n
(16) (1 1+95 )n (1_-_~’2')
2 2
F + (1) 4 s
3 3 3 3 _ Z3n+2 n-1
(17) Fl + F5 + F3 ¥ oeuo + FY = 5
(18) 1--?1 + 2°Fy + 3°Fy + oo +nF = (n+ 1)F w2 = Fpoy + 2
(19) Fy+Fy+ e +Fy = F, o =1
- =1
(20) F1fa * foF5 * Fof) + oo = By 0Py = 3 (Fpp g * FpFpy - 1)
n
(21) :E: (?) Fn-i = F,_, where (?) = 7;-:2%7TI? s M! = 1e2e3.,,,0m,
iT ot =
_ o3 3 3
(22) F3ne3 = Fned * Py - Fg

(23) FoFp = Fpox Frek = (-1)%" ka+k-n

3 _ 3 3 3 3

(24) Fleb = 3Fn+3 * 6Fn+2 - 3Fn+l - F
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FIBONACCI MATRICES AND LAMBDA FUNCTIONS

Marjorie Bicknell and Verner E. Hoggatt, Jr.
San Jose State College, San Jose, Calif.

When we speak of a Fibonacci matrix, we shall have in mind matrices which
contain members of the Fibonacci sequende as elements. An example of a Fibonacci

matrix is the Q matrix as defined by King in [1], where

Q= (1 ' 1)
1 0
The determinant of Q is =1, written det Q = ~1. From a theorem in matrix theory,

det Qn = (det Q)n = (-l)n. By mathematical induction, it can be shown that

n
U = \r F

o that we have the familiar Fibonacci identity F__.F . = F2 = (-1)°
n+l n-l n

by finding det Qn.

The lambda function of a matrix was studied extensively in [2] by Fenton
S. Stancliff, who was a professional musician. Stancliff defined the lambda
function A(M) of a matrix M as the change in the.value of the determinant of M
when the number one is added to each element of M. If we define (M + k) to be
that matrix formed from M by adding any given number k to each element of M,

we have the identity
(1) det (M + k) = det M + kA(M).

For an example, the determinant R(Qn) is given by

. Fn+1 + 1 Fn + 1 ‘ .
= 2 n
= (FyF,q - Fo) + (F,_, + F 0 - 2F) - det 3
= Fn_3

which follows by use of Fibonacci identities. Now if we add k to each element

of Qn, the resulting determinant is

23
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F + k F +k
n+l n _ n
=det @ + k Fn-}'

F o+ k Foq*k

However, there are more convenient ways to evaluate the lambda function.

For simplicity, we consider only 3 x 3 matrices.
THEOREM. For the given general 3 x 3 matrix M, A(M) is expressed by

either of the expressions (2) or (3). For

a b ¢ ' a+e-ba-d b+f-c=-c¢e
(2 M=ld e £l AM) = | s h-g-e e+ j=-h-£f]
g h J
1 b c a 1 ¢ a b 1
(3 A =f1 e fl+ja 1 fi+}d 1
1 J g 1 3 g 1

Proof: This is made by direct evaluation and a simple exercise in algebra..
An application of the lambda function is in the evaluation of determinants.
Whenever there is an obvious value of k such that det (M + k) is easy to find,

we can use equation (1) advantageously. To illustrate this fact, consider

1000 998 554
M= 990 988 ss4 .
675 553 554

We notice that, if we add k = -554 to each element of M, then dget (M + k) =0

since every element in the third column will be zero. From (2) we compute

(o] 10
=120 435

and from (1) we find that O = det M + (-554)(1200), so that det M = (554)(1200).
create determinants which

AM) = = 1200;

Readers who enjoy mathematical curiosities can
are not changed in value when any given number k is added to each element, by
writing any matrix D such that A(D) = o.

LEMMA: If two rows (or columns) of a matrix D have a constant difference
between corresponding elements, then A(D) = O.

Proof: Evaluate A(D) directly, by (2) or (3).

For example, we write the matrix D, where corresponding elements in the

first and second rows differ by 4, such that
1 2 3 1 + k 2+ k 3 + k
det D= |5 6 71=15 +k 6 + k 7+ k| = 2b.
4 9 8 b + Xk 9+ k 8 + k

et X ¥ ¥ Yml
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Now, we consider other Fibonacci matrices. Supposé that we want to write

a Fibonacci matrix U such that det U = Fn' We can write Fn = FlFZFn for any n,

A A A A A

and for some n we will also have other Fibonacci factorizations. Hence, for

1 0 0
U= Fm Fa Fo ’
:k Fp Fn

det U = Fn where Fo = 0. If we choosem =k = 3 and p = 2, we find that

Au)
integer, then A(U) = F .

O. If we choosem =1or 2, k =1 or 2, and let p be an arbitrary

A more elegant way to write such a matrix was suggested by Ginsburg in [3],
who wrote a matrix with the same first two columns as U below but with all
elements in the third column equal to n and thus with determinant value n.

We can write Fm = det U, where

Fap Fopel  Tn

U= F2p+1 F2p+a Fm
F2p+2 F2p+3 Fm

We have, using equation (3),

F2p+1 Fm Fap 1 Fm F2p F2p+l 1
A = 11 Fpo, Fpfl + Faper 1 Fa| * |Fapa Fopez 1
F2p+3 Fm F2p+2 1 Fm F2p+2 F2p+3 1

0 + (o] + 1 1

from (1) we see that det (Ud-Fm_l) =F « (Fm-l)(l) = Fm+l'

If we let k = F
m

m-1'
Notice the possibilities for finding Fibonacci- identities using the
lambda function and evaluation of determinants. As a brief example, we let

k = Fn and consider det (Q" + Fn)’ which gives us

det Q° + F_ y (!

or
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Fn+2 2 Fn s
> F F = (-1) + FnFn_3
n n+l
so that
2 _ n+l
L Fn = Fn+2Fn+l - FnFn-B + (=1) .

A8 a final example of a Fibonacci matrix, we take the matrix R, given by

o] 0 1
R = (0] 1 2 [
1 1 1l

which has been considered by Brennan [4]. It can be shown that

2 2
Fn-l Fn-an Fn
n 2
R = 2 FpaFy Fre1 = Faaafn 2F Fa
2 ‘ 2
Fn FnFn+l Fn+1

by mathematical induction. The reader may verify that by equation (2) and
by Fibonacci identities,

2
AGR®) = (-1MFL_, - By sFp o),

the center element of -2 multiplied by (-1)%.
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Problem B-24 (Proposed by Brother Alfred Brousseau): It is evident
that the determinant below has a value of zero. Prove that if the same
quantity k is added to each element, the value becomes (-l)n-lk.,

F F F

—~ n n+l n+2
Fn+l Fn+2 Fn¢3
Fn+2 Fn+3 Fn+l+

Y Y Y

|

¢
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A PRIMER FOR THEE FIBONACCI SEQUENCE: PART III

Verner E. Hoggatt, Jr., and I. D. Ruggles
San Jose State College, San Jose, Calif.

MORE FIBONACCI IDENTITIES FROM MATRICES AND VECTORS

The algebra of vectors and matrices will be further pursued to derive

some more Fibonacci identities.
1. THE ALGEBRA OF (TWO-DIMENSIONAL) VECTORS

The two-dimensional vector V is an ordered pair of elements, called
scalars, of a field: V = (a, b). (The real numbers, for example, form a
field.) ' .

The zero vector, @, is a vector whose elements are each zeroj g = (0, O).

Two vectors, U = (a, b) and V = (¢, d), are equal if and only if their
corresponding elements are equal; that is, if and only if a = ¢ and b = d.

The vector W, which is the product of a scalar k and a vector U = (a, b),
is W = kU = (ka, kb) = Uk. We see that if k = 1, then kU = U. We shall define
the additive inverse of U by =U = (-1)U.

The vector W, which is the vector sum of two vectors U = (a, b) and
V = (c, d) is

W=U+V=2(a,bd +(c, d) =(a+¢c, b+ de.

The vector W = U = V = U + (-V), which defines subtraction.
The only binary multiplicative operation between two vectors, U = (a, b)

and V = (¢, d), considered here is the scalar or inner product,
UeV = (a, b)+(c, d) = ac + bd,
which is a scalar.

2. A GEOMETRIC INTERPRETATION OF A TWO-DIMENSIONAL VECTOR

One interpretation of the vector U = (a, b) is a directed line segment
from the origin (0, O) to the point (a, b) in a rectangular coordinate system.

‘Every vector, except the zero vector @, will have the direction from the

origin to the point (a, b) and a magnitude or length, IUI =‘Ja2 + ba. The
zero vector @ has a zero magnitude and no defined direction.
The inner or scalar product of two vectors, U = (a, b) and V = (c, d)
can be shown to equal
UeV = |UJ| V] cos B,
whe:e @ is the angle between the two vectors.

27
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3. TWO=-BY-TWO MATRICES AND TWO-DIMENSIONAL VECTORS

If U = (a, b) is written as (a b), then U is a 1 x 2 matrix which we
shall call a row-vector. Similarly, if U = (a, b) is written vertically,
then U becomes a 2 x 1 matrix which we shall call a column-vector.

S

for example, can be considered as two row-vectors R, = (a b) and R, = (¢ Q)

The matrix

in special position, or, as two columa-vectors C, -:(‘) and C, = (b) in
c a

special position. }
The product W of a matrix A and a column-vector X is a column-vector X',

vems (D)6 - (G130 - G-

Thus matrix A, operating upon the vector X, yields another vector, X'. The
zero vector @ is transformed into the zero vector again. In general, the
direction and magnitude of vector X are different from those of vector X',

4. THE INVERSE OF A TWO-BY-TWO MATRIX

If the determinant D(A) of a two-by-two matrix A is non-zero, then there

1A = M-l = I.

From the equation AX = X' or pair of equations ax + by = x' and ¢x + dy = ¥',

exists a matrix A’l. the inverse of matrix A, such that A~

one can solve for the variables x and y provided that D(A) = ad - bc # O.
Suppose this has been done , letting D = D(A) # O, so that

% X' - % y'* = x
%; x' + % y'=y.

Thus the matrix B, such that BX' = X, is given by

a4 =
D D
B = s . D fO.
-C a
D D

It is easy to verify that BA = AB = I. Thus B is A™>, the inverse matrix to

matrix A. The inverse of the Q matrix is QL - (0 1) .
‘ 1 -1

s X X X Xuat

1 ac

~oaeaaa
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5., FIBONACCI IDENTITY USING THE Q MATRIX
1 1 Foel F
Suppose we prove, recalling that Q = (. o and Qn =] B ’
F F
n n-l

that Fl + FZ + ecoe *+ Pn = Fn*z - 1. .

It is easy to establish by mathematical induction that

n¢1

(I#Q+Q "QQQ*Q)(Q-I)"Q .
If (3 - I) has an iqyerse (Q - I)-l. then multiplying on each side yields
I +Q+ QZ + oo * Q s (Q p+l - I)(Q - I)-l

It is easy to verify that Q satisfies the matrix equation Qa =Q+ I. Thus

(Q - I)Q = Q2 - Q=1 and (Q - I)-l s Q. Therefore:

Q+ QZ . e + QP = Qn+2 -(Q+I) = Qn+2 - QZ.

Equating elements in the upper right in the above matrix equation yields

Fl + Fa * eee + Fn = Fn¢2 - FZ = Fn*a - 1.

6. THE CHARACTERISTIC POLYNOMIAL OF A MATRIX A

In section 3, we discussed the transformation AX = X'. Generally the
direction and magnitude of vector X are different from those of vector X'.
If we ask which vectors X have their directions unchanged, we are led to the
equation AX = AX, where Ais a scalar. This can be rewritten as

AI)X = ¢ .

Since we want |X] £ O, the only possible solution occurs when D(A = AI) =

This last equation is called the characteristic equabion of matrix A. The
d the associated

values of A are called characteristic values or eigenvalues an
vectors are the characteristic vectors of matrix A. The characteristic

polynomial of A is D(A - AI).

The characteristic equation for theé Q matrix is &2 - A =1 =0. The
Hamilton-Cayley theorem states that a matrix satisfies its own characteristic

equation, so that for the Q matrix

-qg-1I=0.

Of course, this can be rewritten as Qa = Q+ I, in which form we will use

the matrix equation in‘the next section.
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7. SOME MCRE IDENTITIES

1 1 :
Let Q = (l O) , which satisfies Qa = Q + I. Thus, since Qo =1,

n

(1) Qan = (Qz)n = (3 + I)n = 28 (n) Qi
1T o'

Equating elements in the upper right yields

n
n

Fo, = Z(i) Fy, -
i=20

From (1)

n
QpQZn - Z (n) Qup ,
i
i=20

which gives

n
n
F.211-0-15) - z (l) F:\'.-o-p
i=20

for n > O and integral p.
n .
From part II, @ = FnQ + Fn-lI' so that

mn+p _ m\ i+p_i_m-i
A ( i ) ¥ Fano1
i=0

Equating elements in the upper right of the above matrix equation gives

m
m i _mei
an+p - Z (1) F:i.-o'pFnFu-l '
: i=20

"with m > O, and for any integral p and n.

N X X X Yoi

{
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SOME NEW FIBCNACCI IDENTITIES

Verner E. Hoggatt, Jr. and Marjorie Bicknell
San Jose State College, San Jose, California

In this paper, some new Fibonacci and Lucas identities are generated by
matrix methods.'_

The matrix

0 0 1
R= (O 1 2
1 1 1l

satisfies the matrix equation R3 - ZR2 = 2R + I = O« Multiplying by R yields

n+3 n+2 n+1l n

(1) R - 2R - 2R + R =0 .

