
JACOBSTHAL AND JACOBSTHAL-LUCAS WALKS

THOMAS KOSHY

Abstract. We construct digraph models for Jacobsthal and Jacobsthal-Lucas walks; extract
as byproducts results for Pell, Pell-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials;
and explore some special classes of Jacobsthal and Jacobsthal-Lucas walks.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [2, 7, 10].

In particular, Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by
pn(x) = fn(2x) and qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers

Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [6, 7, 10].
Let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth

Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-

Lucas polynomial [3, 10]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln.

Suppose a(x) = x and b(x) = −1. When z0(x) = 0 and z1(x) = 1, zn(x) = Vn(x), the nth
Vieta polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = vn(x), the nth Vieta-Lucas

polynomial [4, 8].
Let a(x) = 2x and b(x) = −1. When z0(x) = 1 and z1(x) = x, zn(x) = Tn(x), the nth

Chebyshev polynomial of the first kind ; and when z0(x) = 1 and z1(x) = 2x, zn(x) = Un(x),
the nth Chebyshev polynomial of the second kind [6, 10].

1.1. Links Among the Subfamilies. Fibonacci, Pell, and Jacobsthal polynomials, and
Chebyshev polynomials of the second kind are closely linked; and so are Lucas, Pell-Lucas,
and Jacobsthal-Lucas polynomials, and Chebyshev polynomials of the first kind [4, 7, 10]:

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2),

where i =
√
−1.

In the interest of brevity and convenience, we omit the argument in the functional notation,
when there is no ambiguity; so zn will mean zn(x).
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2. Jacobsthal Walks

A digraph (directed graph) is a graph with n vertices v1, v2, . . ., vn, and directed edges
connecting them. When there is a unique edge from vi to vj, it is denoted by vi–vj , i–j, or by
the word ij for brevity.

A walk (or directed path) from vi to vj in a connected digraph is a sequence vi–ei–vi+1–· · · –
vj−1–ej−1–vj of vertices vk and directed edges ek, where edge ek is incident with vertices vk
and vk+1. The walk is closed if its endpoints are the same; otherwise, it is open. The length

ℓ of a walk is the number of edges in the walk; that is, it takes ℓ steps to reach from one
endpoint to the other.

Consider a walk originating at the origin and consisting of n unit steps in the easterly

direction. Such a unit step is an E-step. A D-step (D for double) is made up of two E-steps.
Now, assign a weight to each step, 1 to an E-step and x to a D-step. The weight of a walk is
the product of the weights of all steps in it. The weight of the walk of length 0 is defined as
1. Such a walk is a Jacobsthal walk of length n.

Figure 1 shows Jacobsthal walks of length 5, where a thick dot indicates the origin, and
directions are omitted for convenience. The sum of the weights of all those walks is 3x2+4x+
1 = J6(x).

1 1 1 1 1 1 1 1 x
D

1 1 x
D

1 1 x
D

1 1

1 x
D

x
D

x
D

1 1 1 x
D

1 x
D

x
D

x
D

11 x
D

x
D

x
D

1 1 1 x
D

1 x
D

x
D

x
D

1

Figure 1. Jacobsthal Walks of Length 5

Let Sn(x) denote the sum of the weights of Jacobsthal walks of length n. Clearly, S0(x) =
1 = J1(x) and S1(x) = 1 = J2(x). Now, consider an arbitrary walk of length n ≥ 2. Since it
can end in an E-step or a D-step, it follows that Sn(x) = Sn−1(x)+xSn−2(x). This recurrence,
coupled with the initial conditions, implies that Sn(x) = Jn+1(x), where n ≥ 0. Thus, we have
the following result.

Theorem 2.1. The sum of the weights of Jacobsthal walks of length n is Jn+1(x), where

n ≥ 0.

This implies the next result.

Corollary 2.2. There are Fn+1 Jacobsthal walks of length n and the sum of the weights of

Jacobsthal walks of length n is Jn+1 when the weight of a D-step is 2, where n ≥ 0.

Let E denote an E-step and D a D-step. Then a Jacobsthal walk of length n can be denoted
by a word of length at most n; each such word contains Es or Ds; or x’s or 1s.

For example, the Jacobsthal walks in Figure 1 can be represented by the following words:

11111 111x 11x1 1x11
1xx x111 x1x xx1.

