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Abstract. An equivalent definition of the Fibonacci numbers is that they are the unique
sequence such that every integer can be written uniquely as a sum of nonadjacent terms. We
can view this as we have bins of length 1, we can take at most one element from a bin, and if
we choose an element from a bin we cannot take one from a neighboring bin. We generalize
to allowing bins of varying length and restrictions as to how many elements may be used in
a decomposition. We derive conditions on when the resulting sequences have uniqueness of
decomposition, and (similar to the Fibonacci case) when the number of summands converges
to a Gaussian; the main tool in the proofs here is the Lyaponuv Central Limit Theorem.

1. Introduction

1.1. Preliminaries. The Fibonacci numbers are normally defined by the recurrence Fn+1 =
Fn + Fn−1, with two initial conditions. If we take F1 = 1 and F2 = 2, one of many properties
is Zeckendorf’s Theorem [25]: Every positive integer can be written uniquely as a sum of
nonadjacent Fibonacci numbers. This is an equivalent definition of the Fibonaccis; explicitly,
they are the unique sequence of numbers such that every integer can be written as a sum of
nonadjacent elements of the set. This correspondence has led to numerous papers investigating
connections between sequences and decomposition laws, and properties of the decompositions
(such as on average how many summands are needed, what is the distribution of gaps between
summands, and what is the longest gap between summands). We often refer to these as
generalized Zeckendorf decompositions or legal decompositions for the given law; for 2019, we
have

2019 = 1597 + 377 + 34 + 8 + 3 = F16 + F13 + F8 + F5 + F3.

There is extensive literature on the subject; see for example [1, 2, 4, 6, 5, 7, 8, 9, 12, 13, 19,
14, 15, 17, 16, 18, 19, 21, 22, 23, 24]. Of these, the most relevant for our investigations is [7].
The authors generalize the Fibonacci decomposition law by adopting a binning perspective.
Explicitly, fix positive integers s and b. The (s, b)-Generacci sequence is defined as follows.
Consider a series of bins of length b. We can choose at most one element from a bin, and
if we choose an element, we cannot take an element from any of the s bins immediately to
the left (and thus, we also cannot take an element from any of the s bins immediately to the
right). The Fibonaccis correspond to the case s = b = 1, and choosing the appropriate initial
conditions always yields unique decomposition. For example, the (1, 2)-Generacci sequence
begins

1, 2

Bin 1

, 3, 4

Bin 2

, 5, 8

Bin 3

, 11, 16

Bin 4

, 21, 32

Bin 5

, 43, 64

Bin 6

, 85, 128

Bin 7

, 171, 256

Bin 8

, . . . . (1.1)
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In previous works, all bins had the same length, and a legal decomposition could have at
most one element from a bin. We extend these results by now letting the nth bin have length
bn ≥ 1, for each n. Furthermore, we choose a set An ⊂ {0, 1, 2, . . . , bn}, which is the set of the
number of allowable elements we can choose from the nth bin in our decomposition. Finally,
we select an adjacency number a such that we cannot take elements from two different bins
unless there are at least a bins between them. Thus, if b8 = 5, A8 = {0, 1, 3}, and a = 2,
then we may take 0, 1, or 3 elements from the eighth bin (which has length 5); if we do take
an element from the eighth bin, then we may not take any elements from the sixth, seventh,
ninth, or tenth bins in our decomposition. We construct the sequence as follows. We set 1
as the first element of the first bin (we choose 1 and not 0 to retain the possibility of having
unique decompositions). If we have constructed the first k elements, the next term in the
sequence is the least integer that cannot be obtained by our construction rule. We refer to
these as a ({bn}, {An}, a)-Sequence; the Fibonacci sequence is bn = 1, An = {0, 1}, and a = 1.

1.2. Results. In Section 2, we study sequences with no adjacency condition (i.e., ({bn}, {An},
0)-Sequences), and exactly determine when these sequences give us unique decomposition of
the positive integers (see [11] for conditions on when generalized Zeckendorf decompositions
have the minimal number of summands among all decompositions). In particular, we prove
the following.

Theorem 1.1. A ({bn}, {An}, 0)-Sequence has uniqueness of decomposition (i.e., there is a
unique legal decomposition for each positive integer) if and only if for every positive n we have

An ∈ {{0, 1} , {0, 1, . . . , bn − 1} , {0, 1, . . . , bn}} . (1.2)

In Section 3, we establish the following Lyapunov central limit type theorems associated
to certain (bn, An, 0)-Sequences. These results are similar to those from earlier work on Zeck-
endorf decompositions. Lekkerkerker [20] proved that the average number of summands in a

Zeckendorf decomposition for integers in [Fn, Fn+1] tends to n
ϕ2+1

, where ϕ = 1+
√
5

2 ; others

(see [19]) extended this result to prove that as n → ∞, the distribution of the number of
summands in the Zeckendorf decomposition for integers in [Fn, Fn+1] is Gaussian. In Section
3.1, we prove a similar result for our sequences, using Lyapunov’s Central Limit Theorem (see
Theorem 3.1).

Theorem 1.2. Consider a ({bn}, {0, 1}, 0)-Sequence. For an integer x, let Yn(x) = 1 if an
element of the nth bin appears in x’s decomposition, and Yn(x) = 0 otherwise; thus, if the
largest summand in x’s decomposition is from bin N , then the total number of summands in
this decomposition is Y1(x) + · · · + YN (x). If

∑∞
n=1 1/bn diverges, then the distribution of the

number of summands of integers whose largest summand is in bin N converges to a Gaussian
in the sense of Lyapunov as N → ∞.