It has been shown by Brennan [1] and appears in an earlier article [2] that

2 ' 2
Fn-l ‘Fn-lpn Fn
n 2
(2) R = 2F Fia Fael = FaoaFn 28 Fng ’
2 2
Fn FnFn-u-l Fn+l

where Fn is the nth Fibonacci number.

By the definition of matrix addition, corresponding elements of Rn+3.

n+2 1

R , =
That is, for example,

s and R" must satisfy the recursion formula given in Equation (1).

2 2 2 2
= Fp,o “Fpy +F =0,

2F  _F FF 0.

Fn+3Fn+4 T ““n+2°ne3 T 2Fn+1Fn+2 * fnfpel T

3 2

Returning again to R” =« 2R™ - 2R + I = 0, this equation can be rewritten as

(R+1)2 =R +38%° + 3R+ I = 5R(R + I).

In general, by induction, it can be shown that

2n+l = 5an+p(R + I).

n

(3) RP(R + I)
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Equating the elements in the first row and third column of the above matrices,

by means of Equation (2), we obtain
2n+l 2n + 1 2 a '

(+) ZZ ( i ) Fiep °© > F2(n+p)+1 ¢
i=0

It is not difficult to show that the Lucas numbers and members of the

Fibonacci sequence have the relationship

2 2 n

Since also

2n+1'

2n + 1 i+
zz ( N )(-1) P 2o,

i=0
we can derive the following sum of sguares of Lucas numbers,
2n+l

n + 1 2 n+l
EZ (2 i ) Li+p =5 F2(n+p)+l !
i=0

by substitution of the preceding two identities in Equation (4).
Upon multiplying Equation (3) on the right by (R + I), we obtain

(5) RP(R + 1)27*2 o SBRB*P(R + 1)2

Then, using the expression for Rn given in Equation (2) and the identity
Lk = Fk-l + Fk+1 s we find that

Fan-1 Fon Foner\ f12 o 1
(B s PR+ 1) = | 2F,, oF, . 2, |0 2 2
Fonel Fone2 Fones v d
Lon Lanaa Tane2
=| Zoney Zonsz Fones .
L2n+2 L2n+3 L2n+k

I X X X Inks

anaaas
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Finally, by equating the elements in the first row and third column of the
matrices of Equation (5), we derive the two identities

2n+2
2n + 2
2
5 22;( i ) Fi+p = 5nLa(n+p)+2'

2n+2
Z (Zn + a) L2 ) 5“‘11.
1 T i i+p 2(n+p)+2’

By similar steps, by equating the elements appearing in the first row
and second column of the matrices of Equations (3) and (5), we can write the

additional identities,

2n+1l

Z(an-rl) 2
1 S i Fi-l+pFi+p =3 Fa(nep) °

2n+2
jz 2n + 2) n
15 0( i Fi-1+pFi+p =5 2(n+p)+1 °

REFERENCES
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Editorial Comment

Form the (n + 1) X (n + 1) matrix P, with Pascal's triangle appearing

on and below its secondary diagonal, e. g.,

P4 =

H O O O O
H 0o o o
H N M O O

W W H o
T

1
Surely the reader will see R = P, and matrix Py very 1like Q in the lower left.

The element occurring in the lower left corner of Pi is always F:, and the

characteristic equation of Pn has the Fibonomial coefficients appearing, leading

to identities such as described in the next article,



FIBONACCI NUMBERS AND GENERALIZED BINCMIAL COEFFICIENTS

V. E. Hoggatt, Jr.
San Jose State College, San Jose, California

1. INTRODUCTION

The first time most students meet the binomial coefficients is in the

expansion
n
(x + P = z (n)xn-:)y:l , n>o0,
iSo M
where

(2) o= ()5 Q) o
(D)= ("2) - (203) ocacn,

Consistent with the above definition is

(2)

n\ _ n(n = 1)-«¢ 2-1 = n! ,
( ) T m(m = 1)cc2°l (n =m)(n - m - 1)ece2el m!(n - m)!

m
where
n! =n(n - 1)(n - 2)*++2°1 and 0! =1 .

Given the first lines of Pascal's arithmetic triangle one can extend the table
to the next line using directly definition (2) or the recurrence relation (1).
We now can see just how the ordinary binomial coefficients (n) are

: m
related to the sequence of integers 1, 2, 3, «e.y ky «o. » Let us generalize
this observation using the Fibonacci sequence.

2. THE FIBONOMIAL COEFFICIENTS

Let the Fibonomial coefficients (which are a special case of the
generalized binomial coefficients) be defined as
F F ces FZFI

l = T-* = 0<K<Km<n
5 1] ]
m ] Fmpm-l - 'FaFl) (Fli-mrxl-m-l' ‘ .FZFI

34
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n n
and [ ) ] = [ n ] = 1, where Fn is the nth Fibonacci number, defined by

Fn = Fn-l + Fn-Z ’ F, =F,=1.

35

We next seek a convenient recurrence relation, like (1) for the ordinary

binomial coefficients, to get the next line from the first few lines of the

Fibonomial triangle.
To find two such recurrence relations we recall the Q-matrix,

- (1 o)

for which it is easily established by mathematical induction that '

The laws of exponents hold for the Q-matrix so that Qn = Qan°m « Thus

Fn+l Fn Fm+l Fm Fn-m+1 Fn-m
Fn Fn-l Fm Fm-l Fn-m Fn-m-l
= Fm+1Fn-m+l * Fmpn-m F:n+an-m * Fan-m-l
Fan-m+l M Fm-an-m Fan-m * Fm-an-m-l

yielding, upon equating corresponding elements,

(a) F, = FooiFoom * FoFo n1 (upper right) ,

(B) - F, = Fan-m+l + Fm-an-m (lower left).

Define C so that

eseF_F :
21 =FC .

(Fn-an-m—l...FZFl) n

[ n ] = Fn n-l
mJ (Fmpm-l.'.FZFl)

With C defined above, then

n-1 4 n -1 _
[ m].1-*1‘__“1(: and [ ]-rmc.
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Returning now to identity (A), we may write for C ¥ O,

(F. C)+F

FnC = Fm+l n-m n-m-l(FmC)

but by the definition of C, we have derived

(D) [ :] = le[n ; 1] * Fn-m-l[:

Similarly, using identity (B), one can establish

(E) [:]= Fm-l[n;1] *Fn-m+1[: 1]

It is thus now easy to establish by mathematical induction that if the

]
[

]

Fibonomial coefficients are integers for an integer n (m = 0, 1, ..., n),
then they are integers for an integer n +1 (m =0, 1, 2, ¢..y 0 + 1).
Recalling

Lm = Fm+l * Fm-l

and adding (D) and (E) yields

& R SR NE

where Lm is the mth Lucas number. From (3) it is harder to show that the

Fibonomial coefficients are integers.

3. THE FIBONOMIAL TRIANGLE

Pascal's arithmetic triangle -

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

GO 4 I 0 B (O B 4

has been the subject of many studies and has always generated interest. We
note here to get the next line we merely use the recurrence relation (L.

Here we point out two interpretations, one of which shows a direction for

RERERY X X X YmEs
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generalization. The usual first meeting with Pascal's triangle lies in the
binomial theorem expansion of (x + y)n. Eowever, of much interest to us is
the difference equation interpretation. The difference equation satisfied by
no is

0

(n + 1)° -n =0 ,
while the difference equation satisfied by n is
(n+2)-=2(n+1) +n=0 .

For n2 the difference equation is

2

(n + 3)2 - 3(n + 2)2 + 3(n + 1)2 -n“=0.

Certainly one notices the binomial coefficients with alternating signms

appearing here. In fact,

m+ 1 :
m+ 1
I G LR LR
i=o

It is this connection with the difference equations for the powers of the
integers that leads us naturally to the Fibonomial triangle.

Similar to the difference equation coefficients array for the powers of
the positive integers which results in Pascal'é arithmetic triangle with
alternating éigns, there is the Fibonomial triangle made up of the Fibonomial
coefficients, with doubly alternated signs. We first write down the Fibonomial

triangle for the first six levels.

1
1 1
1 1 1
1 2 2 1
1 3 6 3 1
1 5 15 15 5 1
1 8 ko 60 Lo 8 1

The top line is the zeroth row and the coefficients in the difference equation
satisfied by Fﬁ are the numbers in the (k + 1l)st row. Of course, we can get

the next line of Fibonomial coefficients by using our recurrence relation (D),
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n n-1 n - 1]
=F + F 9 0K<Km<n .
[m] n+l[ o ] n-m-l[m-l

We now rewrite the Fibonomial triangle with appropriate signs so that the
rows are properly signed to be the coefficients in the difference equation

satisfied by Fﬁ .

1
O : 1 -1
p
FLo: 1 1 -1
n
F2 1 -2 2 s
Fz s 1 =3 -6 +3 +1
N -
Fn H 1 -5 «15 +15 +5 -1
F2: o1 -8 -40 +60 +40 -8 A
Thus, from the above we may write
2 2 2 2
Fn+3 - 2Fn+2 - 2Fn+l + Fn =0 and
L 4 L 4 4 L
Fn+5 = SFpey - lsFn+3 +15F o 2 F, = o .

The auxiliary polynomial for the difference equation satisfied by F® is
n

m+ 1 .m .1
:E: [ : ](_l)h(h+1)/2 a+1-h
h=0

which shows that the sign pattern of doubly alternating signs persists. (See
[1], [2].) (Further generalizations given in the original paper are here

omitted.)
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A FRIMER FOR THE FIBONACCI NUMBERS: PART IV

V. E. Hoggatt, Jr., and I. D. Ruggles
San Jose State College, San Jose, Calif,

FIBONACCI AND LUCAS VECTORS
1. INTRODUCTION

In the primer, Part III, it was noted that if V = (x, y) is a two-
a b
c d

a two-dimensional vector, V' = (x', y') = (ax + by, ¢x + dy). Here, V and

dimensional vector and A is a 2 x 2 matrix, A = ( ) s then V' = AV is

consequently V', are expressed as column vectors. The matrix A is said to
transform, or map, the vector V onto the vector V'. The matrix A is called

the mapring matrix or transformation matrix.

2, SOME MAPPING MATRICES

o] o
The zero matrix, Z = (O 0 ) y maps every vector V onto the zero
vector g = (0, O). The identity matrix, I = (l o) s maps every vector V
o 1

1 1
onto itself; that is, IV = V. For any real number k, the matrix B = (2 2)

maps vectors V = (k, -k) onto the zero vector dg. Such a mapping as
determined by B is called a many-to-one mapping.

If the only vector mapped onto @ is the vector @ itself, the mapping is
a one-to-one mapping. A matrix A determines a one-toc-one mapping of two-
dimensional vectors onto two-dimensional vectors if, and only if, det A # 0.
If det A # 0, for each vector U, there exists a vector V such that AV = U.

x X +y

Note, however, that for matrix B above, B (y) = (Zx . Zy) « There is
no vector V such that BV = (0, 1).

3. GECMETRIC INTERPRETATIONS OF 2x2 MATRICES
AND 2-DIMENSIONAL VECTORS

As in Primer III, the vector V = (x, y) is interpreted as a point in a

rectangular coordinate system. Thus the geometric concepts of length, direction,

~ slope and angle are associated with the vector V.

A non-zero scalar multiple of the identity matrix, kI, maps the vector
U = (a, b) onto the vector V = (ka, kb). The length of V, |[V] , is equal to

39
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|x{lul . There is no change in slope but if k < O the sense or direction

is reversed.
0 1

1 0
respect to the line through the origin with slope one. Note that different

The matrix ( ) maps a vector onto the reflection vector with

vectors may be rotated through different angles!
1 o]
(o} (o}
annihilating the second component. Every vector is mapped onto a vector on

The matrix ( ) preserves the first component of a vector while

the X-axis.
cos © -g8in 6

The matrix R = ( ) rotates all vectors through the same

sin © cos &
angle © (theta), in a counterclockwise direction if theta is a positive angle.
There is no change in length. This seems to contradict the notion of a matrix
having vectors whose slopes are not changed, but in this case, the character-

istic values are complex; thus, there are no real characteristic vectors.

L., THE CHARACTERISTIC VECTORS OF THE Q-MATRIX

1 1
1 o]
vector U = (x, y). Also, different vectors are in general rotated through

The Q matrix ( ) does not generally preserve the length of a

different angles.

The characteristic equation of the Q matrix is

2

A°-AA-1=0

with roots A; = (1 +45)/2 and A, =1 -15)/2,  which are the
characteristic roots, or eigenvalues, for Q.

To solve for a pair of corresponding characteristic vectors consider

1 1 x x 2 2
= ’ + £0 .
(G DGV =a;) - 2
Then
(1 - Adx+y=0.

Thus, a pair of characteristic vectors are xl and xa with slopes ml and mz,

= Ayx =), x| #0, m o= (/5 -1/2 ,

[
l

>
1

> = (x, x), x| #o, B, = =5+ 1)/2 .

0700000
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What happens when the matrix Qa is applied to the characteristic vectors

Xl and xa of matrix Q? Since
sz = Q(RX,) = QUAX,) = AQX, = /‘12
1 1 1 1 o
clearly X, is a characteristic vector of the matrix Qz as well as a

1
characteristic vector of matrix Q. The characteristic roots of QZ are the

squares of the characteristic roots of matrix Q. In general, if ,&1 and .Rz

are the characteristic roots of Q, then A; and ,1; are the characteristic

roots of QP. But the characteristic equation for QP is

2 2 2 n
°= A - (Fn-c-l * Fn-l);t * (Fn+1Fn-l - 1='n) =2 - I"n?“" =17,
recalling that L_=F_ +F . and that F__F . -Fo = (-1)%.

