LINEAR RECURRING SEQUENCE SUBGROUPS IN THE COMPLEX FIELD - II

OWEN J. BRISON AND J. EURICO NOGUEIRA

ABSTRACT. In [1], the authors studied f-subgroups in the complex field for polynomials f(t) of degree 2 and described their behavior in many cases. Here, similar questions are considered for polynomials of general degree $k \ge 2$.

1. INTRODUCTION

Let \mathbb{C} denote the complex field, let $\mathbb{C}_0[t]$ denote the set of nonconstant monic polynomials over \mathbb{C} with nonzero constant coefficient, and let \mathbb{C}^* denote the multiplicative group of nonzero complex numbers. Let $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_1t - a_0 \in \mathbb{C}_0[t]$. An *f*-sequence in \mathbb{C} is a (doubly-infinite) sequence $\mathcal{S} = (s_i)_{i \in \mathbb{Z}}$ of elements $s_i \in \mathbb{C}$ such that

$$s_i = a_{k-1}s_{i-1} + \dots + a_1s_{i-k+1} + a_0s_{i-k}$$

for all $i \in \mathbb{Z}$; S is *cyclic* if there exists $g \in \mathbb{C}^*$ such that $s_{i+1} = gs_i$ for all $i \in \mathbb{Z}$, in which case g is the common ratio of S; S is periodic if there exists $m \in \mathbb{N}$ such that $s_a = s_{a+m}$ for all $a \in \mathbb{Z}$, whereas the least such m is called the *least period* of S. By a minimal periodic segment, we understand the whole sequence, if S is not periodic, and any segment consisting of m consecutive members of S, if S is periodic with least period m.

If $g \in \mathbb{C}^*$ is a root of $f(t) \in \mathbb{C}_0[t]$, then the subgroup $\langle g \rangle \leq \mathbb{C}^*$ may be regarded as (the underlying set of) an *f*-sequence:

$$\langle g \rangle = (\ldots, 1, g, g^2, \ldots, g^n, \ldots).$$

It sometimes happens, for certain choices of f(t) and g with f(g) = 0, that $\langle g \rangle$ may be written in an alternative manner as an f-sequence. This raises the question of classifying this behavior. An analogous situation for finite fields seems to have first been investigated by Somer [3, 4]. In [1], the authors studied this problem for $f(t) \in \mathbb{C}_0[t]$ of degree 2. In that paper, the case where $\langle g \rangle$ is finite was described, whereas the case where $\langle g \rangle$ is infinite was described except for certain specified situations: see Propositions 4 and 6 of [1].

Definition 1.1. Let $f(t) \in \mathbb{C}_0[t]$. The subgroup $M \leq \mathbb{C}^*$ is said to be an f-subgroup if either (i) M is infinite and the underlying set of M can be written in such a way as to form an f-sequence $(s_n)_{n \in \mathbb{Z}}$, where $s_a \neq s_b$ if $a \neq b$, or

The first author acknowledges the partial support of the Fundação para a Ciência e Tecnologia via the project UID/MAT/04721/2013 (Centro de Análise Funcional, Estruturas Lineares e Aplicações - Grupo de Estruturas Lineares, Algébricas e Combinatórias, of the Universidade de Lisboa, Portugal). The second author acknowledges the partial support of the Fundação para a Ciência e Tecnologia via the project UID/MAT/00297/2019 (Centro de Matemática e Aplicações, of the Universidade Nova de Lisboa, Portugal).

(ii) M is finite, of order m, and the underlying set of M can be written in such a way as to coincide with a minimal periodic segment of an f-sequence $(s_n)_{n \in \mathbb{Z}}$, where $s_a = s_b$ if and only if $a \equiv b \pmod{m}$.

When M is an f-subgroup, we will write $M = (s_n)_{n \in \mathbb{Z}}$, even if M is finite, and say $(s_n)_{n \in \mathbb{Z}}$ is a representation of, or represents, the subgroup M as an f-sequence.

The following lemma relates f-subgroups with cyclic f-sequences.

Lemma 1.2. Let $f(t) = t^k - a_{k-1}t^{k-1} - \dots - a_1t - a_0 \in \mathbb{C}_0[t]$.