In Section 3.2, we relax our assumptions to allow multiple summands from each bin, and let
An vary with n; we examine how the conditions for Gaussianity change given this generalization
in the following two theorems.

Theorem 1.3. Consider a ({bn}, {A}, 0)-Sequence, where each An = A ⊆ {0, 1, . . . , b} with
b ≤ min({bn}). Let {Yn} be the sequence of independent random variables representing the
number of summands chosen from each bin. Thus, if the largest summand of the decomposition
of an integer x is from bin N , then the total number of summands in this decomposition is

Y1(x) + · · · + YN (x). If the growth of {bn} is slower than n
1

m−m
′ , where m = max(A) and

m
′

= max(A − {m}), then the distribution of the number of summands of integers whose

110 VOLUME 57, NUMBER 2



LIMITING DISTRIBUTIONS IN GENERALIZED ZECKENDORF DECOMPOSITIONS

largest summand is in bin N converges to a Gaussian distribution in the Lyapunov sense as
N → ∞.

Theorem 1.4. Consider a ({bn}, {An}, 0)-Sequence, where for all n ∈ N, bn = n, and
An ∈ {{0, . . . , n − 1}, {0, . . . , n}}. Let {Yn} be the sequence of independent random vari-
ables representing the number of summands chosen from each bin. For any integer choice
of δ > 0, the distribution of the number of summands satisfies the Lyapunov Central Limit
Theorem, and thus, converges to a Gaussian distribution as N → ∞.

We conclude in Section 4 with a discussion of related lines for future research.

2. Uniqueness of Decomposition with No Adjacency Condition

We consider an arbitrary ({bn}, {An}, 0)-Sequence; as a = 0, there is no adjacency restric-
tion. We categorize what choices of the sequence An give uniqueness of decomposition for
the resulting generalized Zeckendorf decompositions. We usually require that 0 and 1 are in
each An, i.e, {0, 1} ⊂ An, to ensure that our original construction creates a sequence where
every positive integer has a decomposition.1 In Section 4.2, we consider a scenario where
An = {0, 2}, but we do not require our sequence to generate the positive integers.

To understand the proof of Theorem 1.1, we use the following intuition. In our construction
of a generalized Zeckendorf sequence, we ensure that each integer is generated by the con-
struction “in order”, that is, if we look at the first k terms of our ({bn}, {An}, 0)-Sequence,
we will see that a consecutive block of positive integers is uniquely decomposable using these
terms. When we allow An to violate the conditions of Theorem 1.1, the first k terms of our
sequence no longer generate a consecutive block; the decomposable integers form multiple dis-
connected blocks. The block containing 1 continues to grow as we add terms to our sequence
and eventually meets another block, causing a failure of uniqueness of decomposition for some
integer.

Lemma 2.1. Fix a (bn, An, 0)−Sequence, and an integer n0 ≥ 2. Suppose that the set of
integers generated by the first n0 − 1 bins is the set {1, . . . , k}. Then, all future terms of our
sequence are divisible by k + 1.

Proof. Note that the first term in bin n0 must be k+1. The terms in the first n0− 1 bins can
form any sum from 1 to k, and thus as we have no adjacency conditions, if we can represent a
number x using numbers from bin n0 and on, we can also obtain x+1, x+2, . . ., x+ k. Once
we add a multiple α(k+1) of k+1, there is no need to add α(k+1)+β for any β ∈ {1, . . . , k},
and therefore, the next possible term in our sequence is (α + 1)(k + 1). Continuing, we see
that all the numbers added are multiples of k + 1, proving the claim. �

For example, consider the sequence with bn = n+ 1, An = {0, 1}:

1, 2

Bin 1

, 3, 6, 9

Bin 2

, 12, 24, 36, 48

Bin 3

, 60, 120, . . .

Bin 4

, . . . . (2.1)

Letting n0 = 2, we find k = 11 (i.e., the first two bins allow us to obtain precisely the
integers from 1 to 11), and see that any legal combination of terms outside the first two bins

1If An does not contain 0, then any decomposition must include an element of bin n, which forces the sum of
a decomposition to be at least that of the minimal element of An, dashing our hopes of having either uniqueness
or a decomposition for every positive integer. Note that if An does not contain 1, zeroes can be added to bin
n so that way are able to pick any one particular element, although at the cost of uniqueness. For example, if
we want to use just one element of bin n, and An = {k, k + 1, . . . , b}, then we can place k − 1 zeros in bn.

MAY 2019 111



THE FIBONACCI QUARTERLY

is a multiple of 12.

Proof of Theorem 1.1. We want to show that a ({bn}, {An}, 0)-Sequence has uniqueness of de-
composition if and only if all An are in the form of {0, 1} , {0, 1, . . . , bn − 1} or {0, 1, . . . , bn}.

To reduce the cases that we need to discuss, we assume that the first n0 − 1 bins have An’s
that satisfy the condition and the set of legal sums from these bins form the interval {1, . . . k},
where each element has unique decomposition. Then, by Lemma 2.1, we have that all following
terms of the sequence are divisible by k + 1. Therefore, we can take the subsequence of our
original sequence starting from the n0th bin to be our new sequence, and divide every term
by k+ 1. For notational convenience, we denote An0

, bn0
of the original sequence as A1, b1 of

the new sequence that we analyze.