Applying the known identity Li = SFi + 4(-1)®, it follows that

AT = L +4/5)/20% = (1, +4/5F)/2 ana 23 = [ -¥5)/2" = (1, -45F)/2 .

5. FIBCNACCI AND LUCAS VECTORS AND THE Q MATRIX

Let U = (Fn+l’ Fn) and V = (Ln+l’ Ln) be denoted as Fibonacci and Lucas

vectors, respectively. We note that

2

‘Uni = Fn+1 * Fn = F2n+1 '
2 _ .2 2 2 n+l 2 n,, _
IV 1 =1i,5 + L = (SFL,y + (1)7774) + (5F + (-1)74) = 5F, ) .

It is well-known that the .slopes of the vectors Un and Vn (the ratios

F /Fna and Ln/1n+l) approach the slope QVE'- 1)/2 of the characteristic

vector xl.

m+n

Since qun = Q y it is easy to verify that

Fm+1Fn+l * Fan = Fm+n+l

by equating elements in the upper left in the above matrix equation. 1In a

similar manner it follows that

Fm+an+2 M FmFm-l = Fn+n+2

1}
=i

Fm+1Fn + Fan-l ~ “m+n



Adding these two equations and using Ln+1 = F +

Fm+an+1 *

From the above identities it is

n+2

FL =1
mn m+n+l

easy to verify that

F
n

it follows that

42
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Qn+lv0 =QV, = Vo 0
P, = @, = Upa 0
anm = vm+n+l '
Uy = Uy -

6. A SPECIAL MATRIX

1 2)
Let P = > -1 ; then from

Lov1 = Tnar * 2F) Ly =2F 0 - Fy
Fper1 “lpnn t L, SFp=2lpa - Ln '
it follows that
P, = (Foyp + g0 2Fp 4 - Fn) = Vs
P, = (Ln+1 * 2Ly Lo - Ln) =0,
Also
(l 2) n+l Fn n+l Ln
PQn = =
2 -1 Fy _Fn-l In Iy
P?.Qn = SQn
. n n n+l 2
Notice that det (PQ ) = (det P)(det @ ) = 5(-1) =L Ly - L, .

Let U = (x, ¥),
2y = slu

We now discuss two geometric properties of matrix P.

IUia = x2 + ya # 0. Now, PU = (x + 2y, 2x - y) and [PU[Z = S(x? +y
thus matrix P magnifies each vector length by4v—.

If tan € = y/x, we say X = Tan~t y/x, read " & is an angle whose tangent
is y/x." Let tan & = y/x and tan 4= (2x - y)/(x + 2y).
tan(x + #) = (tan x + tan 4 )/(1 - tan & tan /) we may now see what effect

P has on the slope of vector U = (x, y).

From the identity
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Now, recalling that x2 + ya £ 0,

2)

[
n
L]

-1 2x =y ) - Z(xa + v

X + 2y 2 2

tan (X + ) = tan('l‘an-li + Tan
x“ + 3

What does this mean? Consider two vectors A and B, the first inclined at an
angle & with the positive X-axis and the second inclined at an angle /4 with

the positive X-axis when the angles are measured positively in the counter-

clockwise direction. The angle bisector ¥ of the angle between vectors A and B

is such that « = ¥ = ¥ = /@ whether or not « is greater than J or the other
way around. Solving for ¥ yields

V:(d#’ﬂ)/a‘

Thus ¥ is the arithmetic average of & and /f. Also we note that « +,4 = 2% .
The tangent of double the angle is given by tan 2§ = (2 tan¥ )/(1 - tan27’
If we let tan ¥ = ({5 = 1)/2 , then it is an easy exercise in algebra to find
that tan 2¥ = 2. But, tan (x +/4) = 2; therefore, we would like to conclude
that the angle bisector between vectors U and PU is precisely one whose slope
is (45 - 1)/2, which is the slope of xl, the characteristic vector of Q. Can

you show that xl is also a characteristic vector of P?

We have shown

Theorem 1. The matrix P

2 -1
PU such that

Vslol s

(2) . The angle bisector of the angle between the vector U and the vector PU

is Xl, a characteristic vector of Q and P. Thus matrix P reflects vector U

(1) |Fu|

across vector xl.

Theorem 2. The vectors Un and Vn are equally inclined to the vector xl
whose slope is (/5 - 1)/2 .

Corollary. The vectors Vn are mapped onto vectors Vg Un by P and the

vectors Un are mapped onto Vn by P.

7. SOME INTERESTING ANGLES

An intefesting theorem is

Theorem 3.

-1 -1
Tan(Tan Ln/Ln¢1 - Tan Ln+l/L

)y = (-1)3%/F

n+2 2n+2

(l 2) maps a vector (x, y) onto a vector-

).
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Theorem &.

RiminX X X X X

=1 -] n+l
Tan(Tan Fn/’rn+1 - Tan Fn+l/ ned ) = (-1) /F one2
Theorem 5.
. n
-1 _ m+l -1
Tan Fn/rn+1 = (=1) Tan l/FZm

m=1

We proceed by mathematical induction. For m = 1, it is easy to verify that

ran~! 1 = Tan~t (1/F,).

Assume that Theorem 5 is true for n = k; that is, that

-1 m+l
Tan™l F /F, ., = z (-1) 1/Fap
m=1
But, by Theorem 4,
-1 -1 . -1 k . S
Tan Fk+1/Fk+2 = Tan Fk/Fk+l + Tan ~ (=1) /F2k+2

Thus, if the induction hypothesis is true, then

k

(-1)%* pan-t VE,, o+ ran~t (-1) /F2k+2

-1
Tan = Fy . /Fy,o =
. m=1

k + 1 ' ‘1
(-1)"*1 1an=t 1/7

m=1

2m

1

- Tan™" x and (-l)k = (-l)k"'2

and the proof is complete.

because Tan™t (=x)

8. AN EXTENDED RESULT

Theorem 6. The series
(o7
m+l -1
= z (=1) Tan 1/1"21'l
m=1

converges and A = Tan™t “s5 - 1)/2 .
Proof: Since the series is an alternating series, and, since Tan’l x is

a continuous increasing function, then
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-1

Tan™t 1/F 1

1

> Tan™ ™ 1/F and Tan"~ 0 =0 .

2n 2n+2

The angle A must lie between the partial sums SN and SN+1 for every N > 2

by the error bound in the alternating series, but by Theorem S,

SN = '.[‘an"l FN/FN+1 e Thus the angles of UN and UN+1 lie on opposite sides

of A. By the continuity of Tan™+ x, then,

limit 'I'an-l(Fn/Fn+1) = A= Tan‘1(1/5' -1)/2 .
n—> o=

Comment: the same result can be obtained simply from

1

Tan [Tan" F /F

ey - Tan W5 - 1)/21 = (-1)P*N(5 - 1)/212R*

Which slope gives a better numerical approximation to G{E - 1)/2, Fn/Fn+1

or Ln/Ln+l? Emmm?
E L] - » E ] - » - L ] -

SCME MORE ELEMENTARY PROBLEMS

B-4 (Proposed by S. L. Basin and Vladimir Ivanoff) Show that

n

n
z(i)Fi = Fop
i=0

and generalize.

B-5 (Proposed by L. Moser) Show that, with order taken into account, in
getting paid an integral number n dollars, using only one-dollar and two-dollar
bills, that the number of different ways is Fn+l whe;e Fn is the nth Fibonacci

number.
B-9 (Proposed by R. L. Graham) Prove that
ES 1 =1 and :E: n =2 .
&5 Factfan =, Taa1foa

B-10 (Proposed by Stephen Fisk) Prove the 'de Moivre-type" identity

(Ln+1/§Fn)P . L +V§pn
2 2

where Ln denotes the nth Lucas number and Fn denotes the nth Fibonacci number.
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INFINITE SERIES AND FIBCNACCI ARCTANGENTS
1. INTRODUCTION

In Section 8 of Part IV, we discussed an alternating series. This time
we shall lay down some brief foundations of sequences and infinite series.
This leads to some very interesting results and to the broad topics of
generating functions and continued fractions. Many Fibonacci numbers shall

appear.

2. SEQUENCES

Definition: An ordered set of numbers 8,4 859 a3. cecy By eee is called

an infinite sequence of numbers. If there are but a finite number of the a's,

al, 32' seey 2y then it is a finite sequence of numbers.

A sequence of real numbers {an}:zl is said to have a real number a as a
limit, written iiﬁpa = a, if for every positive real number €, ’an - a]<€
for all but a finite number of the members of the sequence {an} . If the
sequence {an} has a limit, this limit is unique and the sequence is said to

converge to this limit. If the sequence {an} fails to approach a limit, then

the sequence is said to diverge. We now give examples of each kind.
B lim | _,

1f a, = 1, {an} =1, 1, 1, ... converges since noo 8p =
1f a = 1/n, {an} =1, 1/2, /3, «..y 1/n, ... converges to zero.
If a = (-1)%, ~{an} =1, -1, +1, =1, +1, ... diverges by oscillationm.

That is, it does not approach any limit.
If a, =10, ian} =1, 2, 3y .. diverges to positive infinity.

Finally, if a = n/(n+l), then {an} =1/2, 2/3, ... converges to one.

Some limit theorems for sequences are the following:

If {an} and (bn} are two sequences of real numbers with limits a and b

respectively, then

lim (an + bn) =a+b

n—o°
L6
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i_i,i(an -b)=a-b
lim (ca_ ) = ca, any real ¢
n—oe n
i_j;: (a b ) = ab
B (a /v ) =a/b, bAO.
3. BOUNDED MONOTONE SEQUENCES
The seguence {an} is said to be bounded if there exists a positive
number K such that [anl <K foralln2>1. Ifa ,2>a formn?2 1, the
sequence {an} is said to be a monotone increasing sequence; if a, 2 a .1

for n > 1, the sequence is monotone decreasing. If a sequence is such that

it is either monotone increasing or monotone decreasing, it will be called a
monotone sequence,
The following useful and important theorem is stated without proof:
Theorem 1: A bounded monotone sequence converges.
As an example, consider the sequénce {(l + l/n)n}, which is monotone

increasing and bounded above by 3. The limit of this sequen‘ce is well known.

We will use Theorem 1 in the material to come.
L, ANOTEER IMPORTANT THEOREM

The following sufficient conditions for the convergence of an alternating

series are given below.
Theorem 2: If, for the sequence {Sn} ’

1. s >0,

2. (s, - S)-D*> (s, -5, NV >0, fornz2,
lim
3¢ pmoe(Sy = 85,10 =0

then the sequence {Sn} converges to a limit S such that 0 < s < S:L .
5. AN EXAMPLE OF AN APPLICATION OF THEOREM 2

For the following example a limit is known to exist by the application

of Theorem 2 of Section &4,
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Let S = Fn/Fn+l s where {Fn} is the Fibonacci sequence. Then

lim

) . By Theorem 2 above, .5, exists.

n -
s -, = (-1)"/(F_F

n-1l n n+l

To find the limit, consider

Fral =1 + Fra
F B F ’
n n

which in terms of {Sn} is l/Sn

A . i
to infinity be S. Then iif’sn = i‘t’sn-l = § > 0. Applying the limit theorems

1 + sn-l . Let the limit of Sn as n tends

of Section 2, it follows that S satisfies

1 2
S = 753 or s+s5-1=0.

Thus S > O is given by S = (/5 - 1)/2, the positive root of the quadratié

equation S2 + S =-1=0.
6., INFINITE SERIES

If we add together the members of a sequence {an} , we get the infinite

series ay + a, + eee + B 4 ... o+ We now get another sequence from this

infinite series.
Define a sequence {sn} in the following way. Let S1 =2y 52 = 8y + a5

S3 = a; + a, + a3 g see 3 Or 1n general, Sn = a) + a, + a3 + oeee + B

This is called the segquence of partial sums of the infinite series. The
infinite series is said to converge to the limit S if the sequence {sn}

converges to the 1imit S; otherwise, the series is said to diverge.

7. SPECIAL RESULTS CONCERNING SERIES

1. If an infinite series a; + 2, + a3 +oeee + B F oeee converges, then

lim a = 0., This is immediate since a_ =S - S .
n*o n n n n-1

2. From section 3 above, an infinite series of positive terams converges

if the partial sums are bounded above since the partial sums form a monotone

increasing sequence.

oo
3, For the alternating serieszzln=l (-l)n*lan such that a_ > 0,n>1;

d iit’an = 0 , by Section 4 above, the infinite series

: n .
converges. In the theorem, Sn = EE j=1 (-1)333 . - An example of an alternati.

series was seen in Part IV, Section 8, of this Primer.

BERERY X X Iul
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8. FIBONACCI NUMBERS, LUCAS NUMBERS, AND PI

It is well known and easily verified that

x _ -11 =11 -11
T = Tan I = Tan 3 + Tan 3
Also one can verify
R _ 11 _ -11 -11 -11 ,
T = Tan I= Tan 5 + Tan 5 + Tan 3

11 -11

-1 % + Tan 5 ¢ Tan~1 % +Tan " § .