(a) If f(g) = 0, then $(g^n)_{n \in \mathbb{Z}}$ is a cyclic f-sequence that represents $\langle g \rangle$.

(b) Suppose $S \subseteq \mathbb{C}^*$ is a cyclic f-sequence with common ratio g and contains 1. Then, f(g) = 0 and S represents $\langle g \rangle \leq \mathbb{C}^*$ as an f-subgroup.

Proof. (a) We observed this above.

(b) Write $S = (s_n)_{n \in \mathbb{Z}}$ and assume, without loss of generality, that $s_0 = 1$; then $s_n = g^n$ for all $n \in \mathbb{Z}$ and $S = (g^n)_{n \in \mathbb{Z}}$ represents $\langle g \rangle \leq \mathbb{C}^*$ as an *f*-subgroup. Because S is an *f*-sequence, $g^k = a_{k-1}g^{k-1} + \cdots + a_1g + a_0$ and so, f(g) = 0.

If $f(t) \in \mathbb{C}_0[t]$, and if $g, h \in \mathbb{C}^*$ are distinct roots of f, it can happen that $\langle h \rangle = \langle g \rangle \leq \mathbb{C}^*$, and then, $(g^n)_{n \in \mathbb{Z}}$ and $(h^n)_{n \in \mathbb{Z}}$ are both "obvious", and cyclic, representations of $\langle g \rangle$ as an f-subgroup. This suggests:

Definition 1.3. Let $f(t) \in \mathbb{C}_0[t]$ be of degree $k \geq 2$.

(a) The f-subgroup M of \mathbb{C}^* is said to be standard if whenever M is represented as an f-sequence $M = (s_n)_{n \in \mathbb{Z}}$, then $(s_n)_{n \in \mathbb{Z}}$ is necessarily cyclic. Otherwise, M is said to be nonstandard.

(b) Suppose that M is a nonstandard f-subgroup. If M admits a representation as a cyclic f-sequence, then M is nonstandard of the first type; otherwise M is nonstandard of the second type.

It is possible to find polynomials $f(t) \in \mathbb{C}_0[t]$ that admit noncyclic *f*-subgroups and, are thus nonstandard of the second type: see Theorem 3.3 below and Example 7 of [1]. The classification of these noncyclic *f*-subgroups seems to be an open problem; the only ones we have found are of the form $\langle a \rangle \times \langle b \rangle$, where $\langle a \rangle$ is finite and $\langle b \rangle$ is infinite.

Suppose $f(t) = t^k - a_{k-1}t^{k-1} - \cdots - a_0 \in \mathbb{C}_0[t]$ and $(s_i)_{i \in \mathbb{Z}}$ is an *f*-sequence in \mathbb{C} . Write $f^*(t) = t^k + \frac{a_1}{a_0}t^{k-1} + \cdots + \frac{a_{k-1}}{a_0}t - \frac{1}{a_0} \in \mathbb{C}_0[t]$; this is the monic version of the *reciprocal* polynomial of f(t) and its roots are the inverses of the roots of f(t). It is clear that $f^{**} = f$. For $i \in \mathbb{Z}$, write $u_i = s_{-i}$. Then, $(u_i)_{i \in \mathbb{Z}}$ (which is just " (s_i) backwards") is an f^* -sequence and M is an *f*-subgroup if and only if it is an f^* -subgroup.

2. The Main Result

The following result generalizes part (1) of Proposition 4 of [1].

Theorem 2.1. Let $f(t) \in \mathbb{C}_0[t]$ be of degree $k \geq 2$ with roots $g_1, \ldots, g_k \in \mathbb{C}^*$ such that $|g_i| < |g_j|$ if i < j, and let M be an f-subgroup. Then, M is standard. Furthermore, M is finite if and only if for some $i \in \{1, \ldots, k\}$ we have $M = \langle g_i \rangle$, where g_i is a root of unity.