We first show that if A1 satisfies one of the conditions for which we claim uniqueness holds,
then it yields intervals of integers, so by induction, the first n bins of the sequence always yield
an interval for any n ∈ N. Since every element of this interval has unique decomposition, we
can prove the backwards direction of Theorem 1.1. Next, we consider the case where the new
sequence has A1 outside of our stated set. Then, we are able to show that uniqueness fails in
such sequences, so only the options stated in Theorem 1.1 give uniqueness, therefore, proving
the forward direction of the theorem.

We now consider each case for uniqueness.

Case I: A1 = {0,1}. Fix b1 and let A1 = {0, 1}. Then, the first b1 terms of our sequence
are 1, 2, . . ., b1. The integers generated by this bin form the set S = {1, 2, . . . , b1}, which is
an interval of integers. Since A1 = {0, 1}, and each element of S must be written as a sum of
elements in b1, we clearly have unique decomposition.

Case II: A1 = {0,1, . . . ,b1}. Fix b1 and let A1 = {0, 1, . . . , b1}. Then, the first b1 terms
of our sequence are 1, 2, 4, . . ., 2b1−1. The integers generated by this bin form the set
S = {1, 2, . . . , 2b1 − 1}, which is an interval of integers. Because binary decomposition of the
integers is unique, we have unique decomposition.

Case III: A1 = {0,1, . . . ,b1 − 1}. Fix b1 and let A1 = {0, 1, . . . , b1 − 1}. Then, the first b1
terms of our sequence are 1, 2, 4, . . ., 2b1−1. The integers generated by this bin form the set
S = {1, 2, . . . , 2b1 − 2}, which is an interval of integers. We also note that this choice of A1

gives unique decomposition, for the same reason as Case II.

We have now explicitly analyzed the cases we claim give uniqueness and have shown that
they yield intervals of integers. Thus, we are able to reduce to the cases where A1 is not in
the given set. We split nonuniqueness of these other choices of A1 into several cases.

Case I: {0,1, . . . ,k} ⊂ A1, with k+ 1 /∈ A1 and 2 ≤ k ≤ b1 − 2. Because we have full free-
dom with the first k elements of b1, we have 1, 2, 4, . . ., 2

k as the first k+1 elements of this bin.
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Arguing as before, we also have that the (k + 2)nd element of our bin must be 2k+1 − 1. We
must use this term to form larger integers, so we are left with only k − 1 terms to work with,
meaning we can form all integers up to but not including 2k+1−1+2k−2+1 = 2k+1+2k−2.
Thus, this is the (k + 3)rd element of our sequence (it will not matter whether this is in the
first or second bin). We note that we can decompose 2k+1 + 2k − 1 as

(

2k+1 − 1
)

+ 2k = 2k+1 + 2k − 1 =
(

2k+1 + 2k − 2
)

+ 1, (2.2)

so uniqueness fails.

Case II: {0,1} ( A1, 2 /∈ A1. Pick k = inf{x ∈ A1 : x > 1}. This is the case where there is
a gap in A1. Since we are only allowed to choose 0, 1 or at least k elements from a bin, the

first k terms of the sequence are going to be 1, . . ., k. Since k ≥ 3,
∑k

m=1 m = k(k+1)
2 > k+2,

so the (k + 1)st and the (k + 2)nd terms are k + 1 and k + 2, respectively.
If we have b1 ≥ k + 2 for the first bin, then






























k/2
∑

m=1

m+

k+2
∑

m=k/2+3

m =

k+1
∑

m=2

m =
k(k + 3)

2
when k is even

(k−1)/2
∑

m=1

m+
k+2
∑

m=(k+5)/2

m =
k
∑

m=2

m+ (k + 2) =
(k − 1)(k + 2)

2
+ k + 2 when k is odd,

(2.3)

and we lose uniqueness of decomposition. Therefore, we only need to consider the cases where
b1 = k or k + 1. As the two follow similarly, we only provide the details for the first.

Subcase (i): b1 = k. As b1 = k, the sum of terms from the first bin is k(k+1)
2 . As argued

before, all multiples of k + 1 less than this sum, including k−1
2 (k + 1), can be expressed as a

legal sum of terms not in the first bin. Therefore, when k is odd,

k(k + 1)

2
=

k − 1

2
(k + 1) +

k + 1

2
, (2.4)

where k+1
2 is a term in the first bin. We lose uniqueness of decomposition. When k is even,

k(k+1)
2 is not in the sequence and the next term is k(k+1)

2 + 1. Then, we can decompose

(k + 1) + k(k+1)
2 two ways:

(k + 1) +
k(k + 1)

2
=

(

k(k + 1)

2
+ 1

)

+ k, (2.5)

where k + 1 and k are terms of the sequence. We lose uniqueness of decomposition.

Subcase (ii): b1 = k+ 1. A similar argument holds on losing uniqueness of decomposition.
�

3. Gaussianity of Number of Summands: a = 0

Now that we have exactly determined the decomposition rules that yield sequences giving
rise to unique decomposition of integers in the a = 0 case, we investigate the Gaussianity of
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the distribution of the average number of summands in these decompositions. The following
result (see [3]) is a key ingredient in several proofs in this section.