% = Tan

We note Fibonacci and Lucas numbers here, surely. We shall here easily
extend these results in several ways.
In this section we shall use several new identities which are left as

exercises'for the reader and will be marked with an asterisk,

L 3 - 2
Lemma 1: Loplons2 =1 = 5%
. 2 n
Lemma 2t Ln = L2n + 2(=1)
Lemma 3: s Li - 5F§ = 4(-1)"
n
*Lemma b4: Ll =Iopert (=1)

We now discuss

Theorem 3: If tan On = l/Ln , then tan (e2n + 92n+2) = l/F2n+1 s OT,

1

ran~t F l - pan? f;- + Tan~ £ .
2n+l 2n 2n+2

Proof:
L + L
2n 2n+2 1
Tan{6.. + © ) = =S S078 o e
2n 2n+2 L2 L2n+2 -1 »F2n+1

using the trigonometric identity tan(x + y) = (tan x + tan y)/(1 - tan x tan y)
with Lemma 1 above and the identity L2n+2 + Lan = 5F2n+l .

Theorem 4: If tan °n = l/Fn y then tan (ean - 92n+2) = 1/F2n+1 v OT
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'.T.‘an.1 F 1 = Tan™t fl— - Tan™t F .
2n+l ‘ 2n 2n+2
Prdof:
{
F - F
2n+2 2n 1
Tan (© -8 ) = =
2n  "2n+2" C Py Fo 0t Fonsl
. 2 2n+l
since F,p > = Fyp = Fons1 and Fo Foie2 ” Fone1 © (-1) 1.
From Theorem 4,
M M
Z F = Z (Tan-l -F—l- - Tan™t 5 1 )= Tan'l-f.l— - Tan™t F 1
2n+l1 2n 2n+2 2 2M+2
= n = 1
and since im Tan-l 1 = 0 by continuity of Tan-l x at x = 0 , we may
Mo FZM
+2
write
oo
Theorem 5: L ran~t 1 = ZTan-lrl ] (
a1 2n+l

This is the celebrated result of D. H. Lehmer, Nov., 1936, American Mathematical

Monthly , p. 632, Problem 380l.
We note in passing that the partial sums

M
Sy = Z Tan~t F 1 = Tan™t Fi' - Tan™t T 1 »
2n+l 2 2Me+2 f
n=1
are all bounded above by ’I‘an'1 1 = n/k and sM is monotone. Thus Theorem 1 (:
can be applied. From Theorem 3, '
M
Tan~t F 1 = (Tan'l ii- + Tan~t T 1 )
no 1 2n+l =1 2n 2n+2

80 that

M M
Z + Tan~t -;- = 2 Z Tan™+ fl_ + Tan~3 - S
- 2n+l _ 2n 2M+2
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The limit on the left tends to Tan™L 1 + Tan™t 1/3 = Tan~t 2 , and the right-

hand side tends to this same limit. Since 1in Tan-l 1 =0, then
Moo L
2M+2
oo
Theorem 6: Z Tan~t i-l'— = Tan~t f—ia:—l- = % ran~t 2 .
n 1 2n

Compare with Theorem 6 in Part IV,

s 3 3 = 3 s & 5 & ®

FIBONACCI DETERMINANTS

Below are reprinted a selection of problems which appeared in early
issues of the Fibonacci Quarterly.
H~8 (Proposed by Brother Alfred Brousseau) Prove that

2 2 2

Fn n+l Fn+2
2 2 2

Fola Fre2 Fn+3 = 2(_1)n+1 R
2 2 2 '

Fn+2 Fn+3 Fn+#

where Fn is the nth Fibonacci number.

B-28 (Proposed by Brother Alfred Brousseau) Using the nine Fibonacci
numbers FZ through Flo (1, 2, 3, 5, 8, 13, 21, 34, 55), determine a third-order

determinant having each of these numbers as elements so that the value of the

determinant is a maximum.
B-13 (Proposed by S. L. Basin) Prove the (n - 1l)storder determinant below
has value Fn. (This is a special case of B-13)

1 -1 o] (o] 0 eee
1 1 -1 o o cee
F, =109 1l 1 -1 0 ...
o] (o] 1 1 -1 PN
0 o o] 1 1 oee
etsesssecsssscssscncs ees jn=1

Such determinants are called continuants.

A problem which predates B-28 is to determine the third-order determinant
of maximum value which has each of the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9
as elements, and to determine the complete set of determinant values possible.

(See Bicknell and Hoggatt, "An Investigation of Nine-Digit Determinants,”

Mathematics Magazine, May-June, 1963, pp. 1l47-152.)
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GENERATING FUNCTIONS FOR THE FIBONACCI SEQUENCES
1. INTRODUCTION

We shall devote this part of the primer to the topic of generating func-
tions., These play an important role both in the general theory of recurring
sequences and in combinatorial analysis. They provide a tool with which

every Fibonacci enthusiast should be familiar.

2. GENERAL THEORY OF GENERATING FUNCTIONS

Let 851 879 85y oo be a sequence of real numbers. The ordinary

generating function of the sequence‘{an} is the series
> oo
. n
A(x) = By + 81X + 85X + eee = ES a x .
n=0

Another type of generating function of great use.in combinatorial problems

involving permutations is the exponential generating function of {an} ’
O
E(x) = a, + a,x/1! + a x2/2' + = ZZ a_x"/n!
0 1 2 L] LN n L] L]

For some examples of the two types of generating functions, first let

a, = a® . The ordinary generating function of {an} is then the geometric

e_6e .

series

o
1 n_n
(2.1) A(x) = T = zz ax .,
n=20
while the exponential generating function is

oo
E(x) = e®* = 2 a®x%/n!¢ .

n=20

52
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Similarly, if a, = na® s then
oo
A(x) = 2x 5 = Z na®x®
(1 - ax) n=0
(2.2)
o0
E(x) = axe®* = nanxn/nz ,
n=0

each of these being obtained from the preceding one of the same type by
differentiation and multiplication by x. A good exercise for the reader to
check his understanding is to verify that if a, = na s then

A(x) - x(x_+]') = naxn N
(1 - x)° Z
n =
-}
E(x) = x(x + 1)e* = nzxn/n! .
11250

(Hint: Differeniate the previous results again., )

For the rest of the time, however. we will deal exclusively with
ordinary generating functions.

We adopt the point of view here that x is an indeterminate, a means of
distinguishing the elements of the sequence through its powers. Used in this
context, the generating function becomes a tool in an algebra of these
sequences (see [3]). Then formal operations, such as additioen, multiplication,
differentiation with, respect to x, and so forth, and equating equations of
like powers of x after these operations merely express relations in this
algebra, so that convergence of the series is irrelevant.

The basic rules of manipulation in this algebra are analogous to those
for handling polynomials. If {an} . {bn} , and {cn} are real sequences with

(ordinary) generating functions A(x), B(x), C(x) respectively, then A(x) +
B(x) = C(x) if and only if a, + b, =c , and A(x)B(x) = C(x) if and only if

e, = anbo + an-lbl + eeo + albn-l + aobn .
Both results are obtained by expanding the indicated sum or product of gener-
ating functions and comparing coefficients of like powers of x. The product
here is called the Cauchy product of the sequences {an} and {bn} y and the
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sequence {cn} is called the convolution of the two sequences{:an} and {bn} .

To givé an example of the usefulness and convenience of generating func-
tions, we shall derive a well-known but nontrivial binomial identity. First

note that for a fixed real number k the generating function for the sequence

k k(k<l)eee(k = n + 1)
an = ( ) = n!

is
Ak(x) = (1 + x)k

by the binomial theorem. If k is a nonnegative integer, the generating func-

tion is finite since

(2.3) (k)=o ifa>k>0 or n<o0
: n

by definition. Then
A = (L+0%= @+ 0@+ 0% =20 .

Using the product rule gives

2.7

[
(o]
~—~
W
L
]
=]
n [
[} r\/18 R
w
B
H
g
"
(<]
B
||[\/1%
o
—
[ - |
S
]
3]

so that equating coefficients of xn shows that

n

()=, 2,030

i3=o

This can be found in Chapter 1 of [8].
If the generating function for -{an} is known, it is sometimes desirable

to convert it to the generating function.{an¢k} as follows. 1If

OO enc
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A(x) = i aﬁnx’:l ’

n=20

‘then

A(x) - a, hand a
ot St
x n+l

n=20

This can be repeated as often as needed to obtain the generating function
for {an+k} .

Generating functions are a powerful tool in the theory of linear recur-
ring sequences and the solution of linear difference equations. As an example
we shall solve completely a second-order difference equation using the tech-
nique of generating functions. Let {cn} be a éequence of real numbers which

obey

c qe_ = 0 , n>o0,

n+2 ~ PCps1 * n

where o and c1 are arbitrary. Then by using the Cauchy product we find

Co
2 n 2
(1 - px + qx") zz: e X =cgy+ (c1 - pco)x + 0ex” 4 to0 = ¢y + (cl - pco)x
=0

so that

= c. + (e, = pec)x
(2.4) z n 0 1 0

c_X = .
l -px + qx2

Suppdse a and b are the roots of the auxiliary polynomial x2 - px + qQ , SO
the denominator of the generating function factors as (1 - ax)(l - bx). We

divide the treatment into two cases, namely, a # b and a = b.

If a and b are distinct (i.e.,p2 -‘Qq # 0), we may split the generating

function into partial functions, giving

co * (c1 - pco)x co *+ (cl - pco)x A B

(2.5) = = - + -
1 - px + qxa (1 = ax)(1 = bx) T -ax T 1= bx

for some constants A and B. Then using (2.1) we find
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o° oo [ocd i Oo
z cnxn = A Z ax® + B Z 2% = Z (aa” + BM)x® ,
n=20 n=20 n=0 n=20
so that an explicit formula for cn is
(2.6) c_ = Aa® + BOV" .

Here A and B can be determined from the initial conditions resulting from

assigning values to o and €y

On the other hand, if the roots are equal (i.e., p2 - 4q = 0), the
situation is somewhat different because the partial fraction expansion (2.5)
is not valid. Letting ¢, + (cl - pco)x = r + sx, we may use (2.2), however,

to find

co ' oo
z cnxn = .r__‘.’._si—a = (r + sx) Z (n + 1)a®x"
o (1 - ax) n=o0

= :E: [r(n + 1)a” + snan'l]xn = :E: [(r + s/a)n + rla®™x" ,
n=20

n=20
showing that

c, = (An + B)a® ,

where
A=r+8/a, B=r

are constants which again can be determined from the initial values o and cq.

This technique can be easily extended to recurring sequences of higher
order. For further developments, the reader is referred to Jeske (6], where
a generalized version of the above is derived in another way. For a discus-

sion of the general theory of generating functions, see Chapter 2 of [8] and

Chapter 3 of [2].
3. APPLICATIONS TO FIBCNACCI NUMBERS

The Fibonacci numbers Fn are defined by Fo = 0, Fl = 1, and Fn+2 - Fn+l

- Fn =0, n>0. Using the general solution of the second-order difference

e ie Y N X
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equation_given above, where p =1, q = -1, ey * (cl - pco)x = x, we find

that the generating function for the Fibonacci numbers is

(- -]
x n
ERY o) s 2 S
l «-x =-x
n=20

The reader should actually divide out the middle part of (3.1) by long
division to see that Fibonacci numbers really do appear as coefficients,
Since the roots X = (1 +415)/2 and A= (1 -4/5)/2 of the auxiliary

polynomial x2 - x =1 are distinct, we see from (2.6) that
1 n
(302) Fn = A“ + Bﬂ o

Putting n = 0, 1 and solving the resulting system of equations shows that
A=1/45 =1/(x-43), B=-1/45 |,

establishing the familiar Binet form,

n n
o -/
. F = —— .
(3.3) u =
We shall now turn around and use this form to derive the original generating
function (3.1) by using a technique first exploited by H. W. Gould [5].

Suppose that some sequence {an} has the generating function

oo
n
A(x) nzoanx .
Then
. - n o
(3.4) ““)a.'.}w") - ‘n('“L«%ﬂL)"n = Zoanann .
n=20 n =

In particular, if a = 1, then A(x) = 1/(1 - x), so that

1 1 L = =
F(x)=¢,(_/_;(1.a(x-1-/?")-1-x-x2 .

Next we use (3.1) to prove that the Fibonacci numbers are the sums of

terms along the rising diagonals of Pascal's Triangle. We write
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o oo

n x x n n

F x = = =XZX(1+X)
Zn 1-x-x° 1= (x+x%) =

n (o] k n=0k
o= [(m=1)/2]
- jz 28 ( m-3 - 1) 2,
m'=1 3=o0 3

where [m] denotes the greatest integer contained in m. . The inner sum is the
sum of coefficients of x= in the preceding sum, and the upper limit of
summation is determined by the inequality m - j - 1 < j, recalling (2.3).
The reader is urged to carry through the details of this typical generating

function calculation. Egquating coefficients of x® shows that

[(n-1)/2]

ne-j-1
(3.5) F_ = Z ( )
i=o .

linking the Fibonacci numbers to the binomial coefficients.

