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Abstract. A nontrivial solution of the equation A!B! = C! is a triple of positive integers
(A,B,C) with A ≤ B ≤ C − 2. It is conjectured that the only nontrivial solution is (6, 7, 10),
and this conjecture has been checked up to C = 106. Several estimates on the relative size of
the parameters are known, such as the one given by Erdös, C − B ≤ 5 log logC, or the one
given by Bhat and Ramachandra, C−B ≤ (1/ log 2+o(1)) log logC. We check the conjecture

for B ≤ 103000 and give better explicit bounds such as C −B ≤ log log(B+1)
log 2

− 0.8803.

1. Introduction

Many authors [6] considered the Diophantine equation

n! =

r∏
i=1

ai! (1.1)

in the integers r, a1, . . . , ar, with r ≥ 2 and a1 ≥ · · · ≥ ar ≥ 2. A trivial solution is given by
a1 = n − 1 and n =

∏r
i=2 ai!. Hickerson conjectured that the only nontrivial solutions are

9! = 7!3!3!2!, 10! = 7!6! = 7!5!3!, and 16! = 14!5!2!. He checked it for n ≤ 410, which was
improved to 18160 by Shallit and Easter (see [6]). Surányi also conjectured the case r = 2 (see
[5]) and this was verified up to n = 106 by Caldwell [2].

Luca [8] proved there are finitely many nontrivial solutions to (1.1), assuming the abc-
conjecture. Erdös [5] showed that, if the largest prime number of n(n + 1) is greater than
4 log n for any positive integer n, then there are only finitely many nontrivial solutions to
(1.1).

From now on, we shall focus on the case r = 2, i.e., the equation

A!B! = C! , (1.2)

which has been studied by Caldwell [2] for C ≤ 106. Erdös [4] proved that C−B ≤ 5 log logC
for C sufficiently large, and noted that it would be nice to obtain a bound of the form C −
B = o(log logC). His result was improved by Bhat and Ramachandra [1], who showed that
C−B ≤ (1/ log 2+o(1)) log logC. Hajdu, Papp, and Szakács [7] recently proved that nontrivial
solutions different from 10! = 7!6! satisfy C < 5(B − A) and B − A ≥ 106. The aim of this
paper is to get better explicit inequalities.

Let a ≥ 2 be an integer. Let sa denote the sum of the digits of an integer written in the
base a. When p is a prime, Legendre’s formula gives the exponent of p in n!:

vp(n!) =
n− sp(n)

p− 1
.

When we apply this formula to (1.2), we find A − vp(A) + B − vp(B) = C − vp(C). Since

vp(C) ≥ 1 and vp(n) ≤ (p−1) log(n+1)
log p (see Lemma 1 below), we obtain

C ≥ A+B + 1− log(A+ 1)

log 2
− log(B + 1)

log 2
. (1.3)
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Since logC! = logA! + logB!, the condition (1.3) implies that A is much smaller that B. We
shall make this assertion explicit by proving the following theorem.

Theorem 1.1. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solutions triple of (1.2). For any real

number t > −1− 1+2 log log 2
log 2 = −1.3851 . . ., we have

A ≤ log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t,

when B is sufficiently large. Moreover, we have

A ≤ log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ 2.1221 .

We can slightly improve on Bhat and Ramachandra’s result [1].

Theorem 1.2. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (1.2). For any real

number u > −1+log log 2
log 2 = −0.9139 . . ., we have

C −B ≤ log log(B + 1)

log 2
+ u,

when B is sufficiently large. Moreover, we have

C −B ≤ log log(B + 1)

log 2
+ 1.819 .

We also deduce a better explicit estimate than B − A > C/5 given by Hajdu, Papp, and
Szakács [7].

Theorem 1.3. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (1.2). For any real

number v < 1 + 2+3 log log 2
log 2 = 2.299 . . ., we have

B −A > C − log(C + 1)

log 2
− 3 log log(C + 1)

log 2
+ v,

when B is sufficiently large. Moreover, we have

B −A > C − log(C + 1)

log 2
− 3 log log(C + 1)

log 2
− 3.9411 .

All these general estimates used B ≥ 106 for nontrivial solutions triple distinct from
(6, 7, 10). We use these estimates to improve the range of validity of Surányi’s conjecture
and the estimates given before.