Proof. Let $(s_n)_{n \in \mathbb{Z}}$ be an f-sequence that represents M; then there exist $\alpha_i \in \mathbb{C}$ such that

$$s_n = \alpha_1 g_1^n + \alpha_2 g_2^n + \dots + \alpha_k g_k^n$$

for all $n \in \mathbb{Z}$. Without loss of generality, assume that $s_0 = 1$. We wish to prove that precisely one of the α_i is nonzero. Thus, for a contradiction, suppose at least two of the α_i are nonzero. Let

$$k_2 = \min\{i : i \in \{1, \dots, k\}, \alpha_i \neq 0\}$$
 and $k_1 = \max\{i : i \in \{1, \dots, k\}, \alpha_i \neq 0\},\$

so that $k_2 < k_1$.

Write $R_i = g_i/g_{k_1}$ for $i = k_2, ..., k_1 - 1$ and $P_j = g_j/g_{k_2}$ for $j = k_2 + 1, ..., k_1$. For all relevant *i* and *j*, we have $|R_i| < 1$, $|P_j| > 1$, and

$$\lim_{n \to \infty} R_i^n = \lim_{n \to -\infty} P_j^n = 0.$$
(2.1)

We also have

$$|s_n| = |g_{k_1}|^n |\alpha_{k_2} R_{k_2}^n + \dots + \alpha_{k_1 - 1} R_{k_1 - 1}^n + \alpha_{k_1}|$$

= $|g_{k_2}|^n |\alpha_{k_2} + \alpha_{k_2 + 1} P_{k_2 + 1}^n + \dots + \alpha_{k_1} P_{k_1}^n|.$ (2.2)

Thus,

$$\lim_{n \to \infty} |s_n| = |\alpha_{k_1}| \lim_{n \to \infty} |g_{k_1}|^n,$$

$$\lim_{n \to -\infty} |s_n| = |\alpha_{k_2}| \lim_{n \to -\infty} |g_{k_2}|^n,$$
(2.3)

and

$$\frac{|s_{n+1}|}{|s_n|} = |g_{k_1}| \frac{|\alpha_{k_2} R_{k_2}^{n+1} + \dots + \alpha_{k_1}|}{|\alpha_{k_2} R_{k_2}^n + \dots + \alpha_{k_1}|}$$

$$= |g_{k_2}| \frac{|\alpha_{k_2} + \dots + \alpha_{k_1} P_{k_1}^{n+1}|}{|\alpha_{k_2} + \dots + \alpha_{k_1} P_{k_1}^n|}$$

$$(2.4)$$

so that

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = |g_{k_1}| > 0,$$

$$\lim_{n \to -\infty} \frac{|s_{n+1}|}{|s_n|} = |g_{k_2}| > 0.$$
(2.5)

The following four assertions follow from (2.3) and (2.5).

(a) If $|g_{k_1}| > 1$, then there exists $n_0 \in \mathbb{N}$ such that $|s_{n+1}| > |s_n|$ for $n > n_0$ and $\lim_{n\to\infty} |s_n| = \infty$.

(b) If $|g_{k_2}| > 1$, then there exists $n_1 \in \mathbb{N}$ such that $|s_{n+1}| > |s_n|$ for $n < -n_1$ and $\lim_{n \to -\infty} |s_n| = 0$.

(c) If $|g_{k_1}| < 1$, then there exists $n_2 \in \mathbb{N}$ such that $|s_{n+1}| < |s_n|$ for $n > n_2$ and $\lim_{n\to\infty} |s_n| = 0$.

(d) If $|g_{k_2}| < 1$, then there exists $n_3 \in \mathbb{N}$ such that $|s_{n+1}| < |s_n|$ for $n < -n_3$ and $\lim_{n \to -\infty} |s_n| = \infty$.

The following two assertions follow from (2.3).

- (e) If $|g_{k_1}| = 1$, then $\lim_{n \to \infty} |s_n| = |\alpha_{k_1}| > 0$.
- (f) If $|g_{k_2}| = 1$, then $\lim_{n \to -\infty} |s_n| = |\alpha_{k_2}| > 0$.

VOLUME 57, NUMBER 2

LINEAR SEQUENCE SUBGROUPS

There are now a number of cases to consider; the first three lead rapidly to contradictions.