It follows from (3.1) upon division by x that

oo
1 n
(3.6) 60 = —E—s - S -
= = n=20
Differentiating this yields
o .
6V (x) = 2x+122___( 1 2)( 1 + 2x 2)= Z (“*1)Fn+a"n .
(L - x=x") l = x =X l -x=-x n=o

Now

' (%]
1l + 2x _ n
-x - n=0

where Ln are the Lucas numbers defined by Ll =1, I..2 = 3, Ln+2 = Ln+1 + Ln '

n > 0. Hence

TTOOee

~faaaaa



~—

59
[d Os » Qe O
n n n
G'(x) = Z Fra* z LpaX® = Z Z Fokerlxar | X 0
n=0 n=0 n=0\k=20
so that h
n
Z Froksilicer = 8+ DFp o0
k=20
a convolution of the Fibonacci and Lucas sequences.
We leave it to the reader to verify that
-]
x - x - Z (F - .
(1 - x)(1 - x - xa) 1 -2x + x> n+2
n=20
Also
o0 o
X — = 1., x s = z <8 z ann
(1 = x)(1 = x = x7) 1 -x 1=-x=2x n o nzo
hiad n
n
= F X .
2 [ 2
n=0\3J=0

Equating coefficients shows

which is really the convolution of the Fibonacci sequence with the constant
sequence {1, 1, 1, eeo } o

Consider the sequencev{Fkn}°b , where k # O is an arbitrary but fixed
n=20
integer. Since

. =akn _Akn
kn «=-A

‘'we have
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oo = <
Z Pt - «iﬂ( Z«knxn ) Zﬁknxn) {A( 11 )
n=20 n=20 n=0 1-ax 1-4x
(3.7) = 1 R («k -ﬂk)x = Fkx
XA 1@ x e («%5%)x2 1-Lx+ (-1)%x?

where we have used «/f = -1 and the Binet form Ln =" +,yn for the Lucas

numbers. Incidentally, since here the integer in the numerator must divide

all coefficients in the expansion, we have a quick proof that Fk divides. Fnk

for all n. A generalization of (3.7) is given in equation (4.18) of Section 4.

We turn now to generating functions for powers of the Fibonacci numbers.

First we expand

2
n n
F o= (“ =£ ) = —2 P - 2axg)? s,
a=-4 (« = 4)
Then
‘ag Oo oo oo >
2
Zann =(a( ) z -2 z (d/})nxn + Zﬂnxn
n=0 -ﬂ = n=20 n=0

1 ( 1 - 2 . 1 )
( -ﬂ)2 l-o(ax 1 -a4x l-ﬂzx

_ x - x° _ X - X _
(2 -1 -0gx) (1 =-g%%)  1-2x-2x° +x°

This also shows that {Fi} obeys

2 2 2 2
n+3-2Fn+2-2F + F_ =0 .

F n+l n

We remark that Gould's technique (3.4) may be applied to F(x), leading to
exactly the same result.

In general, to find the generating function for the pth power of the

Fibonaceci numbers, first expand Fs by the binomial theorem. This gives F;’

- n(p-1) n
as a linear combination of a(np. «B(P l)ﬂn s esey o(/] (p . P P g0 that

as above the generating function will have the denominator

e inY YSid

X
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(1 - &Pl - &P Yx) eee (1 P01 - 4P0)

Fortunately, this product can be expressed in a better way. Define the

f’ibonomial coefficients [k] by
T

€1 _ Tkfk-1 "t Froran . X
)M e (3]
12 r

Then it has been shown [7] that

P p+1
Qp(x) = ’/-T (1 -ap-jﬂjx) = z (_1)3(3*1)/2 [p + llxj .
j=0 j=20 J :

For example,

Ql(x) =1-x-x°

Qz(x) =1-2x - 2x2 + x°

Qy(x) = 1 - 3x - 6x2 + 30 + x'

Qu(x) =1 - 5% - 15x2 + 15%° + 5x' = x°

Since any sequence obeying the Fibonacci recurrence relation can be written
in the form Aun + Bﬂn ’ Qp(x) is the denominator of the generating function

of the pth power of any such sequence. The numerators of the generating

functions can be found by simply multiplying through by Qp(x). For example,

. ' . . 2 ,
to find the generating function of {Fn+2} , We have

A

= 2 (x)
n r(x
ngof‘n‘.ax ) l «2x = Zxa +:3 )
Then r(x) can be found by multiplyins by Qa(x); giving
r(x) = (1 - 2x - 2x% + x3)(l + bx + 9x2 + ZSx“ 4 eee)

=1+ 2x = x2 + O-x3 4 e0ee = 1 ¢+ 2X = xa .
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This is (4.7) of Section 4., However, for fixed p, once we have obtained the
. . P P «P
generating functions for‘{Fn‘} ’ {Fn+1} 9 eee o {’n’p ¢ the one for

{Fﬁ+k} follows directly from the identity of Hoggatt and Lind {[4)]

P
(3.8) Foek = Z (-1)(p-3)(p-3+3)/2 [k][p](Fk-n)Fp
j=0 P J Fk-j ned !

where we use the convention FO/FO = 1., For example, for p = 1 this gives

Frok ® FiFner * FeaaFn

Using the generating function for {’Fn+l} in (3.4) and,{'Fn} in (3.1,

[t o oo
F,_ + F x
n_ n n _ 'k k-1
Z Fra®* =% Z Faed*  * Fra Z 2 Sl
n=20 n=0 n=0 -
In fact, one of the main purposes for deriving (3.5) was to express the
. . P . . . D
generating functlon of {Fn+k} as a linear combination of those of {Fn} 9 eesy
{r? 1.
n+p )
Alternatively, to obtain the generating function of {F§+k} from that of
{Fi} , we could apply k times in succession the technique mentioned in
Section 2 for finding the generating function of’{an+l} from that of‘{an} .
The generating function of powers of the Fibonacci numbers have been
investigated by several authors (see [3], [5], and [7]).

4, SOME STANDARD GENERATING FUNCTICNS

We list here for reference some of the generating functions we have

alreédy derived along with others which can be established in the same way.

. .

X n

e I S
n=20

l = x - x

n

o
1 n
(4.2) —— - Z F_, %
< n=20

Y ¥ X X Yt

n X



W W W

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(bo1l)

X - X

l =2x = 2x2 + x3

l-x _
l -2x - 2x2 + x3

l + 2x = x2

l «2x - 2x + X

X

2 3

l = 2x = 2x + x

b - 7x = x2

3

l - 2x - Zxa + X

1+ 7x = 4x2 _

1 -2x - 2x° + x°

9 = 2X = x2

3

l = 2x = 2x2 + X

2 3

X = 2X = X

"

-]

n [N

-]

||r\/13

=}

u[\st

o]

o]

ltPVQg uFV18

o]

u[\/19

o]

1 - 3x - 6x2 + 3x3

l « 2x = x2

1l - 3x = 6x2 + 3x

3

+

n =
X
L’- =
X
" =
X

%L
=)
"

o
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(4.15) 8 » Jx - x -.x - zFi X"

64

1l - 3x - 6x2 + 3x7 + xu

Qo
2% n
(4.16) = ZFF F_ X
1 - 3x - 6x2 . 3x3 . xh n n+l n+2
n=20
F, x =t
k n
k 2 kn
1 - ka + (=1)"x n=o
| F_+ (-1)'F, _x & ,
(4.18) r k-; 5 = z Fkn+rxn
l - ka + (=1)"x n=o0

1.

2.

3.

Many thanks to Kathleen Weland and Allan Scott.
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AN EASY PROBLEM
B-14 (Proposed by Maxey Broocke and C. R. wall) Show that
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SCOTT'S FIBONACCI SCRAPBOCK

Allan Scott
Phoenix, Arizona

The following generating functions are submitted to continue the list
in "A Primer for the Fibonacci Numbers: Part VI"., Thanks to Kathleen Weland

for verifying these.

Pk(x)

(-]
3 n
L X =
nZO n+k 1l - 3x = 6x2 + 3x3 + xq'

s k=0, 1, 2, 3

Po(x) =8 - 23x - Z#xz + x3

Pl(x) =1+ 2bx - 23x2 - 8x3

P(x) = 27 = 17x - 11x° - x°

>P3(x) = 64 + 151x - 82x2 - 27x°
S P (x)
x
ngopg*kxn T1-5x - 15:2 s 15%0 + 5x" - x0 20 2 3k
Po(x) = x - bx° - x> & xh
Pl(x) =1 - bx - bx 4 x
3 L

PZ(X) =1 + 1lx - lltx2 - 5x”7 + x

Pj(x) =16 + x - 20x2 - hx3 + xh
P,(x) = 81 - 220x - ahhx? - 79x> » 16x"
. 6
(Generating functions for{FZ+k} ,k=0,1,2, 3, 4 53 {F  },x=0,1,

2, 3, 4, 5, 63 and (FZ+k} ,k=0,1, 2, 3, 4, 5, 6, 7 are given in this

entire article, which appears in The Fibonacci Quarterly, Vol. 6, No. 2,
April, 1968, pages 176, 191, and 166.)
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A MOTIVATION FOR CONTINUED FRACTIONS

A. P. Hillman and G. L. Alexanderson
University of Santa Clara, Santa Clara, California

et ¥ X=X Ymil

This Quarterly is devoted to the study of properties of integers,
especially to the study of recurrent sequences of integers. We show below
how such sequences and continued fractions arise naturally in the problem
of approximating an irrational number to any desired closeness by rational
numbers.

We begin with the equation

(1) x> -x-1=0 .

One can easily see that there is a negative root betweén =l and O and a .
positive root between 1 and 2, for example by graphing y = x2 -x -1,
We call the positive root r. This number has been known since antiquity as
the "golden mean." We now lock for a sequence of rational approximations -
to r,

A rational number is of the form p/q with p and q integers (and q # 0).

We therefore wish two sequences
(2) pl’ pz’ p3’ oo and ql' qa! q3' L4

of integers such that the quotients pn/qn are approximations which get

arbitrarily close to r. It would also be helpful if each new approximation
were obtainable simply from previous ones.

We go back to (1) and rewrite it as

1
(3) x=1+;.

rfacaaaa

This states that if we replace x by r in

(&) l#;

the result is r and suggests that if we replace x in (4) by an approxima-
tion to r we will get another approximation. We now change (3) into the

form

(s5) A x2=1+%
66
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and consider Xy to be an approximation to r. The relative error of l/x1 is
the same as that of xy and, if xy is positive, the relative error of x5
(i. e., 1 + l/xl) is lower than that of Xy since adding 1 increases the
number but not the error. It can be shown that x, in (5) is a better approx-
imafion to r than Xq if xy > 0.

We now let our first approximation xy be a rational number pllql and

substitute this in (5) obtaining

x, = 1+ =iy I S N S
2 (p,/qy Py Py

We therefore choose P, to be Py * q and a, to be Py - Similarly, our third

approximation is p3/q3 with p3 =p, + a, and q3 =P, - In general, the

(n + 1)st approximation pn+l/qn+l has
(6 Ppnyr Pp * qn
(?) qn+l = Pn .

It follows from (7) that Q, = Pyq } substituting this in (6) gives

(&) Ppey = Pp * Ppay

Since r is between 1 and 2 we use 1 as the first approximation, i.e.,
we let p;= qy = 1 . This means that p, = 2 and it now follows from (8) that
p, is the Fibonacci number F .. . Then (7) implies that q = F, and we see
that the sequence of quotients Fn+1/rn of consecutive Fibonacci numbers

furnishes the desired approximations to the root r of (1). It can be shown
that this sequence converges to r in the calculus sense.
We next consider the problem of approximating s = 410 in this way. The

number s is the positive root of

(9 x> =10 =0 .

We write (9) in the forms



2

X -9 =1
(x = 3)(x +3) =1
(10)
(x = 3) = 1/(x + 3)
x=3+1/(x+ 3)
and change (10) into
1
v w13t IT R

Again, if x, is a positive approximation to s , it can be seen that X4

an approximation with smaller relative error. There is a sequence of rational

approximations pn/qn with
Pre1 3pn * 10qn ’ q

Letting the first approximation be 3, i.e., letting Py = 3 and 9, = 1, we

obtain the sequence

3/1' 19/6' 117/37’ LI )

which can be shown to converge to s.

Equation (11) contains the gquations

Substituting the first of these into the second gives us

X, =3 + 11 .

3
6 + 3—:—;;

If this is substituted into X, = 3+ 1/(3 + xj) and if we let x
obtain

3 be 3, we

x# =3 +

In this way we can write continued fraction expressions for any one of the

xn « Then it is natural to let the infinite continued fraction

68
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3. i

6 +

represent the limit s of the sequences X, defined by (11) and xl = 3.

The infinite continued fraction for the root r of x2 -x =-1=0is

l*—_—l—_—
1+ 1 ’
1+ ..0

whose elegant simplicity is worthy of the title "golden mean.”

s % & 5 8 s % 3 83 B

A CURIOUS FORMULA FOR THE GOLDEN SECTION RATIO
1+N5

A curious formula which relates the Golden Section Ratio g = >

the imaginary unit i =4-1 , and e, the base of natural logarithms, is

log, (ia)
g = 2 cos o3 ;

can you prove it? (See J. A. H. Hunter and Joseph S. Madachy, Mathematical

Diversions, D. Van Nostrand, Princeton, New Jersey, 1963, FPp. 14=19. )

Formulas also relate the Golden Section Ratio g to trigonometric
functions. (See Bicknell and Hoggatt, "Golden Triangles, Rectangles, and
Cuboids" + pages 75 and 76. ) It can be proved that sin 18° = 1/2¢
and that sin 54° = @g/2 .

Another interesting formula follows which is related to the first

problem.
B-18 (Proposed by J. L. Brown, Jr.) Show that

F, = 2n-1 }: (-1)cos® k-1 % sin® f% ' forn > 1.
k=20

’



THE GOLDEN RATIO: COMPUTATIONAL CONSIDERATIONS

Dmitri Thoro
San Jose State College, San Jose, California

1. INTRODUCTION

"Geometry has two great treasures: one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio. The first we
may compare to a measure of gold; the second we may name a precious jewel'-a
so wrote Kepler (1571-1630)[1].

The famous golden section involves the division of a given line segment

into mean and extreme ratio, i.e., into two parts a and b, such that

a/b = b/(a + b), a<b. Setting x = b/a we have x2 - x=-1=0. Let us
designate the positive root of this equation by @ (the golden ratio). Thus

(1) > _-g-1=0 .