When x = 2, they yield the F6 compositions of the positive integer 5 using the summands
1 and 2 [9]:

1+1+1+1+1 1+1+1+2 1+1+2+1 1+2+1+1
1+2+2 2+1+1+1 2+1+2 2+2+1.

Using Jacobsthal walks, we can establish some delightful properties of Jacobsthal polyno-
mials. The next three theorems [10] show such results. Their proofs are straightforward.
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Theorem 2.3. Jn+1(x) =

⌊n/2⌋
∑

k=0

(
n− k

k

)

xk, where n ≥ 0.

This follows by counting k, the number of D-steps in walks of length n.

k 0 1 2 3 4
n

0 1
1 1
2 1 x
3 1 2x
4 1 3x x2

5 1 4x 3x2

6 1 5x 6x2 x3

7 1 6x 10x2 4x3

8 1 7x 15x2 10x3 x4

9 1 8x 21x2 20x3 5x4

Table 1. Array A

⑦

❄

We can employ Theorem 2.3 to construct the triangular array A = (an,k) in Table 1, where an,k =
an,k(x) and 0 ≤ k ≤ ⌊n/2⌋. Clearly, an,k = an−1,k + xan−1,k−1 (see the arrows arrows in the table),
where a0,0 = 1 and a1,1 = 0.

2.1. A Hidden Treasure. ArrayA contains a hidden treasure. When x = 1, the resulting array occurs
in the study of the paraffins CnH2n+2. To see this, delete the hydrogen atoms from their structural
formulas (geometric representations); this yields a path graph Pn with n vertices. The topological index
of Pn is the total number of ways of partitioning it into k disjoint subgraphs with k edges, where k ≥ 0
[5, 9]; an,k(1) is the number of Jacobsthal walks of length n with exactly k D-steps. The topological

index of the paraffin is
∑

k≥0

an,k(1) = Fn+1.

For example, Figure 2 shows the structural formula of the hydrocarbon molecule C4H10, namely,
butane; it contains 4 carbon atoms and 10 hydrogen atoms. Its topological index is 5.

H H H H

H H
C C C C

H H H H

Figure 2. Butane Molecule C4H10

2.2. Breakability. To establish the addition formula for Jacobsthal polynomials in the next theorem,
we introduce the concept of breakability [1, 9, 10]. A Jacobsthal walk of length n is unbreakable at step
k if a D-step occupies unit steps k and k + 1; otherwise, it is breakable at k. For example, the walk in
Figure 3 is unbreakable at steps 2 and 4, and breakable at unit steps 0, 1, 3, 5, 6, and 7. (The M in
the figure is explained later.)

1 2 3 4 5 6 7↑
M

Figure 3. Walk Unbreakable at 2 and 4
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Theorem 2.4. Let m,n ≥ 1. Then, Jm+n(x) = Jm+1(x)Jn(x) + xJm(x)Jn−1(x) [10].

The proof of this theorem follows by considering breakability at unit step m.
It follows from Theorem 2.4 that [10]

J2n(x) = Jn(x) [Jn+1(x) + xJn−1(x)]

= Jn(x)jn(x);

J2n+1(x) = J2
n+1(x) + xJ2

n(x).

Next, we introduce the concept of the median step.

2.3. Median Step. Suppose the length of a Jacobsthal walk W is odd. Then W must have an odd
number of E-steps. So W contains a special E-step M with the same number of E-steps on either side
of it; M is the median step of the walk. For example, the E-step at 6 in Figure 3 is the median step of
that walk.

We can employ the concept of the median step to derive a charming formula [10] for J2n+2(x), as
the next theorem demonstrates.

Theorem 2.5. Let n ≥ 0. Then J2n+2(x) =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

xi+j .

Proof. Consider an arbitrary Jacobsthal walk W of length 2n+ 1. By Theorem 2.1, the sum S of the
weights of all such walks is J2n+2(x).

We will now compute S in a different way. Since the length of the walk is odd, W contains a median
E-step. Suppose there are i D-steps to the left of M and j D-steps to its right. Then W contains a
total of (2n+ 1)− (2i+ 2j) = 2n− 2i− 2j + 1 E-steps; so there are n− i− j E-steps on either side of
M . Consequently, there are n− j steps to the left of M and n− i steps to its right:

n−i−j E−steps
︷ ︸︸ ︷

... E ... E ...
︸ ︷︷ ︸

n−j steps

E

n−i−j E−steps
︷ ︸︸ ︷

... E ... E ...
︸ ︷︷ ︸

n−i steps

.