Theorem 3.1 (Lyapunov Central Limit Theorem). Let {Y1, Y2, . . .} be a sequence of indepen-
dent random variables, each with finite expected value µi and variance σ2

i . Let s2n =
∑n

i=1 σ
2
i .

If there exists a δ > 0 such that limn→∞
1

s2+δ
n

∑n
i=1 E[|Yi − µi|

2+δ] = 0, then 1
sn

∑n
i=1(Yi − µi)

converges in distribution to the standard normal as n → ∞.

We use the following standard notation below. We write f(x) = Θ(g(x)) if there exist
positive constants C1, C2 such that for all x sufficiently large we have

0 < C1g(x) ≤ f(x) ≤ C2g(x). (3.1)

3.1. At Most, One Summand Per Bin. We begin by proving Theorem 1.2, which concerns
sequences with variable bin sizes, An = {0, 1}, and no adjacency condition.

Proof of Theorem 1.2. For n < N , we have bn+1 options for the nth bin: we have no element or
exactly one of the bn terms. Each of these choices is equally likely, and thus, P (Yn = 0) = 1

bn+1

and P (Yn = 1) = bn
bn+1 . Therefore, the expected value for Yn (and Y 2

n as Yn = Y 2
n ) is

µn = E[Yn] =
bn

bn + 1
= E[Y 2

n ], (3.2)

and its variance is

σ2
n = E[Y 2

n ]− E[Yn]
2 =

bn
bn + 1

−

(

bn
bn + 1

)2

=
bn

(bn + 1)2
. (3.3)

Let s2N =
∑N−1

n=1 σ2
n =

∑N−1
n=1 bn/(bn+1)2. We now apply the Lyapunov Central Limit Theorem.

Note,

E[|Yn − µn|
2+δ] =

bn
bn + 1

(

1

bn + 1

)2+δ

+
1

bn + 1

(

bn
bn + 1

)2+δ

=
bn

(bn + 1)2
1 + b1+δ

n

(bn + 1)1+δ
<

bn
(bn + 1)2

. (3.4)

Define ρ2+δ
n = E[|Yn − µn|

2+δ] and eN =
∑N

n=1 ρ
2+δ
n . Then,

eN =

N−1
∑

n=1

E[|Yn − µn|
2+δ] <

N−1
∑

n=1

bn
(bn + 1)2

= s2N . (3.5)

We note that σ2
n is asymptotically similar to 1/bn (i.e., 1/bn ≪ σn ≪ 1/bn), so

{

s2N
}

converges

if and only if
∑N

n=1 1/bn converges.

Suppose
∑N

n=1 1/bn diverges. Then, s2N diverges, and, for all δ > 0,

lim
N→∞

(

eN

s2+δ
N

)2

< lim
N→∞

(s2N )2

(s2N )2+δ
= lim

N→∞

1

(s2N )δ
= 0 (3.6)

(the limit tends to zero because we are assuming the sum of the reciprocals of bn diverges, and
thus, nn must tend to infinity). Thus, the Lyapunov condition is satisfied, and by Theorem

3.1, the distribution of number of summands, 1
N

∑N
i=1 Yi, converges to a Gaussian in the sense

of Lyapunov. �
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Remark 3.2. If
∑n

i=1 1/bi converges, then the denominator of the Lyapunov limit converges
to a finite limit. Furthermore, the numerator is nonzero, so the limit is nonzero. Thus,
the Lyapunov condition fails if

∑n
i=1 1/bi converges. Although this does not prove that the

distribution of the number of summands does not approach a Gaussian distribution, it provides
some evidence against this behavior.

3.2. Multiple Summands Per Bin. We now prove Theorem 1.3.

Proof of Theorem 1.3. Assume |A| ≥ 2. We begin in a similar manner as Theorem 1.2 by
noting that the probability of choosing exactly i summands from the nth bin is

P (Yn = i) =

(bn
i

)

∑

t∈A
(bn
t

) , (3.7)

and the expectated values of Yn and Y 2
n are

E[Yn] =

∑

t∈A t
(bn
t

)

∑

t∈A
(

bn
t

) , E[Y 2
n ] =

∑

t∈A t2
(bn
t

)

∑

t∈A
(

bn
t

) . (3.8)

Then,

σ2
n = E[Y 2

n ]− E[Yn]
2

=

(

∑

t∈A t2
(

bn
t

)

) (

∑

t∈A
(

bn
t

)

)

(

∑

t∈A
(bn
t

)

)2 −

(

∑

t∈A t
(

bn
t

)

)2

(

∑

t∈A
(bn
t

)

)2

=

∑

i,j∈A i2
(bn
i

)(bn
j

)

−
∑

i,j∈A ij
(bn

i

)(bn
j

)

(

∑

t∈A
(bn
t

)

)2 . (3.9)

The terms where i = j cancel, so we are left with

σ2
n =

∑

i,j∈A,i 6=j i
2
(

bn
i

)(

bn
j

)

−
∑

i,j∈A,i 6=j ij
(

bn
i

)(

bn
j

)

(

∑

t∈A
(bn
t

)

)2 =

∑

i,j∈A,i 6=j(i− j)2
(

bn
i

)(

bn
j

)

2
(

∑

t∈A
(bn
t

)