Since the roots of (1) are # = (1 +—V§)/2 and -1/@ = (1 - 45)/2 we may
write Binet's formula [2] for the nth Fibonacci number in the form

. n =n
(2) N
V5

2. POWERS CF THE GOLDEN RATIO
Returning to (1), let us "solve for ¢2" by writing

(3) ¢2=¢+1.

Multiplying both members by @, we get ¢3 = ¢2 + §=(F+1)+ g=20+1.
Proceeding in a similar fashion we can write all of

g2 =28 +1 ,
| ﬁh =37+ 2 ,
g7 =5+ 3 .

This pattern suggests

70
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(&) g8 =F g Fn-l ’ n=1, 2, 3y es- .

To prove (4) by mathematical induction, we note that it is true for n =1
and n = 2 (since F, = O by definition). Assume that g = F 8 + Fp_y - Then

gL Fkﬂz + B #=F(f+1) +F .8

(Fg + A )8 + F = F ,F + F

which completes the proof. . ‘—\n
The computational advantage of (4) over expansion of (l_%;ﬁi) by

the binomial theorem is striking.
Dividing both members of (3) by @, we obtain

(5) % -1 .

Thus 1/¢2 =1=-1/F=1-(g - 1) -(g - 2). Using this result and (s5),

1/8° = 2/f -1 =2(8 - 1) -1 =208
may write all of the following:

3, Proceeding in a similar fashion, one

1
—='(¢-2)$
¢2

1

== = 2¢ -3
¢3

- -5) .

Via induction, the reader may provide a painless proof of
- 1
(6) g = (LS - F ) m= 1 2 3 e

3, A LIMIT OF FIBONACCI RATIOS

If we ''solve" x2 - x =1 =0 for x by writing x = 1 + 1/x and then

consider the related recursion relation

1
(7) Xy = 1, X . = 1+ ;; ,
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Fibonacci numbers start popping out! We immediately deduce X, = 1l + l/xl

=1+1/1 = 2/1, x, = 3/2, x, = 5/3, x. = 8/5, etc. This suggests that

3 5

Xp < Fn+l/Fn *

Now suppose the sequence Xy X5 x3, eee has a limit, say L, as n

tends toward infinity. Then

lim _ lim -
n~o*n+l " pre*a T L
whence (7) yields L =1 + 1/L or L = @& since the x, are positive. Indeed,

there are many ways of proving Kepler's observation that

8 - lim Fne1 - g
n=o F - *

For example, from (2)

1
F n+l -nel -
n+l _ @ - (-2 1 )
F = n -n = (_¢)n+ gn ]
n g - (=2 1 - 1
(-§)°g"

as n ~o since ¥ = (1L +45)/2 > 1 implies that the fractions involving z°

approach O as n ~ o=,
4, AN APPROXIMATE ERROR ANALYSIS

Just how accurate are the above approximations to the golden ratio?

Let us denote the exact error at the nth iteration by

(9) . e, =x, -

The trick is to express e _, in terms of e, using (7) and then to make

use 6f the identity

(10) =1 -w+ N O , w<l .

(The latter may be discovered by dividing 1 by 1 + w).

AN X X X Xu
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Thus

- 9

e = X

n+l n+l

1
=l+x— -g
n

1
PoPre T

1-0+ 1, 1
B 1l + zen735

1-g+ 301 - (e/B) ¢ (/D = (e/B 4 .0 ]

en en en
= =3 + = - + oo
PR A

since 1/# = @ - 1 by (5). However, the terms involving the higher powers

of e, are quite small in comparison with the first term. Thus, following
the customary practice of neglecting high order terms, we will approximate

the error at the (n + 1l)st step by e 1" --euﬁ-2 . Finally, we may note that

e, = -elﬂ-z, e5 = - eaﬁ-z = +el¢-4 v e, = -elﬂ-é, and, in general,

(11) e = (_1)n+191¢-2(n-1) ]

1f x; = 1, then e = 1-0=-=1/¢ by (9) and (5), making (11) become

(12) en = (-l)n ¢"2(n-1)-1 N
(Sections 5 and 6 of the original paper are omitted here.)
REFERENCES
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GOLDEN TRIANGLES, RECTANGLES, AND CUBOIDS

Marjorie Bicknell and Verner E. Hoggatt, Jr.
A. C. Wilcox High School, Santa Clara, California, and

San Jose State College, San Jose, California

1. INTRODUCTION

One of the most famous of all geometric figures is the Golden Rectangle,
which has the ratio of length to width equal to the Golden Section,

g=(1+45)2.

The proportions of the Golden Rectangle appear consistently throughout
classical Greek art and architecture. As the German psychologists Fechner
and Wundt have shown in a series of psychological experiments, most people

do unconsciously favor '"golden dimensions" when selecting pictures, cards,

mirrors, wrapped parcels, and other rectangular objects. For some reason not

fully known by either artists or psychologists, the Golden Rectangle holds
great aesthetic appeal. Surprisingly enough, the best integral lengths to
use for sides of an approximation to the Golden Rectangle are adjacent mem-
bers of the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, ..., and we find 3 x 5

and 5 x 8 filing cards, for instance.
Suppose that, instead of a Golden Rectangle, we study a golden section

triangle. If the ratio of a side to the base is £ = (1 +4/5)/2 , then we
will call the triangle a Golden Triangle. (See [2], [3].)

Now, consider the isosceles triangle with a vertex angle of 36°. On
bisecting the base angle of 72°, two isosceles triangles are formed, and

ABDC is similar to AABC as indicated in the figure:

74
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Since AABC is similar to ABDC,

AB _ BC I. X
BD  DC’ or x y-x'
so that
ya -¥yx = xz =0 .
Dividing through by x2 £ 0O,
2
I _ I _1-=
xa x 1=0 .

The quadratic equation gives

% (1 +45)/2=¢

as the positive root, so that AABC is a Golden Triangle. Notice also, that,

using the common altitude from B, the ratio of the area of AABC to AADB is g .
Since the central angle of a regular decagon is 36°, AABC above shows

that the ratio of the radius y to the side x of an inscribed decagon is Z .

Also, in a regular pentagon, the angle at a vertex between two adjacent

diagonals is 36°. By reference to the figure above, the ratio of a diagonal

to a side of a regular pentagon is also @.
2. A TRIGONOMETRIC PROFPERTY OF THE ISOSCELES GOLDEN TRIANGLE

The Golden Triangle with vertex angle 36° can be used for a surprising
trigonometric application. Few of the trigonometric functions of an acute
angle have values which can be expressed exactly. Usually, a method of
approximation is used; most values in trigonometric tables cannot be expressed
exactly as terminating decimals, repeating decimals, or even square roots,
since they are approximations to transcendental numbers, which are numbers
so irrational that they are not the root of any polynomial over the integers.

The smallest positive integral number of degrees for which the trigono-
metric functions of the angle can be expressed exactly is three degrees.
Then, all multiples of 3° can also be expressed exactly by rereatedly using
formulas such as sin(A + B). Strangely enough, the Golden Triangle can be
used to derive the value of sin 3° .

In our Golden Triangle, the ratio of the side to the base was

y/x = (1 +A5)/2 .



76

X X X X X Jm

Suppose we let AB =y = 1. Then 1/x = (1 +45)/2 , or, x=(45-121)/2.
Redrawing the figure and bisecting the 36° angle,

|

-—

A

1l

we form a right triangle, AAYC, with YC = x/2 . Then,

) s ¥ _ x _45-1_ 12
sin 18 AC—E-_ZE——-EB'

Since'sin2 A+ cos® A = 1,

cos 18° = ——r-LM = —@- . -
Since sin(A - B) = sin A cos B - sin B cos A ,

sin 15° =siﬁ(45° - 30°) ='%_'2"%2_ f%‘f"‘vg L: Ve .

Similarly, using cos(A - B) = cos A cos B + sin A sin B,

Ve + A2 {

cos 15° = _— ] -

Again using the formula for sin(A - B),

4/5';1.'@24/5 _ 4/6-;1/2'.4/1022@

sin 3° = sin(18° - 15°) =

i% [(W5 - 1)AE +42) - 2(/5 - 1)@/5 +4/5 )]

as given by Ransom in [1].
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3. GOLDEN RECTANGLE AND GOLDEN TRIANGLE THEOREMS

While a common way to describe the Golden Rectangle is to give the
ratio of length to width as @ = (1 + 4/5)/2, this ratio is a consequence of
the geometric properties of the Golden Rectangle which are discussed in this

section,

Theorem. Given that the ratio of length to width of a_rectangle is
k > 1. A square with side equal to the width can be removed to leave a
rectangle similar to the original rectangle if and only if k = (1 + 4/5)/2.

Proof. Let the square PCDR be removed from rectangle ABCD, leaving
rectangle BPRA.

Je y =]
c P B
w w
D W R £-w *

If rectangles ABCD and BPRA have the same ratio of length to width, then

£
W

Crosé-multiplying and dividing by wa # 0 gives a quadratic equation in

which has (1 +4/5)/2 as its positive root. If

.G+ Bz=g,

then

w _ 1 _ 1 _
T-w Z. " F-1°°*

w

so that both rectangles have the same ratio of length to width.
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Theorem. Given that the ratio of length to width of a rectangle is k > 1.
A rectangle similar to the first can be removed to leave a rectangle such that
the ratio of the areas of the original rectangle and the rectangle remaining
is k, if and only if k = (1 + 45)/2. Further, the rectangle remaining is
a square.

Proof. Remove rectangle BPRA from rectangle ABCD as in the figure:

c P B
w w
£ - x x
D R A
% ) —>1
Then
area ABCD _ Lw
area PCDR  w(/Z - x) °
But,

Lw . .
m—;_k if and only if 7-x"

1NN
%
|
]

or w =,Z-x or PCDR is a square. Thus, our second theorem is a consequence

of the first theorem, _
Analogous theorems hold for Golden Triangles.

Theorem. Given that the ratio of two sides a and b of a triangle
is a/b = k > 1. A triangle with side equal to b can be removed to leave
a triangle similar to the first if and only if k = (1 +45)/2 .

Proof. Remove AABD from AABC. If AADC is similar to ABAC, then

AC _ IC or b_a-b
BC ~ AC i a b ‘

Cross-multiply, divide by b2 # 0, and solve the quadratic in a/b to give
a/b = (1 +4/5)/2 as the only positive root.

T 00000
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If a/b = (1 + 45)/2, then

DC/AC = (a = b)/b=a/b =-1= (V5 -1)/2

AC/BC = b/a = 2/(1 +4/5) = (#/5 - 1)/2 = DC/AC .
Since /C is in both triangles, AADC is similar to 4BAC.

Theorem. Given that the ratio of two sides of a triangle is k > 1. A
triangle similar to the first can be removed to leave a triangle such that
the ratio of the areas of the original triangle and the triangle remaining
is k, if and only if k = (1 + 4/5)/2.

Proof. Let LADC be similar to ABAC, such that BC/AC = AC/DC =k .

If the ratio of areas of the original triangle and the one remaining

is k, since there is a common altitude from A,
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i = Aarea OBAC _ (BC)(h/2) _ BC/AC _ k
= ‘area 6BDA ~ (BC - DC)(h/2) ~ BC/AC - DC/AC -~ k - 1l/k °

Again cross-multiplying and solving the quadratic in k gives k = (1 +‘V§)/2.
If k = (1, +1/§)/2, then

BC/AC = AC/DC = (1 +45)/2,

and the ratio of areas BC/(BC - DC) becomes (1 +45)/2 upon dividing
through by AC and then simply substituting the values of BC/AC and DC/AC.
If k = (1 +4/5)/2 = BC/AC , and the ratio of areas of ABAC and ABDA is

also k, then

K - BC/AC .k
= BC/AC - ICJ/AC ~k - x °
which leads to
x =k -1 or DC/AC = (1 +4/5)/2 =1 = 2/(1 + v5)

so that
AC/DC = (1 +4/3)/2
and ABAC is similar to AADC.

L, THE GENERAL GOLDEN TRIANGLE

Unlike the Golden Rectangle, the Golden Triangle does not have a unique
shape. Consider a line segment CD of length @ = (1 +ﬁ)/2 . Place points
"E, G, and F on line CD such that CE = 1, EG = GF = # as in the diagram.

DM ee
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Then, ED =g - 1 , and

CE/ED = 1/(¢ - 1) = ¢ ,

CF/DF = (28 + 1)/(g + 1) = g°/8° = 8 ,

so that E and F divide segment CD internally and externally in the
ratio @ . Then the circle with center G is the circle of Apollonius for cD
with ratio @ . Incidentally, the circle through C, D, and H is orthogonal
to the circle with center G and passing through H, and HG is tangent to
the circle through C, D, and H .

Let H be any point on the circle of Apollonius. Then CH/HD = & ,
CG/HG = @, and ACHG is similar to AHDG. The area of ACHG is

n(1 + @)/2 = ngo/2 ,

and when AHDG is removed, the area of the remaining ACHD is h@g/2 , so that
the areas have the ratio § . Then, ACHG is a Golden Triangle, and there are
an infinite number of Golden Triangles because E can take an infinite number

of positions on circle G.
If we choose H so that CH = @ + 1, then we have the isosceles 36-72-72

‘Golden Triangle of decagon fame. If we erect_a rerpendicular at D and let

H be the intersection with the circle of Apollonius, then we have a right
golden triangle by applying the Pythagorean theorem and its converse. In
our right golden triangle ACHG, CH = ¢1@Z , HG = @, and CG = ¢2 . The two
smaller right triangles formed by the altitude to CG are each similar to

ACHG, so that all three triangles are golden. The areas of AHDG, ACDH, and
ACHG form the geometric progression,AVBya, We/2)g, (4?72)¢2 .