↑M
The n− i−j E-steps to the left of M can be placed among the n−j steps in

(
n− j

n− i− j

)

=

(
n− j

i

)

different ways; the sum of the weights of such subwalks is

(
n− j

i

)

xi. Likewise, the sum of the weights

of subwalks to the right of M is

(
n− i

j

)

xj . Thus, the cumulative sum S of the weights of all walks W

also equals
∑

i,j≥0

i+j≤n

(
n− j

i

)

xi · 1 ·
(
n− i

j

)

xj =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

xi+j .

Equating the two values of S yields the desired result. �

In particular, we have

F2n+2 =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

;

J2n+2 =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

2i+j .

It follows by the Jacobsthal-Fibonacci relationship Jn(x) = x(n−1)/2fn(1/
√
x) that fn = xn−1Jn(1/x

2).
Consequently, Theorem 2.5 has a Fibonacci counterpart, as the next corollary shows.
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Corollary 2.6. f2n+2 =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

x2n−2i−2j+1.

This implies

p2n+2 =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

(2x)2n−2i−2j+1 ;

P2n+2 =
∑

i,j≥0

i+j≤n

(
n− i

j

)(
n− j

i

)

22n−2i−2j+1.

2.4. Some Special Jacobsthal Walks. It follows from Theorem 2.1 that the sum of the weights of
Jacobsthal walks of length n that begin with:

• E is Jn(x), where n ≥ 1.
• E and end in E is Jn−1(x), where n ≥ 1.
• D is xJn−1(x), where n ≥ 2.
• D and end in D is x2Jn−3(x), where n ≥ 4.
• D and end in E is xJn−2(x), where n ≥ 3.

Next, we construct a digraph model for Jacobsthal-Lucas polynomials jn(x).

3. Jacobsthal-Lucas Walks

Here also, a walk contains E- or D-steps. The weight of the walk of length 0 is 1. The weight of an
E-step is 1 unless it appears at the beginning of the walk, in which case its weight is w = 2x+ 1. Such
a walk is a Jacobsthal-Lucas walk.

Figure 4 shows the Jacobsthal-Lucas walks of length 5. The sum of the weights of all such walks is
2x3 + 9x2 + 6x+ 1 = j6(x).
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Figure 4. Jacobsthal-Lucas Walks of Length 5

Let Sn(x) denote the sum of the weights of Jacobsthal-Lucas walks W of length n. Clearly, S0(x) =
1 = j1(x) and S1(x) = 2x + 1 = j2(x). Now, consider an arbitrary walk of length n ≥ 2. Here also,
Sn(x) satisfies the Jacobsthal recurrence; so Sn(x) = jn+1(x). Thus, we have the following result.

Theorem 3.1. The sum of the weights of Jacobsthal-Lucas walks of length n is jn+1(x), where n ≥ 0.

This implies the next result.

Corollary 3.2. There are Ln+1 Jacobsthal-Lucas walks of length n; and the sum of the weights of

Jacobsthal walks of length n is jn+1 when the weight of a D-step is 2, where n ≥ 0.

3.1. Some Special Jacobsthal-Lucas Walks. It follows from Theorem 2.1 that the sum of the
weights of Jacobsthal-Lucas walks of length n that begin with:

• E is (2x+ 1)Jn(x), where n ≥ 1.
• D is xJn−1(x), where n ≥ 2.
• D and end in D is x2Jn−3(x), where n ≥ 4.

It then follows that we can express jn+1(x) in terms of Jn(x) and Jn−1(x), as the next theorem [10]
shows.
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Theorem 3.3. jn+1(x) = (2x+ 1)Jn(x) + xJn−1(x), where n ≥ 0.

It follows from the relationship jn(x) = xn/2ln(1/
√
x) that ln = xn/2jn(1/x

2). Consequently, this
theorem implies that ln+1 = (x2 + 2)fn + xfn and jn+1 = 5Jn + 2Jn−1.

Using the Jacobsthal recurrence, we can rewrite the formula in Theorem 3.3:

jn+1(x) = Jn+1(x) + 2xJn(x)

= Jn+2(x) + xJn(x).