Case (1). First, suppose $|g_{k_2}| < 1 < |g_{k_1}|$. By (a) and (d), there exists $n_4 \in \mathbb{N}$ such that $|s_n| > 1$ whenever $|n| \ge n_4$; in particular, the group M contains a finite number of elements s_n with $|s_n| < 1$, but an infinite number with $|s_n| > 1$, which is a contradiction because M contains the inverse of each of its elements.

Case (2). Next, suppose $|g_{k_2}| = 1 < |g_{k_1}|$. By (a), M contains elements of arbitrarily large modulus. By (a) and (f), the elements of M are, in modulus, bounded below away from 0. This is again a contradiction.

Case (3). Next, suppose $|g_{k_2}| < 1 = |g_{k_1}|$. By (d), M contains elements of arbitrarily large modulus. By (d) and (e), the elements of M are, in modulus, bounded below away from 0. This is again a contradiction.

Case (4). Next, suppose $1 < |g_{k_2}| < |g_{k_1}|$. By (a) and (b), there exists $n_5 \in \mathbb{N}$ such that $|s_n|$ is monotonic increasing whenever $|n| \ge n_5$ and such that, $|s_{-n_5}| < |s_{n_5}|$. We also have $\lim_{n\to\infty} |s_n| = \infty$ and $\lim_{n\to\infty} |s_n| = 0$. We start by proving that, in this case, $|s_u| \ne |s_v|$, whenever $u \ne v$. Write $N_5 = \{-n_5, \ldots, n_5\}$; then $|s_i|$ is monotonic increasing on $\mathbb{N}\setminus N_5$. In particular, $|s_u| \ne |s_v|$ whenever u and v are distinct elements of $\mathbb{N}\setminus N_5$. Suppose that $u \in N_5$ and $v \in \mathbb{N}$ are distinct with $|s_u| = |s_v|$; because $u \ne v$, then $s_u \ne s_v$. Because $\lim_{n\to\infty} |s_n| = \infty$, there exists $s_w \in M$ such that $|s_us_w| = |s_vs_w| > \max\{|s_{n_5}|, |s_j| : j \in N_5\}$. But, $s_us_w = s_a$ and $s_vs_w = s_b$ are distinct elements of M and so, we must have $a \ne b \ge n_5$ and then, by what we have seen, $|s_a| \ne |s_b|$, a contradiction. Thus, $|s_u| \ne |s_v|$ whenever $u \ne v$.

Next, we assert that, in this case, M is cyclic. The elements s_u of M are monotonic increasing in modulus (to ∞) for $u \notin N_5$, while N_5 is finite. In addition, $|s_u| \neq |s_v|$ if $u \neq v$. Thus, there exists a unique $w \in M$ of least modulus greater than 1. Suppose $M \neq < w >$. Then, there exists a unique $w_1 \in M \setminus < w >$ of least modulus greater than 1. Let t be the largest natural number such that $1 < |w^t| < |w_1|$. Certainly $\frac{w_1}{w^t} \in M \setminus < w >$, whereas $1 < \left|\frac{w_1}{w^t}\right| < |w_1|$, contrary to choice. Thus, M = < w > is cyclic with |w| > 1 as above.

We now show that there exists $i \in \{1, \ldots, k\}$ such that $M = \langle g_i \rangle$. The $|s_u|$ are all distinct and are monotonic increasing from n_5 onwards. If $v \geq n_5$, then $s_{v+1} \in M$ must have the form $s_v w^j$ for some j, but $|s_v| < |s_v w| \le |s_v w^j|$ and so j = 1. Recall, from [2], that $s_{u,k}$ denotes the k-vector (s_u, \ldots, s_{u+k-1}) . Fix $x \geq n_5$. Then, $s_{x+1,k} = w s_{x,k}$ and

$$\mathbf{s}_{x,k} = (w^t, \dots, w^{t+k-1})$$

for some $t = t(x) \in \mathbb{Z}$. Then from [2], we have

$$\boldsymbol{s}_{x,k}C_f = \boldsymbol{s}_{x+1,k} = w\boldsymbol{s}_{x,k},$$

where C_f is the companion matrix of f(t), so that

$$(w^t, \dots, w^{t+k-1})C_f = w(w^t, \dots, w^{t+k-1}).$$

But, w is a nonzero scalar, while C_f is invertible and so,

$$w^{-1}(w^t, \dots, w^{t+k-1}) = (w^t, \dots, w^{t+k-1})C_f^{-1}.$$

We are assuming that $s_0 = 1$. Then, $s_{0,k} = (1, s_1, \ldots, s_{k-1})$ and, with x and t as above,