)2 . (3.10)

Define ρ2+δ
n = E

[

|Yn − µn|
2+δ
]

. We find that

ρ2+δ
n =

∑

i∈A

∣

∣

∣

∣

∣

i−

∑

t∈A t
(bn
t

)

∑

t∈A
(bn
t

)

∣

∣

∣

∣

∣

2+δ (bn
i

)

∑

t∈A
(bn
t

)

=

∑

i∈A
(bn
i

)

∣

∣

∣
i
∑

t∈A
(bn
t

)

−
∑

t∈A t
(bn
t

)

∣

∣

∣

2+δ

(

∑

t∈A
(bn
t

)

)3+δ

=

∑

i∈A
(

bn
i

)

∣

∣

∣

∑

t∈A (i− t)
(

bn
t

)

∣

∣

∣

2+δ

(

∑

t∈A
(

bn
t

)

)3+δ
. (3.11)
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We now find asymptotics for σ2
n and ρ2+δ

n . We first note that
(bn
t

)

= Θ(btn); we do not need to
have a t subscript on the Θ relation because t ≤ b and b are fixed. Therefore,

(

∑

t∈A

(

bn
t

)

)2

=

(

∑

t∈A
Θ
(

btn
)

)2

= Θ(bmn )2 = Θ
(

b2mn
)

. (3.12)

We also note that
∑

i,j∈A,i 6=j

(i− j)2
(

bn
i

)(

bn
j

)

=
∑

i,j∈A,i 6=j

Θ
(

binb
j
n

)

= Θ
(

bm+m′

n

)

. (3.13)

Therefore,

σ2
n =

Θ(bm+m
′

n )

Θ(b2mn )
= Θ

(

1

bm−m′

n

)

. (3.14)

Similarly, for ρ2+δ
n we have

ρ2+δ
n =

Θ(b
(2+δ)m
n bm

′

n )

Θ(b
(3+δ)m
n )

= Θ(bm
′−m

n ). (3.15)

Thus,

Θ(ρ2+δ
n ) = Θ(σ2

n). (3.16)

Now, let r2+δ
N =

∑N
n=1 ρ

2+δ
n , and s2N =

∑N
n=1 σ

2
n. We consider the Lyapunov limit

limN→∞ r2+δ
N /s2+δ

N . We have

lim
N→∞

(

r2+δ
N

s2+δ
N

)2

= lim
N→∞

(r2+δ
N )2

(s2N )2+δ
= lim

N→∞

Θ(s2N )2

(s2N )2+δ
= lim

N→∞

1

Θ(s2N )δ
. (3.17)

If the bin size bn grows slower than n
1

m−m
′

, then
∑N

n=1Θ
(

1/(bm−m
′

n )
)

→ ∞, and thus,

sN → ∞. Thus, the above limit tends to 0 and the Lyapunov condition is satisfied for any
δ > 0. So, we conclude that the distribution of the number of summands converges to a
Gaussian distribution as N → ∞. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. We will prove the case An = {0, . . . , n}, as the case An = {0, . . . , n−1}
is similar.

Taking bn = n and An = {0, . . . , n} in (3.10) and (3.11), we have

ρ2+δ
n =

∑n
i=0

(n
i

)

|2i− n|2+δ

2n+δ+2

σ2
n =

n

4
. (3.18)

From the Lyapunov Central Limit Theorem limit, we seek to show

lim
N→∞

∑

n≤N ρ2+δ
n

(

∑

n≤N σ2
n

)
2+δ

2

= 0, or equivalently lim
N→∞

(

∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

= ∞. (3.19)
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Substituting gives, for fixed N ,
(

∑

n≤N σ2
n

)
2+δ

2

∑

n≤N ρ2+δ
n

=
cN2+δ

∑

n≤N

∑n
i=0

(n
i

)

|2i− n|2+δ

2n+δ+2

, (3.20)

for a constant c > 0. Thus, it suffices to show that
∑

n≤N

∑n
i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

N1+δ
)

,

for which it is enough to prove that
∑n

i=0

(

n
i

)

|2i− n|2+δ

2n+δ+2
= O

(

nδ
)

. (3.21)

We assume δ > 0 is even in this proof for ease of computations. Then,
n
∑

i=0

(

n

i

)

|2i− n|2+δ =

n
∑

i=0

(

n

i

)

(n− 2i)2+δ

=
n
∑

i=0

(

n

i

) 2+δ
∑

j=0

(

2 + δ

j

)

(−1)jn2+δ−j(2i)j

=
2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

2jn2+δ−j
n
∑

i=0

(

n

i

)

ij . (3.22)

We wish to show that the n2+δ2n and n1+δ2n terms in (3.22) go to zero, which correspond to
the nj2n−j and nj−12n−j−1 terms in

∑n
i=0

(

n
i

)

ij . We compute
∑n

i=0

(

n
i

)

ij by noting that the
sum represents the number of ways to choose a subset A ⊂ {1, . . . , n} with an ordered j-tuple
(a1, . . . , aj), where each ak ∈ A. Alternatively, we could pick our ordered j-tuple (b1, . . . , bj)
first, so that each bk ∈ {1, . . . , n}, and then choose a subset B ⊂ {1, . . . , n} that includes the
distinct elements of {b1, . . . , bj}. It is easily checked that these two counting schemes are the
same by showing that the set of possible (A, (a1, . . . , aj)) can be in 1-1 correspondence with
the set of possible ((b1, . . . , bj), B). Following our second scheme, we note that if all elements
in our j-tuple are distinct, then there are

n(n− 1) · · · (n− j + 1)2n−j (3.23)

ways to pick our tuple and subset. Similarly, if j− 1 elements in the j-tuple are distinct, then
we have

(

n

j − 1

)(

j − 1

1

)

j!