Using this formula, we can construct an array similar to array A. Table 2 shows the resulting array
B = (bn,k), where bn,k = bn,k(x), 0 ≤ k ≤ ⌊n/2⌋, and n ≥ 1. Clearly, bn,k = bn−1,k + xbn−1,k−1 (see
arrows in the table), where b1,0 = 1 and b2,1 = 2x.

k 0 1 2 3 4 5
n

1 1
2 1 2x
3 1 3x
4 1 4x 2x2

5 1 5x 5x2

6 1 6x 9x2 2x3

7 1 7x 14x2 7x3

8 1 8x 20x2 16x3 2x4

9 1 9x 27x2 30x3 9x4

10 1 10x 35x2 50x3 25x4 2x5

Table 2. Array B

⑦

❄

The row sum
∑

k≥0

bn,k(1) gives the topological index Ln of the cycloparaffin CnH2n, where n ≥ 1

[5, 9]. For example, Figure 5 shows the structural formula of the hydrocarbon molecule cyclobutane
C4H8; its topological index is 7.

C

C

C

C

H

H

H

H

H

H

H

H

Figure 5. Cyclobutane Molecule C4H8

The next theorem [10], an alternate version of Theorem 3.3, gives the Jacobsthal-Lucas counterpart
of Theorem 2.3.

Theorem 3.4.

jn+1(x) = (2x+ 1)

⌊(n−1)/2⌋
∑

k=0

(
n− k − 1

k

)

xk +

⌊(n−2)/2⌋
∑

k=0

(
n− k − 2

k

)

xk+1,

where n ≥ 0.

Proof. Let W be an arbitrary Jacobsthal-Lucas walk of length n. By Theorem 3.1, the sum S of the
weights of all such walks is jn+1(x).

To compute S in a different way, assume W contains k D-steps. Suppose W begins with an E-step:
E subwalk
︸ ︷︷ ︸

length n−1

. The subwalk involves n − k − 1 steps, of which k are D-steps. The k D-steps can be
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placed among the n− k − 1 steps in

(
n− k − 1

k

)

ways; so the sum S1 of the weights of such walks is

S1 = (2x+ 1)

⌊(n−1)/2⌋
∑

k=0

(
n− k − 1

k

)

xk.

On the other hand, suppose W begins with a D-step: D subwalk
︸ ︷︷ ︸

length n−2

. The subwalk contains n− k − 1

steps; k − 1 of them are D-steps and can be placed among them in

(
n− k − 1

k − 1

)

ways. The sum S2 of

the weights of such walks equals

S2 =
∑

k≥0

(
n− k − 1

k − 1

)

xk

=

⌊(n−2)/2⌋
∑

k≥0

(
n− k − 2

k

)

xk+1.

Thus, S = S1 + S2. This yields the given result. �

It follows from this theorem that

Ln+1 = 3

⌊(n−1)/2⌋
∑

k=0

(
n− k − 1

k

)

+

⌊(n−2)/2⌋
∑

k=0

(
n− k − 2

k

)

= 3Fn + Fn−1;

jn+1 = 5

⌊(n−1)/2⌋
∑

k=0

(
n− k − 1

k

)

2k +

⌊(n−2)/2⌋
∑

k=0

(
n− k − 2

k

)

2k+1

= 5Jn + 2Jn−1,

as we saw earlier.
By invoking breakability and Theorem 3.1, we can establish the addition formula for Jacobsthal-

Lucas polynomials:
jm+n(x) = jm+1(x)Jn(x) + xjm(x)Jn−1(x).

It then follows that

j2n(x) = jn+1(x)Jn(x) + xjn(x)Jn−1(x);

j2n+1(x) = jn+1(x)Jn+1(x) + xjn(x)Jn(x);

j2n = jn+1Jn + 2jnJn−1;

j2n+1 = jn+1Jn+1 + 2jnJn

= J2n+2 + 2J2n.

Using the concept of the median E-step in a Jacobsthal-Lucas walk of odd length, we can establish
the following counterpart of Theorem 2.5.

Theorem 3.5.

j2n+2(x) =
∑

i,j≥0

[(
n− j − 1

i

)

(2x+ 1) +

(
n− j − 1

i− 1

)](
n− i

j

)

xi+j ,

where n ≥ 0.

The next result follows from this theorem by virtue of the relationship ln = xnjn(1/x
2).

Corollary 3.6.

l2n+2 =
∑

i,j≥0

[(
n− j − 1

i

)

(x2 + 2) +

(
n− j − 1

i− 1

)

x2

](
n− i

j

)

x2n−2i−2j ,
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where n ≥ 0.