$$\boldsymbol{s}_{0,k}C_f^x = \boldsymbol{s}_{x,k},$$

MAY 2019

THE FIBONACCI QUARTERLY

so that,

$$(w^{t-x},\ldots) = \mathbf{s}_{x,k}C_f^{-x} = \mathbf{s}_{0,k} = (1,\ldots).$$

Thus, t = x and $s_{0,k} = (1, w, \dots, w^{k-1})$, while $s_{1,k} = (w, w^2, \dots, w^k)$. But then,

$$w^{k} = s_{k} = a_{k-1}s_{k-1} + \dots + a_{0}s_{0} = a_{k-1}w^{k-1} + \dots + a_{0}1$$

and so, w is a root of f(t), whence $w = g_i$ for some $i \in \{1, \ldots, k\}$. But then, $\alpha_i = 1$ and $\alpha_j = 0$ for all $j \neq i$, a contradiction.

Case (5). Finally, suppose $|g_{k_2}| < |g_{k_1}| < 1$. Then, the monic reciprocal, $f^*(t)$, falls under Case 4 and we again reach a contradiction.

It follows that M is standard. The final assertion is now clear.

3. Some Nonstandard Subgroups

In this section, we present some families of nonstandard subgroups in \mathbb{C}^* .

Theorem 3.1. Let $p(t) \in \mathbb{C}_0[t]$, let $d \in \mathbb{N}$ with $d \ge 2$, and let $f(t) = p(t^d)$. Suppose, for some $m \in \mathbb{N}, g \in \mathbb{C}^*$ is a root of f(t) of multiplicative order m. Write $M = \langle g \rangle \le \mathbb{C}^*$.

(a) Write $b = \gcd(m, d)$. Then, $\langle g^b \rangle = \langle g^d \rangle$ is a p-subgroup of order m/b. Let τ be the number of cyclically distinct p-sequences that represent $\langle g^b \rangle$. Then, there exist at least

$$\theta = \tau^b (b-1)! \left(\frac{m}{b}\right)^{b-1}$$

cyclically distinct f-sequences that represent M.

(b) Suppose $d \mid m$. Furthermore, suppose that m > 3, if d = 3 and m > 4, if d = 2. Then, M is a nonstandard f-subgroup of the first type.

Proof. (a) Because g is a root of f(t), g^d is a root of p(t) and $\langle g^d \rangle = \langle g^b \rangle \leq \mathbb{C}^*$ is a p-subgroup of order m/b. By hypothesis, there are τ cyclically-distinct p-sequences of the form

$$S_1 = (\dots, 1, c_1, c_2, \dots, c_{\frac{m}{h}-1}, \dots)$$

that represent $\langle g^b \rangle$; in a similar way, for any $a \in M$, there are τ p-sequences

 $S_a = (\ldots, a, ac_1, ac_2, \ldots, ac_{\frac{m}{b}-1}, \ldots),$

that represent (in the obvious way) the coset $a < g^b >$. Interleaving the *b p*-sequences $S_1, S_{a_1}, \ldots, S_{a_{b-1}}$, where $\{1, a_1, \ldots, a_{b-1}\}$ is a complete set of coset representatives of $< g^b > \text{in } M$, we may now represent *M* by *f*-sequences of the form

$$S = (\dots, 1, a_1, \dots, a_{b-1}, c_1, a_1c_1, \dots, a_{b-1}c_1, c_2, a_1c_2, \dots, c_{\frac{m}{b}-1}, a_1c_{\frac{m}{b}-1}, \dots, a_{b-1}c_{\frac{m}{b}-1}, \dots)$$

having a minimal periodic segment of length m.