Theorem 1.4. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (1.2). Then, we
have B ≥ 103000 and

A ≤ log(B + 1)

log 2
+

2 log log(B + 1)

log 2
− 1.3479 ,

C −B ≤ log log(B + 1)

log 2
− 0.8803 ,

B −A > C − log(C + 1)

log 2
− 3 log log(C + 1)

log 2
+ 2.2282 .

Remark 1.5. Theorem 1.4 extends Caldwell’s result (C ≥ 106) concerning the conjecture of
Surányi to a much larger region (C ≥ 103000).
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We first establish useful general properties for the sum of digits and for the Γ function in
the next section. In Section 3, we prove a key lemma that studies the asymptotic behavior

of logC! − logA! − logB! under the condition (1.3), for A = log(B+1)
log 2 + 2 log log(B+1)

log 2 + t. We

deduce Theorems 1.1–1.3 in Section 4. In Section 5, we use these results to prove Theorem 1.4,
hence also to check Surányi’s conjecture further, and to improve on the results of the preceding
section. We end this paper with a few remarks on possible ways to get better results.

2. General Properties of sa and Γ

We first give a tight upper bound for the sum of the digits function.

Lemma 2.1. Let a ≥ 2 be an integer. For any nonnegative integer n, we have the upper bound

sa(n) ≤ (a− 1) log(n+ 1)

log a
.

Proof. Let n be a nonnegative integer. Write sa(n) = (a − 1)b + r, where b is a nonnegative
integer and 0 ≤ r ≤ a− 2. We have

n ≥
b−1∑
i=0

(a− 1)ai + rab = (r + 1)ab − 1 .

The function x→ x− (a−1) log(x+1)
log a is convex and vanishes at x = 0 and x = a−1. Therefore,

this function is nonpositive on the interval [0, a− 1]. We thus get

sa(n) = (a− 1)b+ r ≤ (a− 1)
log(ab)

log a
+ (a− 1)

log(r + 1)

log a
≤ (a− 1) log(n+ 1)

log a
.

�

Put Ψ(z) = Γ′(z)/Γ(z). Let γ denote Euler’s constant. We recall the formulas (see [3],
p. 15)

Ψ(z) = −γ +
∞∑
k=0

(
1

k + 1
− 1

z + k

)

Ψ′(z) =
∞∑
k=0

1

(z + k)2
,

(2.1)

and Binet’s second expression for log Γ (see [3], p. 22)

log Γ(x) =

(
x− 1

2

)
log x− x+

log(2π)

2
+ 2

∫ ∞
0

arctan(t/x)

e2πt − 1
dt . (2.2)

From the bounds 0 ≤ arctan(t/x) ≤ t/x and from (2.2), we get the well-known explicit
Sirtling’s formula

0 ≤ log Γ(x)− x(log x− 1)− log(2π/x)

2
≤ 1

12x
. (2.3)

Deriving (2.2) also leads to the formula

Ψ(x) = log x− 1

2x
−
∫ ∞
0

2t

(t2 + x2)(e2πt − 1)
dt

and the bounds 0 ≤ 1/(t2 + x2) ≤ 1/x2 give the estimates

− 1

12x2
≤ Ψ(x)− log x+

1

2x
≤ 0 . (2.4)
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3. The Key Lemma

Let us define

R(A,B) = log Γ

(
A+B + 2− log(A+ 1)

log 2
− log(B + 1)

log 2

)
− log Γ (A+ 1)− log Γ (B + 1) ,

and put

At =
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t

for any real number t.

Lemma 3.1. Let t be a real number such that t > −1− 1+2 log log 2
log 2 = −1.3851 . . .. There exists

a function C(t, B + 1) such that

R(At, B) ≥ C(t, B + 1) log(B + 1) ,

with

lim
B→+∞

C(t, B + 1) = t+ 1 +
1 + 2 log log 2

log 2
> 0 .

Moreover, we have C(2.1221, B + 1) > 0 for B ≥ 106.

Proof. For B ≥ 2, we have

log (At + 1) = log

(
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t+ 1

)
≤ log log(B + 1)− log log 2 +

2 log log(B + 1) + (t+ 1) log 2

log(B + 1)

and therefore,

At +B + 2− log(At + 1)

log 2
− log(B + 1)

log 2
= B + t+ 2 +

2 log log(B + 1)

log 2
− log(At + 1)

log 2

≥ B + t+ 2 +
log log 2

log 2
+

log log(B + 1)

log 2
− 2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)
> B + 1

for B ≥ 35. We thus get, from (2.1) and (2.4) and for B ≥ 35 that

log Γ

(
At +B + 2− log(At + 1)

log 2
− log(B + 1)

log 2

)
− log Γ (B + 1)

≥
(

log log(B + 1)

log 2
+ t+ 1 +

log log 2

log 2
− 2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)

)
Ψ(B + 1)

≥
(

log log(B + 1)

log 2
+ t+ 1 +

log log 2

log 2
− 2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)

)
×
(

log(B + 1)− 1

2(B + 1)
− 1

12(B + 1)2

)
.