2
2n−j+1 = n(n− 1) · · · (n− j + 2)(j − 1)j2n−j (3.24)

ways to choose. In general, if j − k elements in our tuple are distinct, then there are
O
(

nj−k2n−j+k
)

ways to choose our tuple and subset. Therefore, the expressions in (3.23)

and (3.24) make the only contributions to the nj−12n−j−1 term, whereas the only contribution
to the nj2n−j term comes from (3.23). The coefficient of the nj2n−j term is simply 1, and
thus, from (3.22), the coefficient of n2+δ2n is

2+δ
∑

j=0

(−1)j
(

2 + δ

j

)

= 0. (3.25)

Now, the coefficient of the nj−1 term from (3.23) is −
∑j−1

i=0 i2
n−j = −(j − 1)j2n−j−1. The

coefficient of the nj−1 term from (3.24) is (j−1)j2n−j . We add these two expressions together
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to obtain j2 − j as the coefficient of nj−12n−j−1 in
∑n

i=0

(n
i

)

ij . Again, from (3.22), the

coefficient of n1+δ2n is

1

2

2+δ
∑

j=0

(−1)j(j2 − j)

(

2 + δ

j

)

. (3.26)

Note that the above is equal to

d2

dx2
(1− x)2+δ

∣

∣

∣

∣

x=1

= 0 (3.27)

for δ > 0, and thus, we are finished. �

Conjecture 3.3. The Lyapunov condition holds for any for any An = {0, 1, . . . , ⌊n/k⌋}.
Numerics suggest this is true.

4. Future Directions (Higher Dimensional Sequences)

4.1. Zeckendorf Involution Tree. It would be natural, after studying bin decompositions,
to look at 2-dimensional sequences that have similar properties; the Fibonacci quilt [8, 9]
is one such generalization. We could ask many questions, such as: What types of sequence
constructions yield unique decomposition of positive integers? and How do statistics such as
average number of summands change in the two-dimensional case? However, in many cases (in-
cluding the Fibonacci quilt), seemingly two-dimensional sequences reduce to one-dimensional
relations, such as conditions imposed on bins; see [10] for an example that is fundamentally
not one-dimensional. As an example, we construct a “two-dimensional” sequence of integers,
which we call the Zeckendorf tree, as follows.

Let a1,1 = 1. For a term ai,j, i ≥ 1, 1 ≤ j ≤ i, i corresponds to the level in the tree in which
the term is located, and j is the term’s position within the level. The ith level has precisely
i terms. We add an integer to the tree if it is not the sum of terms from nonadjacent levels.
As 2 is not the sum of terms of nonadjacent levels, we add it to the tree as the first term of
the second level. Similarly, 3 is the second term of the second level. Next, 4 is the first term
of the third level, but 5 can be represented as 4 + 1, a sum of terms from nonadjacent levels.
So, 6 is the next term. We continue this process indefinitely to construct the Zeckendorf tree.

The left diagonal of the tree 1, 2, 4, 10, 26, . . . is the sequence of involutions on i letters,
also known as the Telephone Numbers. These diagonal terms are defined by the recurrence
relation a1 = 1, a2 = 2, and an = an−1 + (n− 1)an−2 for n > 2.
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The recurrence relation for the terms of the tree is given by

ai,j =

{

ai,j−1 + ai−1,0, j > 1

ai−1,i−1 + ai,0, j = 1.
(4.1)

Using techniques similar to those of the proof of Zeckendorf’s Theorem, one can show that
every positive integer n can be expressed uniquely as a sum of terms from nonadjacent levels
of the Zeckendorf tree. Although the recurrence relation for the terms of the tree seems to
depend on i and j, the tree can be described one-dimensionally using a condition on bins: Let
bi = i be the size of the ith bin. Then, the Zeckendorf tree sequence is the unique sequence
constructed by disallowing summands from adjacent bins.

Variations of the Zeckendorf tree retain their two-dimensional nature, but do not always
retain uniqueness of decomposition. For example, consider the following tree.

We begin the first row with the number 1 for uniqueness reasons. We construct the sequence
using the rule that a term is included if it cannot be composed of summands that are linked
in an upwards chain. For example, we do not include 30 because 30 = 22+ 6+ 2, all of which
are linked in an upwards chain.

Example: For 30, we have

However, we do include 38 because we cannot construct it using such a chain (note we
cannot get from 22 to 16). Although this sequence cannot be reduced to a condition on bins,
it does not have uniqueness of decomposition (for example, 48 = 44 + 4 and 48 = 38 + 10).
We can still prove Gaussianity for the distribution of the number of summands; see [10] for
details (as well as extensions to d-dimensions).

4.2. Uniqueness of Decomposition in g-nary Sequences. We explore another general-
ization of Zeckendorf sequences: a class of sequences that we call g-nary sequences. These
sequences are different from ({bn}, {An}, 0)-Sequences in that they are no longer constrained
by the requirement to represent every positive integer. We characterize g-nary sequences that
give a unique decomposition for any integer that has a decomposition. Theorems 4.1, 4.2, and
4.3 identify three distinct classes of g-nary sequences that preserve uniqueness in this way.