There are τ choices for S_1 , $(m - \frac{m}{b})\tau$ choices for a_1 , and so $(m - \frac{m}{b})\tau = \frac{m}{b}(b-1)\tau$ for S_{a_1} , $(m - 2\frac{m}{b})\tau = \frac{m}{b}(b-2)\tau$ for S_{a_2} , and so on. Thus, the total number of choices is given by

$$\theta = \tau \left(\frac{m}{b}(b-1)\tau\right) \left(\frac{m}{b}(b-2)\tau\right) \dots \left(\frac{m}{b}\tau\right) = \tau^b \left(\frac{m}{b}\right)^{b-1}(b-1)!$$

It follows that the group M can be represented by at least θ cyclically-distinct sequences (and so will be nonstandard if $\theta > k_m$).

LINEAR SEQUENCE SUBGROUPS

(b) Let $k_m \in \mathbb{N}$ denote the number of roots of f(t) of multiplicative order m. By hypothesis, $d \mid m$ and so, b = d and $m/d \ge 1$. Because f has k_m roots of order m (including g), p has $h_m \ge k_m/d$ roots of order m/d (including g^d) in \mathbb{C} . Each of these roots of order m/d will afford a p-sequence that represents $\langle g^d \rangle$ (because \mathbb{C}^* has a unique subgroup of each finite order) and so, $\tau \ge h_m \ge k_m/d$. Thus, in the notation of (a) and because $h_m \ge 1$, we have

$$\theta = h_m h_m^{d-1} \left(\frac{m}{d}\right)^{d-1} (d-1)! \ge \frac{k_m}{d} h_m^{d-1} \left(\frac{m}{d}\right)^{d-1} (d-1)! \ge k_m \frac{(d-1)!}{d}.$$

If $d \ge 4$, then $\theta > k_m$ and so M is nonstandard as an f-subgroup.

Next, suppose d = 3. Then,

$$\theta \ge \frac{k_m}{3} \left(\frac{m}{3}\right)^2 2! = k_m \frac{2m^2}{27}.$$

By hypothesis, m > 3 in this case, so $\theta > k_m$ and M is nonstandard.

Finally, suppose d = 2. Then, $\theta \ge k_m \frac{m}{4}$ and, because m > 4 in this case again, M is nonstandard.

In all cases, M has a cyclic representation and is nonstandard of the first type.

Example 3.2. Let $p(t) = t - i \in \mathbb{C}_0[t]$ and $f(t) = p(t^3)$. The roots of f(t) are $g_1 = e^{\frac{\pi}{6}i}$ and $g_2 = e^{\frac{5\pi}{6}i}$, both of order 12, and $g_3 = e^{\frac{3\pi}{2}i}$ of order 4; thus, $k_{12} = 2$. Let $M = \langle g_1 \rangle \leq \mathbb{C}^*$. By Theorem 3.1(b), M is nonstandard and, by Theorem 3.1(a), there are at least $\theta = 32$ distinct f-sequences that represent M.

Theorem 3.3. Let $p(t) \in \mathbb{C}_0[t]$, let $d \in \mathbb{N}$ with $d \ge 2$, and let $f(t) = p(t^d)$. Suppose $h \in \mathbb{C}^*$ is a root of p. Let g be a fixed dth root of h and suppose g is not a root of unity.

(a) There exist infinitely many cyclically-distinct f-sequences that represent $M = \langle g \rangle$ and M is a nonstandard f-subgroup of the first type.

(b) Let $\zeta \in \mathbb{C}^*$ be a primitive dth root of unity and write $N = \langle \zeta \rangle \times \langle h \rangle$. Then, N is a nonstandard f-subgroup of the second type, represented by infinitely many f-sequences.

Proof. (a) Write $S_0 = (g^i)_{i \in \mathbb{Z}}$; then, S_0 is a cyclic *f*-sequence that represents *M*. Fix $m \in \mathbb{Z}$, $m \geq 1$. Let $\mu_i = g^i$ if *d* does not divide *i*, and $\mu_{qd} = g^{(q+m)d}$ for $q \in \mathbb{Z}$. Then, $S_m = (\mu_i)_{\in \mathbb{Z}}$ is an *f*-sequence that represents *M* and is noncyclic, because $d \geq 2$, and *g* is not a root of unity. Thus, *M* is nonstandard of the first type. Distinct $m_1, m_2 \in \mathbb{Z}$ give cyclically distinct sequences S_{m_1} and S_{m_2} , so *M* is represented by an infinite number of *f*-sequences.