=

(
log log(B + 1)

log 2
+ t+ 1 +

log log 2

log 2
+ ϕ1(t, B + 1)

)
log(B + 1)

with

ϕ1(t, x) = −2 log log x+ (t+ 1) log 2

log 2 log x

− 1

log x

(
1

2x
+

1

12x2

)(
log log x

log 2
+ t+ 1 +

log log 2

log 2
− 2 log log x+ (t+ 1) log 2

log 2 log x

)
.
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Stirling’s formula (2.3) gives

log Γ(x) ≤ x(log x− 1) +
log(2π/x)

2
+

1

12x
≤ x(log x− 1)

for x ≥ 6.448, from which we obtain

log Γ (At + 1) ≤
(

log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t+ 1

)
×
(

log log(B + 1)− 1− log log 2 +
2 log log(B + 1) + (t+ 1) log 2

log(B + 1)

)
when At ≥ 6.448. Since At > A−1− 1+2 log log 2

log 2
≥ 6.448 for B ≥ 23, we get

log Γ (At + 1) ≤
(

log log(B + 1)

log 2
− 1 + log log 2

log 2
+ ϕ2(t, B + 1)

)
log(B + 1)

for B ≥ 23, with

ϕ2(t, x) =
2 log log x+ (t+ 1) log 2

log 2 log x

(
log log x− log log 2 +

2 log log x+ (t+ 1) log 2

log x

)
.

We deduce

R(At, B) ≥
(
t+ 1 +

1 + 2 log log 2

log 2
+ ϕ1(t, B + 1)− ϕ2(t, B + 1)

)
log(B + 1)

for B ≥ 35, and we put C(t, B + 1) = t + 1 + 1+2 log log 2
log 2 + ϕ1(t, B + 1) − ϕ2(t, B + 1). Note

that the functions ϕ1(t, x) and ϕ2(t, x) tend to 0 when x goes to infinity, which proves the
first part of the lemma.

For t ≥ −1 and x ≥ 106, we have

−C(t, x) ≤2 log log x+ (t+ 1) log 2

log 2 log x

(
log log x+ 1− log log 2 +

2 log log x+ (t+ 1) log 2

log x

)
+

(
1

2x
+

1

12x2

)
(0.2634 + 0.0672(t+ 1)) + t+ 1 +

1 + 2 log log 2

log 2
,

a decreasing function of x. We thus deduce C(2.1221, 106) > 0.000016, which completes the
proof. �

4. Proof of the First Three Theorems

4.1. Proof of Theorem 1.1.

Lemma 4.1. If (A,B,C) is a solution of (1.2), then R(A,B) ≤ 0. The function R is an
increasing function of A for 1 ≤ A ≤ B.

Proof. The first claim follows directly from (1.3): R(A,B) ≤ logC!− logA!− logB! = 0. We
compute

∂2R

∂A∂B
(A,B)

=

(
1− 1

(A+ 1) log 2

)(
1− 1

(B + 1) log 2

)
Ψ′
(
A+B + 2− log(A+ 1)

log 2
− log(B + 1)

log 2

)
.
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From (2.1) we get ∂2R
∂A∂B (A,B) ≥ 0 for 1 ≤ A ≤ B. We use (2.1) to deduce

∂R

∂A
(A,B) ≥ ∂R

∂A
(A,A) =

(
1− 1

(A+ 1) log 2

)
Ψ

(
2A+ 2− 2

log(A+ 1)

log 2

)
−Ψ(A+ 1)

=
γ

(A+ 1) log 2
+

∞∑
k=0

 1

k +A+ 1
−

1− 1
(A+1) log 2

k + 2A+ 2− 2 log(A+1)
log 2


=

γ

(A+ 1) log 2
+
∞∑
k=0

k
(A+1) log 2 +A+ 1− 2 log(A+1)

log 2 + 1
log 2

(k +A+ 1)(k + 2A+ 2− 2 log(A+1)
log 2 )

> 0

when A+ 1 ≥ max
(

2 log(A+1)
log 2 − 1

log 2 ,
log(A+1)

log 2

)
≥ 0, which is true for A ≥ 1. �

Thus, we only need to find Ā such that R(Ā, B) > 0 to get a bound A < Ā. For t >

−1 − 1+2 log log 2
log 2 , we have R(At, B) > 0 for B large enough by Lemma 3.1, which gives the

first part of Theorem 1.1. Hajdu, Papp, and Szakács [7] proved B − A ≥ 106, which ensures
us that B ≥ 106. We can therefore deduce the second part of the theorem from the inequality
C(2.1221, B + 1) > 0, also given in Lemma 3.1.