We construct a g-nary sequence by requiring that the summands are monotonically increas-
ing (starting at 1), setting An = {0, g} for some constant g, allowing a number to be in a given
bin at most once, and at each step taking the smallest number that preserves uniqueness.
The resulting g-nary sequence is well-defined if and only if after computing n numbers of the
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sequence, we can find an (n + 1)st number that satisfies the constraints of our construction
(most importantly, uniqueness). For simplicity, we begin with g = 2, constant bin size 3
(bn = 3), and no adjacency condition (a = 0). Let In be the set of all legally decomposable
numbers using bins b1 through bn. Let Gn,j be the gap between the (j − 1)st summand and
jth summand in the nth bin, and Ωn be the largest number legally representable using only
elements from the first n bins. Then, we have the following.

Theorem 4.1. For bn = 3, An = {0, 2}, and a = 0, the resulting g-nary sequence is well-
defined and we have Gn,j > Ωn−1.

Note that whereas the gap between adjacent summands in the bin can differ, to keep unique-
ness we need the gap between any two adjacent summands in bin n to be larger than the
maximum decomposition using all the bins n− 1.

Proof. We begin with the base case. The first two intervals are

1, 2, 3

Bin 1

, 3, x, y

Bin 2

, . . . (4.2)

with x < y; this is due to our requirement that the sequence is monotonically increasing
and a number is in a bin at most once. A straightforward calculation shows that the first
combination of x and y for which we retain uniqueness is x = 9 and y = 15. For more details
on computing the sequence, see Appendix A.

Now, suppose that we retain uniqueness with bins b1 through bk and for all n such that
1 ≤ n < k + 1, Gn,j > Ωn−1. Now, we seek to show that we retain uniqueness with bins b1
through bk+1 and Gk+1,j > Ωk. We have

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (4.3)

Thus, if Gk+1,j ≤ Ωk, there exists D1,D2 ∈ In, D2 > D1 such that

b+ c+D1 = a+ c+D2, (4.4)

because, by construction, D2 − D1 ∈ {1, 2, . . . ,Ωk}. Thus, we lose uniqueness. However, if
Gk+1,j > Ωk, there does not exist a combination of D1, D2 such that a+ b+D1 = a+ c+D2,
nor b+ c+D1 = a+ c+D2. Therefore, we keep uniqueness and

Gk+1,j > Ωk. (4.5)

By induction, we keep uniqueness and we have Gn+1,j > Ωn for all n, so this g-nary sequence
is well-defined. �

Theorem 4.2. For bn = k, An = {0, g} for a pair of constants g ∈ {1, k − 1}, and a = 0, the
resulting g-nary sequence is well-defined and we have Gn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ak
Bin 1

, ak, ak +Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . ; (4.6)

this is because if G2,j ≤ Ω1, there exists D1,D2 ∈ I1, D2 > D1, and p ∈ {2, 3, . . . , k − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.7)

because, by construction, D2 −D1 ∈ {1, 2, . . . ,Ω1}.
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Now, suppose that we retain uniqueness with bins b1 through bn and for all 1 < n < k + 1,
Gn,j > Ωn−1. Now, we seek to show that we retain uniqueness with bins b1 through bk+1 and
Gk+1,j > Ωk. We have

1, 2, . . . , ak
Bin 1

, ak, ak +Ω1 + 1, ak + 2Ω1 + 1, . . . , ak + kΩ1 + 1

Bin 2

, . . . x1, x2, x3, . . . , xk
Bin k+1

.

(4.8)
Thus, if Gk+1,j ≤ Ωk, there exists D3,D4 ∈ In, D4 > D3, and p ∈ {2, 3, . . . , k − g + 1} such
that

p+g−3
∑

i=p−1

xi + xp+g−1 +D3 =

p+g−1
∑

i=p

xi +D4, (4.9)

because, by construction, D4 − D3 ∈ {1, 2, . . . ,Ωk}. Thus, we lose uniqueness. However, if
Gk+1,j > Ωk, it is clear that there does not exist a linear combination of D3, D4, and xi’s such
that we lose uniqueness.

By induction, we keep uniqueness and we have Gn+1,j > Ωn for all n, so this class of g-nary
sequences is well-defined. �

Theorem 4.3. For bn = bl, An = {0, g} for some constant g < bl for all ℓ and a = 0, the
resulting g-nary sequence is well-defined and we have Gn,j > Ωn−1.