(b) The *f*-sequence

$$(s_i)_{i \in \mathbb{Z}} = (\dots, 1, \zeta^1, \dots, \zeta^{d-1}, h, h\zeta^1, \dots, h\zeta^{d-1}, h^2, h^2\zeta^1, \dots)$$

represents the group $N = \langle \zeta \rangle \times \langle h \rangle \leq \mathbb{C}^*$, which is an *f*-subgroup; it is clearly noncyclic and is nonstandard of the second type. The above sequence may be viewed as *d* sequences interleaved; we may "slide" one of these interleaved sequences past the others and so, *N* may be represented by infinitely many *f*-sequences. \Box

Example 3.4. Let $p(t) = t^2 - t - 1$ and $f(t) = p(t^2)$ and write φ for the golden ratio. Then,

$$M = \langle \sqrt{\varphi} \rangle = (\dots, 1, \sqrt{\varphi}, \varphi, \varphi \sqrt{\varphi}, \varphi^2 \dots)$$

MAY 2019

THE FIBONACCI QUARTERLY

and

$$N = <-1 > \times <\varphi > = (\dots, -1, 1, -\varphi, \varphi, -\varphi^2, \varphi^2, \dots)$$

are infinite f-subgroups, nonstandard of the first and second type, respectively.

We end with a result concerning a special class of polynomials.

Theorem 3.5. Let $f(t) = t^k + t^{k-1} + t^{k-2} + \cdots + t + 1 \in \mathbb{C}_0[t]$, $k \in \mathbb{N}$. Let ζ be a (chosen, fixed) primitive (k+1)th root of unity in \mathbb{C} . Then, $M = \langle \zeta \rangle$ is a nonstandard f-subgroup of the first type, if k > 2 and is standard, if k = 2.

Proof. The roots of f(t) are the elements of the set $\{\zeta, \zeta^2, \ldots, \zeta^k\}$. Any sequence $\mathcal{S} = (s_i)_{i \in \mathbb{Z}}$ in \mathbb{C} such that

$$s_{n+k} + s_{n+k-1} + s_{n+k-2} + \dots + s_n = 0$$

for all $n \in \mathbb{Z}$ is an *f*-sequence. Thus, whenever

$$\{\zeta_1,\zeta_2,\ldots,\zeta_k\}=\{\zeta,\zeta^2,\ldots,\zeta^k\},\$$

the sequence

$$(\ldots,1,\zeta_1,\zeta_2,\ldots,\zeta_{k-1},\zeta_k,1,\ldots)$$

is an f-sequence that represents M, and there are k! ways in which this may occur. Therefore, if k > 2, M is nonstandard because k! > k, and is of the first type because, at least one of these representations is cyclic. If k = 2, then k! = k, and in that case, M is standard. \Box

References

- O. J. Brison and J. E. Nogueira, *Linear recurring sequence subgroups in the complex field*, The Fibonacci Quarterly, 41.5 (2003), 397–404.
- [2] O. J. Brison and J. E. Nogueira, Matrices and linear recurrences in finite fields, The Fibonacci Quarterly, 44.2 (2006), 103–108.
- [3] L. E. Somer, The Fibonacci group and a new proof that $F_{p-\frac{5}{p}} \equiv 0 \pmod{p}$, The Fibonacci Quarterly, **10.3** (1972), 345–348 and 354.
- [4] L. E. Somer, Fibonacci-like groups and periods of Fibonacci-like sequences, The Fibonacci Quarterly, 15.1 (1977), 35–41.

MSC2010: 11B39, 33C05

DEPARTAMENTO DE MATEMÁTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA, BLOCO C6, PISO 2, CAMPO GRANDE, 1749-016 LISBOA, PORTUGAL

E-mail address: ojbrison@fc.ul.pt

DEPARTAMENTO DE MATEMÁTICA, FACULDADE DE CIÊNCIAS E TECNOLOGIA, UNIVERSIDADE NOVA DE LISBOA, QUINTA DA TORRE, 2825-114 MONTE DA CAPARICA, PORTUGAL

E-mail address: jen@fct.unl.pt