4.2. Proof of Theorem 1.2. Note that

logA! = log
C!

B!
≥ (C −B) log(B + 1) .

For A ≤ At, we have shown, in the proof of Lemma 3.1, that

logA! ≤ log Γ(At + 1) ≤
(

log log(B + 1)

log 2
− 1 + log log 2

log 2
+ ϕ2(t, B + 1)

)
log(B + 1) .

Therefore,

C −B ≤ log log(B + 1)

log 2
− 1 + log log 2

log 2
+ ϕ2(t, B + 1) ,

thus proving the first part of the theorem, since ϕ2(t, x) tend to 0 when x goes to infinity.
Each monomial term (log log x)n(log x)−m defining ϕ2 is a positive decreasing function of

x for t ≥ −1 and x ≥ 106. We find −1+log log 2
log 2 + ϕ2(2.1221, 106) < 1.819 and the theorem

follows, as in the previous subsection.

4.3. Proof of Theorem 1.3. We write B−A = C −A− (C −B) and use Theorems 1.1 and
1.2 to get

B −A ≥ C − log(B + 1)

log 2
− 3 log log(B + 1)

log 2
− 3.9411 .

The second part of the theorem follows, and the first part is straightforward.

5. The Proof of Theorem 1.4

Theorems 1.2 and 1.3 show that A and C − B are small with respect to B. Let us put
k = C −B to simplify the statements.

Lemma 5.1. Let (A,B,C) be a nontrivial solution triple of (1.2). For k = C − B ∈
{2, 3, . . . , 20}, we have B = Bk(A) = d(A!)1/k − (k + 1)/2e.
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Proof. We have

A! =

k∏
i=1

(B + i) =

k∏
i=1

√
(B + i)(B + k + 1− i) <

(
B +

k + 1

2

)k
,

which shows that B > (A!)1/k − (k + 1)/2.

We used MAPLE to check that the polynomial
∏k
i=1(B+i)−(B+(k−1)/2)k is a polynomial

in B − 1 with nonnegative coefficients and with a positive value at B = 1, for 2 ≤ k ≤ 12.
This implies that B < (A!)1/k − (k − 1)/2, and the lemma follows. �

We checked that the inequality A! =
∏k
i=1(Bk(A) + i) never occurred for A ≤ 10000 and

2 ≤ k ≤ 12 using MAPLE; we asked for 40000-digit precision (enough to write all the digits
of A!), and this required about 28 hours of computations.

For B ≤ 101000, Theorems 1.2 and 1.3 give A ≤ 3346 and k ≤ 12, so that the equation
(1.2) has no nontrivial solution for 106 ≤ B ≤ 101000. We can get better inequalities in these
theorems, using B ≥ 101000. Computing C(−1.2979, 101000) and ϕ2(1.2979, 101000) leads to

A ≤ log(B + 1)

log 2
+

2 log log(B + 1)

log 2
− 1.2979 ,

C −B ≤ log log(B + 1)

log 2
− 0.8362 .

For 101000 ≤ B ≤ 103000, we obtain A ≤ 9993 and k ≤ 11, and the equation (1.2) has
no nontrivial solution for this interval. Computing C(−1.3479, 103000) and ϕ2(1.3479, 103000)
gives the inequalities from Theorem 1.4.

6. Concluding Remarks

Our method is based on two pieces of information: arithmetical information obtained by
considering the dyadic valuation of the factorials, and asymptotic information obtained from
Stirling’s formula. To improve on the orders of magnitude of our estimates, one should get
more arithmetical information. First, we applied the estimate from Lemma 2.1 for A! and for
B!, and it is uncommon that this estimate can be sharp in both cases. Second, we did not
use any property of the p-adic valuations for p ≥ 3, and any useful information could lead to
improvements.

The algorithm we used to check that A!Bk(A)! 6= (Bk(A) + k)! is basic. A smarter one
should lead to an much larger bound than ours.
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