H

-2 g




82

Before going on, notice that the right golden triangle ACHG provides an
unusual and surprising configuration. While two pairs of sides and all
three pairs of angles of ACHG and ACDH are congruent, yet ACHG is not
congruent to ACDE ! Similarly for ACDE and AHDG. (See Holt [4].)

5. THE GOLDEN CUBOID

H. E. Huntley [5) has described a Golden Cuboid (rectangular parallelo-
piped) with lengths of edges a, b, and ¢, such that

and four of the six faces of the cuboid are Golden Rectangles.

If two cuboids of dimension
¢-l x 1 x ¢-1

are removed from the Golden Cuboid, the remaining cuboid is similar to the

original and is also a golden cuboid,

rd 4
4 P4 d
’ ’ -
1 ’/ ‘// &z 1
1
7/ ’
-2 - -
¢ I’ ¢ l 1’ ¢ 1
T 1
! 1
- -1 1
g ! vf
1 1
L i |
e g —>|

If a cuboid similar to the original is removed and has sides b, ¢, and

d, them b :c: d = g , so that

i b = ag® , a = ag’ .

[¢]
[}

b

ey X X X
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The volume of the original is abc = ¢6d3, and the volume removed is bcd =

¢3d3 . The remaining volume is (¢6 - ¢3)d3 . The ratio of the volume of

the original to the volume of the remaining cuboid is

7_26;‘3'=—¢3 .2+ 3a8F 2,
8° - ge® -2 1+435 4 |

6. LUCAS GOLDEN-TYPE RECTANGLES

Now, in a Golden Rectangle, if one square with side equal to the width
is removed, the resulting rectangle is similar to the original. Suppose
that we have a rectangle in which when k squares with side equal to the
width are removed, a rectangle similar to the original is formed, as
discussed by J. A. Raab [6]. 1In the figure below, the ratio of length to
width in the original rectangle and in the similar one formed after removing

k squares is y ¢ 1 =1 : x which gives x = 1/y . Since each square has

side 1,

y-x=y- 1y =k,
or,
(6.1) 2 -ky-1=0 .

| y > |

Let us consider only Lucas golden-type rectangles. That is, let k = L2m+l’

where L, . is the (2m + 1l)st Lucas number defined by
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A known identity is

b)) O 1:’ . oy

where  and /4 are the roots of x2 - x=1=0. In our problem, when
k=1L, .9 then (6.1) becomes

2

Y = Lppy-1=0
so that
y = u2m+l or y = ﬂ;m+l
but y = £12m+l is the only positive root. Then
x = l/u2m+l - _ﬂ2m+1 .

On the other hand, suppose we insist that to a given rectangle we add
one similar to it such that the result is k squares long. Illustrated for

k = 3, the equal ratios of length to width in the similar rectangles give

%:k—;z or ky-y2=1 or yz-ky+l=0.
|l k -y »|
1 1
|
y

& k ad
Now, let k = Lzm; then y = “Zm or y =ﬁ2m . Here, or course, y =q2m ’
so that

2m 2m
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Both of these cases are, of course, in the plane; the reader is invited

to extend these ideas into the third dimension.

1l..

2.

3.

(Section.7, entitled "Generalized Golden-Type Cuboids," is omitted here.)
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A SPECIAL GEOMETRY PROZLEM

H-19 (Proposed by Charles R. Wall) In the triangle below [d:awn for the

case (1, 1, 3)], the trisectors of angle B divide side AC into segments of

length Fn’ F

nel’ and Fn+3 . Find:
. 1i . 1i
(i) niﬂne and (i) ni:,ﬁ

- Fn _)l.(._Fle —i Fn+3 .



A PRIMER FOR THE FIBONACCI NUMBERS: PART VII

Marjorie Bicknell
A. C. Wilcox High School, Santa Clara, California

AN INTRODUCTION TO FIBCNACCI POLYNOMIALS
AND THEIR DIVISIBILITY FRCPERTIES

An elementary study of the Fibonacci polynomials yields some general
divisibility theorems, not only for the Fibonacci polynomials, but also for
Fibonacci numbers and generalized Fibonacci numbers. This paper is intended
also to be an introduction to the Fibonacci polynomials.

Fibonacci and Lucas polynomials are special cases of Chebyshev poly=-
nomials, and have been studied on a more advanced level by many mathemat-

icians. For our purposes, we define only Fibonacci and Lucas polynomials.

1. THE FIBONACCI POLYNOMIALS

The Fibonacci polynomials {F}ﬁx)} are defined by
(1.1) Fl(x) =1, Fa(x) = x, and Fn+1(X) = an(x) + Fn_l(x) .

Notice that, when x = 1, Fn(l) = Fn, the nth Fibonaceci number., It is easy

to verify that the relation

(1.2) F__(x) = (=D ()

extends the definition of Fibonacci polynomials to all integral subscripts.

The first ten Fibonacci polynomials are given below:

Fl(x) =1

Fo(x) = x

F3(x) =x%+1

F (x) = x> + 2%

F5(x) = x4 3x% + 1

Fe(x) = x° + x4 3x
F(x) = x4 5x s 6x% 4 1

86
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Fs(x) = x7 + 6x° + 10x° + bx
Fo(x) = X0 + 728 4 15x" + 10x2 + 1
Flo(x) = x7 + 8x” + 21x7 + 20x° + 5x

It is important for Section 4, to notice that the degree of Fn(x) is |n| =1
for n £ 0. Also, Fo(x) =0.

In Table 1, the coefficients of the Fibonacci polynomials are arranged

in ascending order. The sum of the nth row is Fn’ and the sum of the nth

diagonal of slope one, formed by beginning on the nth row, left-most column,

and going one ur and one right to get the next term, is given by
s(n-1)/2 _ 5 5(n-3)/2
when n is odd.

Table 1

Fibonacci Polynomial Coefficients Arranged in Ascending Order

0 1 2 3 4 5 6 7 8

n X X X X X X X X X
1 1

2 0 1

3 1 0 1

L 0 2 0 1

5 1 0 3 0 1

6 0 3 0 4 0 1

7 1 0 6 ) 5 ) 1

8 0 4 o 10 ) 6 0 1

9 1 0 10 o 15 0 7 o 1

e e o o o e o o o e o o e o e o 6 o o o o o e o e o o e o o o

To compare with Pascal's triangle, the sum of the nth row there is Zn, and

the sum of the nth diagonal of slope one is Fn. In fact, the (alternate)
diagonals of slope one in Table 1 produce Pascal's triangle.

. . . . n . .
If the successive binomial expansions of (x + 1)  are written in

descending order,
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n = 0O: 1
n = 1: x + 1
n = 2: x2 + 2x + 1 ”/’

3 v
3 x + 3x= 0+
n = b4; /xh(lbe + 6x2 + Lbx + 1

3x + 1

the sum of the 4th diagonal of slope one is F,(x) = xh + 3x2 + 1, and the
L

sum of the nth diagonal of slope one is Fn(x), or,

[((n-1)/2] - '
(1.3) F (x) = n-j- ) LA-23-1
n
jZO ( 3

n
for [x] the greatest integer contained in x, and binomial coefficient (j ),

as given by Swamy [1] and others.

2. LUCAS POLYNCMIALS AND GENERAL FIBCNACCI POLYNOMIALS

The Lucas polynomials {Ln(x)} are defined by

(2.1) Lo(x) = 2, Ll(x) = x, Ln+l(X) = an(x) + Ln_l(x) .

Again, when x = 1, Ln(l) = Ln’ the nth Lucas number. Lucas polynomials

have the properties

(2.2) Ln(x) (x) + F _,(x) = xF (x) + 2F, _(x)

Fn+1

Fo.(x) « F_ _(x)

XLn(X) n+2 n=-2

and can be extended to negative subscripts. by
(2.3) L_ (x) = (-l)nLn(x) .

If the Lucas polynomial coefficients are arranged in ascending order in

a left-justified triangle similar to that of Table 1, the sum of the nth row
is Ln’ and the sum of the nth diagonal of slope one is given by 3.2(n-2)/2
for even n, n > 2. The degree of Ln(x) is |n| , as can be observed in the

following list of the first ten Lucas polynomials:

RERERX X X X X
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L,(x) = x
L(x) = x° 4 2
L.j(x) = x° + 3x
Lh(x) = x“ + bx? 4 2
Ls(x) = x7 5x3 + 5% ‘
L6(x) = 16 + 6xl+ + 9x2 + 2
L7(x) = x! + 7x5 + lka + 7
1gx) = x® + 85+ 20x* + 26x% 4 2

Lg(x) = x9 + 9x7 + 2?x5 + 30x3 + 9x

ilo(x) x1°4-10x8+ 35x6 + SOxu + 25x2 + 2 .

When geheral Fibonacci polynomials are defined by

(2.4) - Hl(x) = a, B, (x) = bx, Hn(x) = an_l(x) + Hn_z(x) ,
then
(2.5) Hn(x) = ban_l(x) + aFn;Z(X) .

If the coefficients of the {Hn(x)} , written in ascending order, are

placed in a left-justified triangle such as Table 1, then the sum of the

nth diagonal of slope one is

(a s 1)+28"3)/2 o (4 4 v).2l(R-2)/2)

for odd n, n > 3. (Notice that, if a = 2, b =1, then Hn+l(X) = Ln(x).

and if a = b = 1, Hn(x) = Fn(x).)

3, A MATRIX GENERATOR FOR FIBONACCI POLYNCMIALS

Since Fibonacci polynomials appear. as the elements of the matrix defined
below, many identities can be derived for Fibonacci polynomials using matrix

theory, as done by Hayes [2] and others, and as done for Fibonacci numbers

by Basin and Hoggatt £z].
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a6

It is easily established by mathematical induction that the matrix

(1 o)

when raised to the kth power, is given by

Fk+l(X) Fk(x)

¢ = Fk(x) Fk_l(x)

for any integer k, where Qo is the identity matrix and Q'k is the matrix

inverse of Qk. Since det @ = =1, det Qk = (det Q)k = (-l)k gives us

(3.2) F,  (OF, 1 (x) = Fo(x) = (-1F .

Since Qan = Qm+n for all integers m and n, matrix multiplication of Qm and

Qn gives
"
s Fm+1(X)Fn+1(x) + Fm(x)Fn(x) Fm+l(X)Fn(x) + Fm(x)Fn_l(x)
QQ =
F (XF ,(x) + F_, (x)F (x) F ()F (x) + F o ()F, 5 (x)
while
Qm+n - Fm+n+l(x) I;.m«'»n(X) ) ;v
Fm+n(x) Fm+n-l(x) |

Equating elements in the upper right corner gives

(3.3) Fm+n(x) = Fm+1(x)Fn(X) + Fm(x)Fn-l(X) .

Replacing n by (-n) and using the identity (1.2) gives

(x)] .

F__ (%) = (-1)P[-F 4 GOF (x) + F (X)F_

Then,
Foen () + (LT, () = B GO, 3 () + FpGoF, 3 () = Fp(01, G0

If we replace n by k and m by m - k above, we can obtain finally
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(3.4) F (x) = L (x)F__ (x) + (-1)**IF _ (x)
m Lk m-k m-2k
which results in the divisibility theorems of the next section.
4, DIVISIBILITY PROPERTIES OF FIBONACCI AND LUCAS POLYNOMIALS
Lemma. The Fibonacci polynomials Fm(x) satisfy
P -1
_ i(m-k) . yp(m=k)+m+
Fp(x) = Fp_ (%) EE (-1) L2141)k-21n*) [ + (-1 F (2p-1)m-2pk X
i=0

for all integers m and k, and for p > 1.

Proof: If p = 1, the Lemma is just Equation (3.4). For convenience,

call Qp(x) the sum of Lucas polynomials in the Lemma. Then, assume that the

Lemma holds when p = j, or that

)j(m-k)+m+1 (x) .

(A) Fm(x) = Fm_k(x)Qj(x) + (-l F(Zj-l)m-ij

Substitute [2jk - (2j - 1)m] for m in Equation (3.4), giving

(x) + (-1)K"*1F (x} .

Foir-(25-1)n'®) = I a4 (25-1)m-k 2jk-(25-1)m-2k"

Since we want to express Fajk—(Zj-l)m(X) in terms of Fm_k(x), set

25k = (2§ = 1)m - k' =m - k

and solve for k', yielding k' = (2j + 1)k - 2jm , so that

k+1
Fos-(25-1)2% = L(2502)x-23m 0 ol + DT F o5y m (25026

Substituting into (A) and using Equation (1.2) to simplify gives

Fp(x) = [Qy(x) + (‘1)j(m.k)L(aj+1>k-2jm(X)3Fm-k(x)

)(j+l)(m-k)+m+l

+ (=1 (x) ,

F(2j+1)m-(2j+2)k

which is the Lemma when p = j + 1, completing a proof by mathematical

induction.
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Notice that the Lemma yields an interesting identity for Fibonacci
numbers, given below:

P& iGaen)
i(m-k
(4.1) Fm = Fm-k (=1)
i =0

p(m-k)
1."1:1-(.2:1-»].)(m-k) + (-1 Fm-ap(m-k) '

where p > 1 . To establish (4.1), use algebra on the subscripts of the
Lemma and then take x = 1,

Theorem 1l: Whenever a Fibonacci polynomial Fm(x) is divided by a
Fibonacei polynomial Fm-k(x)' m # k, of lesser or equal degree, the

remainder is always a Fibonaceci polynomial or the negative of a Fibonacci
polynomial, and the quotient is a sum of Lucas polynomials whenever the
division is not exact. Explicitly, for p 21,

(i) the remainder is

2pim| ' (2p = 2)Iml|
tF(Zp-l)m—ka(x) when 5p + 1 >kl > 5p = 1

or, equivalently, the remainder is

[m] A=l
tFm-Zp(m-k)(X) for 2p + 1 < [m - kl < 2p - 1 H

(ii) the quotient is th(x) when |k| < 2|m|/3;

(iii) the quotient is given by

P i(aew)

i(m-k
Z (1) L(2i+1)k-21m®)
i=0 }

Qp(x)

p-1

i(m-k)
> w Lo (2101 (moic) )
i=20

for m, k, and p related as in (i), and by Qp(x) + (_l)p(m-k)

if ¥ = 2pm/(2p + 1) 3

(iv) the division is exact when k = 2pm/(2p + 1) or k = (2p = 1)m/2p

T Heee

i
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Proof: When

2piml (2p = 2)1im\
2p + 1 > 1kl > =51

and the degree of Fm(x) is greater than that of Fm-k(x)’ we can show that

izl > |z - kI > |(2p - 1)m - 2pkl .