It also follows from this theorem that

j2n+2 =
∑

i,j≥0

[

5

(
n− j − 1

i

)

+

(
n− j − 1

i− 1

)](
n− i

j

)

2i+j

=
∑

i,j≥0

[(
n− j

i

)

+ 4

(
n− j − 1

i

)](
n− i

j

)

2i+j ;

L2n+2 =
∑

i,j≥0

[

3

(
n− j − 1

i

)

+

(
n− j − 1

i− 1

)](
n− i

j

)

=
∑

i,j≥0

[(
n− j

i

)

+ 2

(
n− j − 1

i

)](
n− i

j

)

;

q2n+2 = 2
∑

i,j≥0

[(
n− j − 1

i

)

(2x2 + 1) + 2

(
n− j − 1

i− 1

)

x2

](
n− i

j

)

(2x)2n−2i−2j ;

Q2n+2 =
∑

i,j≥0

[

2

(
n− j

i

)

+

(
n− j − 1

i

)](
n− i

j

)

22n−2i−2j .

4. Vieta and Chebyshev Consequences

Corollaries 2.6 and 3.6 have Vieta and Chebyshev implications. Since Vn(x) = in−1fn(−ix) and
vn(x) = inln(−ix), where i =

√
−1, it follows that

V2n+2(x) =
∑

j,k≥0

(
n− j

k

)(
n− k

j

)

(−1)k+jx2n−2j−2k+1;

v2n+2(x) = (−1)n
∑

j,k≥0

[(
n− j − 1

k

)

(x2 − 2) +

(
n− j − 1

k − 1

)

x2

]

(−ix)2n−2j−2k.

Using the relationships Vn(x) = Un−1(x/2) and vn(x) = 2Tn(x/2), we have

T2n+2(x) = (−1)n
∑

j,k≥0

[(
n− j − 1

k

)

(2x2 − 1) + 2

(
n− j − 1

k − 1

)

x2

]

(−2ix)2n−2j−2k

U2n+1(x) =
∑

j,k≥0

(
n− j

k

)(
n− k

j

)

(−1)k+j(2x)2n−2j−2k+1 .

Next, we explore a special class of Jacobsthal and Jacobsthal-Lucas walks.

5. Symmetric Jacobsthal Walks

A Jacobsthal walk of length n is symmetric if the corresponding word is palindromic. For example,
the walk DED in Figure 1 is symmetric, whereas the walk EEDDE is not.

5.1. Symmetric Jacobsthal Walks of Odd Length. Consider an arbitrary Jacobsthal walk W of
length 2n + 1. Then, W contains an odd number of E-steps and hence, a median E-step M . Let
Sn(x) denote the sum of the weights of such Jacobsthal walks. Clearly, S0(x) = 1 = J1(x

2) and
S1(x) = 1 = J2(x

2).
Assume Sn−1(x) = Jn(x

2), where n ≥ 2. Let W be an arbitrary Jacobsthal walk of length 2n+ 1.
Suppose W begins with an E: E subwalkA

︸ ︷︷ ︸

lengthn−1

E subwalkB
︸ ︷︷ ︸

lengthn−1

E. Noticing that subwalk B is the reflection of

subwalk A, the sum of weights of such walks is 1 · Jn(x2) · 1 = Jn(x
2). On the other hand, suppose

W begins a D: D subwalkX
︸ ︷︷ ︸

lengthn−2

E subwalkY
︸ ︷︷ ︸

lengthn−2

D. Subwalk Y is the reflection of subwalk X , so the sum
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of the weights of such walks is x · Jn−1(x
2) · x = x2Jn−1(x

2). Combining the two cases, we have
Sn(x) = Jn(x

2) + x2Jn−1(x
2) = Jn+1(x

2).
Thus, by induction, we have the following result.

Theorem 5.1. The sum of the weights of all symmetric Jacobsthal walks of length 2n+1 is Jn+1(x
2),

where n ≥ 0.

This yields the next result.

Corollary 5.2. There are Fn symmetric Jacobsthal walks of length 2n+1 that begin with E, and Fn−1

such walks that begin with D. There are a total of Fn+1 such walks.

It also follows by the theorem that there are Fn+1 palindromic compositions of the positive integer
2n+ 1 using the summands 1 and 2 [9].

Next, we investigate symmetric Jacobsthal walks of even length.