Since the degree of Fn(x) is |n} - 1, we can interpret the Lemma in terms

of quotients and remainders for the restrictions on m, k, and p above,
establishing (i), (ii), and (iii). As for (iv), the division is exact if

we have k = Sézsg_ila , for then
Fap-1)m-2pe(®) = Fol®) =0 -
When k = zsolby
Fop-1)m-2pkl® = Fioa(®) = (-1)m‘k*1rm_k(;c)
= (1™ (0

m-k

because k is an even integer. Referring to the Lemma, increasing the

quotient by (_l)p(m-k)+m+l+m+l = (_l)p(m-k) will make the division exact.

Corollary 1l.1: Fq(x) divides Fm(x) if and only if qdivides m.

Proof: If q divides m, then either m/2p = q or m/(2p + 1) = q &
Let Qq = m - k and apply Theorem 1.
If Fq(x) divides Fm(x), then let q = m - k and consider the remainder

of Theorem 1. Either

F(zp_l)m_apk(x) = Fo(x) or F(ap-l)m_apk(x) = tFm_k(x) ’
giving
(2p - 1)m (2p - 2)m _ _2pm
k = -_BE;—__- , k = —Eg—:—i—— . or k= E;—E—T

by equating subscripts. The possibilities give q=m -k = m/2p
q =m/(2p - 1), or q=mn/(2p + 1), so that q divides m. '
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Corollary 1l.2: If the Fibonacci number Fm is divided by Fm k' ® # k,

then the remainder of least absolute value is always a Fibonacci number or

its negative. Further,

(i) the remainder is

when L(]m-kl(%

%
F P -1

m-2p(m-k) 2p + 1
m -k £ 2, and the quotient is the sum of Lucas numbers;

(ii) the quotient is th when |k| < 2im|/3 , for Lucas number Le »

Proof: Let x = 1 throughout Theorem 1, Since the magnitudes of

Fibonacci numbers are ordered by their subscripts, tFm-Zp(m-k) represents

a remainder (unless m - k = 2 since FZ = Fl =1),

To illustrate Corollary l.2, divide F by F

13 7°

233 = 1713 + 12 = 1813 + (-1) .

Now, 12 is the remainder in usual division, but we consider the positive
and negative remainders with absolute value less than that of the divisor,
so that (=1) = -F1 is the remainder of least absolute value. Here, m = 13,

k=6<2n/3, p=1, and the quotient is L, = 18. The remainders found

upon dividing one Fibonacci number by another have been discussed by
Taylor [4) and Halton [5].

Corollary 1.3: The Fibonacei number Fq divides Fm if and only if
q divides m, |q| # 2.

Proof: If q divides m, let x = 1 in Corollary 1l.1l. If Fq divides
Fm , let q=m -k . The remainder of Corollary 1.2 becomes Fm-Zp(m-k)

= Fo =0 or Fm-Zp(m-k) =% Fm-k « The algebra on the subscripts follows

the proof of Corollary l.l, which will prove that q divides m, provided
that there are no cases of mistaken identity, such as F_ = Fq, isl # lal »

and such that s does not divide m. Thus, the restriction [q| # 2 since

F2=Fl=lo

Unfortunately, as pointed out by E. A. Parberry, Corollary 1.3 cannot
be proved immediately from Corollary 1.1 by simply taking x = 1. That Fq

O Meee
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divides F_ does not imply that Fq(x) divides Fm(x), just as that £(1) divides

g(1l) does not imply that f(x) divides g(x) for arbitrary polynomials f(x) and
g(x). Also, Webb and Parberry [8] have proved that a Fibonacci polynomial
Fm(x) is irreducible over the integers if and only if m is prime. But, if m

is prime, while Fm is not divisible by any other Fibonacci number Fq. qQ 23,
Fm is not necessarily a prime, How to determine all values of m for which

Fm is prime when m is prime, is an unsolved problem.

Corollary l.4: There exist an infinite number of sequences {Sn} having

the division property that, when Sm is divided by sm-k’ m # k, the remainder

of least absolute value is always a member of the sequence or the negative of

a member of the sequence.
Proof: We can let x be any integer in the Lemma and throughout Theorem 1.

If x = 2, one such sequence is ..., 0, 1, 2, 5, 12, 29, 70, 169, ceo o

Theorem 2: Whenever a Lucas polynomial Lm(x) is divided by a Lucas
polynomial Lm k(x), m £ k, of lesser degree, a non-zero remainder is always

a Lucas polynomial or the negative of a Lucas polynomial. Explicitly,

(i) non-zero remainders have the form

2p Iml (2p = 2)Im|
tL(Zp-l)m-Zpk(X) when 3p + 1 > [kl > ——RES—:TI- ’
or, equivalently,
Iml im] .
tLZp(m-k)-m(x) for 2p + 7<=~ k| < 2p - 1 '

(ii) if |x!| < 2{m|/3 , the quotient is th(x) 3

(iii) the division is exact when k = 2pm/(2p + 1), P #0 .

Proof: Since the proof parallels that of the Lemma and Theorem 1,

details are omitted. Identity (3.4) is used to establish

(4.2) L (0 = LG0Ty (1)« (1L, )

Since L n(x) = (-l)nLn(x). it can be proved that

Lp(x) = Q (0L (X * Leop1ypope®)
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for |m| > |m - k| > ,(Zp -1l)m - Zpk’ . Since the degree of Ln(x) is |n) ,
the rest of the proof is similar to that of Theorem 1. However, notice that
it is necessary to both proofs that F-n(X) = tFn(x) and L n(x) = th(x).

Corollary 2.1: The Lucas polynomial Lq(x) divides Lm(x) if and only

if m is an o0dd multiple of q.
Proof: If m = (2p + 1)q, let q =m - k and Theorem 2 guarantees

that Lq(x) divides Lm(x).

If Lq(x) divides Lm(x), then let q = m - k. For the division to be
exact, the term tL(Zp-l)m-zpk(X) must equal Lm_k(x) since it cannot be
the zero polynomial. Then, either k = 2pm/(2p + 1) or k = 2pm/(2p - 1),
so g=m=-k=mn/(2p +1) or q =m/(2p - 1). In either case, m is an
odd multiple of q. -

Corollary 2.2: 1If a Lucas number Lm is divided by Lm-k' then the

non-zero remainder of least absolute value is always a Lucas number or its

negative with the form

*Lop(mek)-m 3p + 1 -1 °

and the quotient is *L, when || < 2[m]/3.

Proof: Let x = 1 throughout the development of Theorem 2.

Corollary 2.3: The Lucas number Lq divides Lm if and only if

m = (2s + 1)q for some integer s. (This result is due to Carlitz [6]).
Proof: If m= (2s + 1l)q, let x =1 in Corollary 2.1. If Lq divides

Lm' take q = m - k and examine the remainder Lap(m-k)-m of Corollary 2.2
which must equal Lm-k or Lk-n since it cannot be zero. The algebra follows

that given in Corollary 2.l1l. Since there are no Lucas numbers such that

Lq = L_ where lal # |s|s and since Lq # 0 for any q, there are no
restrictions.

Since the generalized Fibonacci polynomials Hm(x) satisfy Equation (2.5),

Hm(x) = bme_l(x) + aFm_a(x), we can show that

(4.3) H (0 = LR (0« (D" o 60,

but since Hm(x) P4 tH_m(x), we have a more limited theorem.

T " meeée
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Theorem 3: Whenever a generalized Fibonacci polynomial Hm(x) is
divided by Hm-k(x)' 2m/3 > k > O, any non-zero remainder is always another

generalized Fibonacci polynomial or its negative, and the quotient is Lk(x).

As a consequence of Theorem 3, when a generalized Fibonacci number Hm

is divided by Hq. a non-zero remainder of least absolute value is guaranteed

to be another generalized Fibonacci number only when [m - q| < 2m/3. Taylor
[4]) has proved that, of all generalized Fibonacci sequences {Hm} satisfying

the recurrence Hm = Hm-l + Hm-z' the only séquences with the division

property that the non-zero remainders of least absolute value are always a
member of the sequence or the negative of a member of the sequence, are the
Fibonacci and Lucas sequences. For your further reading, Hoggatt [7] gives
a lucid description of divisibility properties of Fibonacci and Lucas numbers.
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A PRIMER FOR THE FIBONACCI NUMBERS: PART VIII

Marjorie Bicknell
A. C. Wilcox High School, Santa Clara, California.

SEQUENCES OF SUMS FROM PASCAL'S TRIANGLE

There are many ways to generalize Fibonacci numbers, one way being to
consider them as a sequence of sums found from diagonals in Pascal's triangle
(1], [2]. Since Pascal's triangle and computations with generating functions
are so interrelated with the Fibonacci sequence, we introduce a way to find

such sums in this section of the Primer.

1. INTRODUCTION

Some elementary but elegant mathematics solves the problem of finding

the sums of integers appearing on diagonals of Pascal's triangle. Writing

Pascal's triangle in a left-justified manner, the problem is to find the
infinite sequence of sums p/q of binomial coefficients appearing on diagonals
p+q21l,a> O, where we find entries on a

p/q for integers p and q,
-most column.

diagonal p/q by counting up P and right q, starting in the left
intuitive idea of "slope" is useful in locating the

1/2, for example, is not the same as 2/4 or 3/6.)
As an example, the sums 2/1 on diagonals formed by going up 2 and right 1 are
1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, ... , as illustrated below:

(Notice that, while the
diagonals, the diagonal

1
1
1
1

NN

1
2
3 1
R

N

1
I 10 10 5 1l

NN

5
1 6 15 20 15 6 1
7

2l 35 35 21 7 1l

N

1

Some sequences of sums are simple to find. For example, the sums 0/1

formed by going up O and right 1 are the sums of integers appearing in each

row, the powers of 2. The sums Q/2 are formed by alternate integers in a row,
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also powers of 2. The sums 1/1 give the famous Fibonacci éequence l, 1, 2,

3 5, 8, 13, 21, ..., defined by F) =F, = 1, Ff, = F,_, + F 5. The sums

-1/2, found by counting down 1 and right 2, give the Fibonacci numbers with
odd subscripts, 1, 2, 5, 13, 34, 89, ..., FZn#l’ ese o While the problem is

not defined for negative "slope'" less than or equal to =1 nor for summing
columns, the diagonals =1/1 are the same as the columns of the array, and
the sum of the first J integers in the nth column is the same as the jth
entry in the (n + 1l)st column.

To solve the problem in genefal, we develop some generating functions.

2. GENERATING FUNCTIONS FOR THE COLUMNS OF PASCAL'S TRIANGLE

Here, a generating function is an algebraic expression which lists terms
in a sequence as coefficients in an infinite series. For example, by the
formula for summing an infinite geometric progression,

3

(1) T i — =a+ar+ ar2 + ar” + eeey lr] <1,

we can write the generating function for the powers of 2 as

(2) T—_;§§ 21 4 2x + bxZ 4 BxD 4 wee + 2%+ oll |x] < 1/2 .
~ Long division gives a second verification that 1/(1 - 2x) generates
powers of 2, and long division can be used to compute successive coefficients

of powers of x for any generating function which follows.
We need some other generating functions to proceed. By summing the

geometric progression,

& rk
(3) lix=l+x+x2+x3+...= Z(O)xk’ x| <1 .

By multiplying series or by taking successive derivatives of (3), one finds

22 [k
(4) 1 2=1+2x+3x2+...-hkxk'lnl-...= Z(l)xk’ | x| <1,
(1 - x) k =0
S (k
(5) S S 3x + 6x‘2 + Zl.Ox3 + 15xl+ 4 eee = Z(z)xk ’ [x] < 1.
(1 - x)3 k =0
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Computation of the nth derivative of (3) shows that

1 AR
k=0

is a generating function for the integers appearing in the nth column of
Pascal's triangle, or equivalently, the column generator for the nth column,
where we call the left-most column the zero-th column. As a restatement,
the columns of Pascal's triangle give the coefficients of the binomial

)-n-l' n=0,1,2, eo.y [x]|<1, or of (1L + x)"2"1 ;¢

taken with alternating signs.

expansion of (1 - x

3. SOME PARTICULAR SUMS DERIVED USING COLUMN GENERATORS

It is easy to prove that the rows in Pascal's triangle have powers of 2

as their sums: merely let x =1 in (x + l)n, n=20,1,2, ... « But, to
demonstrate the methods, we work out the sums O0/1 of successive rows using
column generators.

First write Pascal's triangle to show the terms in the expansions of

(x + 1)®., Because we want the exponents of x to be identical in each row
so that we will <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>