5.2. Symmetric Jacobsthal Walks of Even Length. Let W be an arbitrary symmetric Jacobsthal
walk of length 2n. The number of Es in such a walk is even. So the middle step must be EE, D, or
DD.

Let Sn(x) denote the sum of the weights of such walks. Clearly, S0(x) = 1 and S1(x) = x+ 1.
Let n ≥ 1. We will now construct an algorithm to produce symmetric Jacobsthal walks of length

2n+ 2 from those of lengths 2n and 2n− 2.

Step 1. Place an E at each end of the walks of length 2n. This produces symmetric Jacobsthal walks
of length 2n+ 2, and the sum of their weights is Sn(x).

Step 2. Place a D at each end of the walks of length 2n−2. This step also creates symmetric Jacobsthal
walks of length 2n+ 2, and the sum of the weights such walks is x2Sn−1(x).

Thus, the cumulative sum of the weights of all symmetric Jacobsthal walks of length 2n+2 obtained
by these two steps is Sn(x) + x2Sn−1(x). Since the algorithm is reversible, it follows that Sn+1(x) =
Sn(x) + x2Sn−1(x), where n ≥ 1, S0(x) = 1, and S1(x) = x+ 1.

Consequently, there are Fn+2 symmetric Jacobsthal walks of length 2n, and hence, Fn+2 palindromic
compositions of the positive integer 2n.

6. Symmetric Jacobsthal-Lucas Walks

Recall that the weight of an E-step is 1 except when the walk begins with it, in which case the weight
is w = 2x+ 1. Consequently, symmetric Jacobsthal-Lucas walks must begin with a D-step.

6.1. Symmetric Jacobsthal-Lucas Walks of Odd Length. Let W be an arbitrary symmetric
Jacobsthal-Lucas walk of length 2n + 1. Since the number of Es in it must be odd, W must contain
a median E: D subwalkA

︸ ︷︷ ︸

lengthn−2

E subwalkB
︸ ︷︷ ︸

lengthn−2

D. Since subwalk B is the reflection of subwalk A, it follows by

Theorem 2.1 that the sum of the weights of such walks is x2Jn−1(x
2). Thus, we have the following

theorem.

Theorem 6.1. The sum of the weights of all symmetric Jacobsthal-Lucas walks of length 2n + 1 is

x2Jn−1(x
2), where n ≥ 2.

This yields the next result.

Corollary 6.2. There are Fn−1 symmetric Jacobsthal-Lucas walks of length 2n+ 1, where n ≥ 2.

6.2. Symmetric Jacobsthal-Lucas Walks of Even Length. Suppose the length of W is 2n. Since
its length is even, the number of Es in it must be even. To compute the sum of the weights of such
walks, we focus on the parity of the number of Ds in W .

Case 1. Suppose the number of Ds is odd. Then, W has a unique median D: D subwalk
︸ ︷︷ ︸

lengthn−3

D subwalk
︸ ︷︷ ︸

lengthn−3

D.
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By Theorem 2.1, the sum of the weights of such walks is x3Jn−2(x
2).

Case 2. Suppose the number of Ds is even. Then, the middle can be EE or DD. If the middle is EE, then
W must be of the form D subwalk

︸ ︷︷ ︸

lengthn−3

EE subwalk
︸ ︷︷ ︸

lengthn−3

D. Such walks contribute x2Jn−2(x
2) toward the cumu-

lative sum. On the other hand, if the middle is DD, then W has the form D subwalk
︸ ︷︷ ︸

lengthn−4

DD subwalk
︸ ︷︷ ︸

lengthn−4

D;

the corresponding sum is x4Jn−3(x
2).

Combining the two cases, the cumulative sum of the weights of all walks W is given by

x3Jn−2(x
2) + x2Jn−2(x

2) + x4Jn−3(x
2) = x2

[
(x + 1)Jn−2(x

2) + x2Jn−3(x
2)
]

= x2
[
xJn−2(x

2) + Jn−1(x
2)
]
.

Thus, we have the next theorem.

Theorem 6.3. The sum of the weights of all symmetric Jacobsthal-Lucas walks of length 2n is

x2
[
xJn−2(x

2) + Jn−1(x
2)
]
, where n ≥ 3.

This yields the next result.

Corollary 6.4. There are Fn symmetric Jacobsthal-Lucas walks of length 2n, where n ≥ 1.
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