Proof. We begin with the base case. The first two intervals are

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 +Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ; (4.10)

this is because if G2,j ≤ Ω1, there exists D1,D2 ∈ I1, D2 > D1, and p ∈ {2, 3, . . . , b1 − g + 1}
such that

p+g−3
∑

i=p−1

ai + ap+g−1 +D1 =

p+g−1
∑

i=p

ai +D2, (4.11)

because, by construction, D2 −D1 ∈ {1, 2, . . . ,Ω1}.
Now, suppose that we retain uniqueness with bins b1 through bn and for all 1 < n < k + 1,

Gn,j > Ωn−1. Now, we seek to show that we retain uniqueness with bins b1 through bk+1 and
Gk+1,j > Ωk. We have

1, 2, . . . , ab1
Bin 1

, ab1 , ab1 +Ω1 + 1, ab1 + 2Ω1 + 1, . . . , ab1 + b2Ω1 + 1

Bin 2

, . . . ,

. . . , x1, x2, x3, . . . , xbk+1

Bin k+1

. (4.12)

Thus, if Gk+1,j ≤ Ωk, then there exist D3,D4 ∈ In, D4 > D3, and q ∈ {2, 3, . . . , bk+1−g+1}
such that

q+g−3
∑

i=q−1

xi + xq+g−1 +D3 =

q+g−1
∑

i=q

xi +D4, (4.13)

because, by construction, D4 − D3 ∈ {1, 2, . . . ,Ωk}. Thus, we lose uniqueness. However, if
Gk+1,j > Ωk, it is clear that there does not exist a linear combination of D3, D4, and xi’s such
that we lose uniqueness. By induction, we keep uniqueness and we have Gn+1,j > Ωn for all
n, so this class of g-nary sequences is well-defined. �

Remark 4.4. Note that Ωn+1 = Gn+1,j for the g-nary sequences discussed above.

Lemma 4.5. For bn = 3, An = {0, 2}, and a = 0, there are 4n elements in In for all n.
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Proof. We begin with the base case

1, 2, 3.

Bin 1

. (4.14)

There are 41 possible decompositions using only bin b1, yielding the numbers 0, 3, 4, and 5.
Suppose there are 4n elements in In. We will show that there are 4n+1 elements in In+1.

In+1 = 1 +

n+1
∑

i=1

(

n+ 1

i

)(

3

2

)i

= 4n+1. (4.15)

By induction, there are 4n elements in In for all n. More generally for different bi and g, we
have

In = 1 +

n
∑

i=1

(

n

i

)(

bi
g

)i

. (4.16)

Thus, if each bi equals a constant b, then

In =

((

b

g

)

+ 1

)n

. (4.17)

�

In the spirit of Theorem 1.1, a natural question to ask is if one could determine necessary
and sufficient conditions on bn for when a general g-nary sequence is well-defined.

4.3. Tesselations of the Unit Disk. We end with another candidate to study for a 2-
dimensional representation. Consider the tessellation of the unit disk (or upper half plane)
by copies of the standard fundamental domain of the modular group SL2(Z); see Figure 1.
We start by assigning a1 = 1 to the standard fundamental domain, and then introduce an
ordering (from the generators S and T of the modular group), with our rule being one cannot
use summands from cells that are adjacent under generators of SL2(Z) (or their inverses).

Figure 1. Tesselation of the upper half plane (or unit disk) by copies of the
standard fundamental domain of SL2(Z), which is generated by T sending z to
z + 1 and S sending z to −1/z.
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Appendix A. Computing Terms in a g-nary Sequence

Here, we compute terms in the g-nary sequence defined by setting bn = 3, a = 0, and
An = {0, 2}. As with all g-nary sequences, we start with a 1 in Bin 1:

1, ,

Bin 1

. (A.1)

The next term must be greater than 1, because the sequence must be monotonic, and a single
bin cannot contain two equal numbers. Because no positive number is legally decomposable
by this sequence yet (we have to use exactly two terms from any bin), the next term must be
2:

1, 2,

Bin 1

. (A.2)

Now, we can examine numbers greater than 2, one by one, to see if they preserve uniqueness
when added as the third term of the sequence. We see that if we include 3 as the third term,
the legal decompositions are 1 + 2 = 3, 1 + 3 = 4, and 2 + 3 = 5, which are all unique, so the
third term is 3:

1, 2, 3

Bin 1

. (A.3)

We now must start on Bin 2. Note that whereas the first term of Bin 2 must be at least
as large as 3, it can be equal to 3 because these terms are in separate bins. Note that we
cannot use any terms from Bin 2 after adding a single term, because we must use exactly two
terms from any bin, so the legal decompositions will remain the same as in the previous case.
Importantly, this means that we will add 3, the minimal possible number we can put into
the bin (since uniqueness is not in question, we simply pick the smallest number maintaining
monotonicity):

1, 2, 3

Bin 1

, 3, ,

Bin 2

. (A.4)

Now, suppose we fill in the remaining slots of Bin 2 with x and y:

1, 2, 3

Bin 1

, 3, x, y

Bin 2

. (A.5)

We can choose to use 3 and y or x and y from our bin. This changes the sum of a decom-
position by x − 3. Thus, x − 3 must be larger than a change that can be produced by using
or not using terms from Bin 1. Since Bin 1 can decompose numbers up to 5, x − 3 must be
larger than 5. Thus, x− 3 = 6, so x = 9. By similar logic, we find that y − 9 = 6, so y = 15.
We now have a complete Bin 2:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

. (A.6)

We now repeat the logic applied to Bin 2 to Bins 3 and onward. The results of the compu-
tation can be seen below for reference:

1, 2, 3

Bin 1

, 3, 9, 15

Bin 2

, 15, 45, 75

Bin 3

, 75, 225, 375

Bin 4

, . . . a, b, c

Bin k+1

. (A.7)
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Appl. Math. Lett., 7 (1994), no. 2, 25–28.
[16] N. Hamlin and W. A. Webb, Representing positive integers as a sum of linear recurrence

sequences, The Fibonacci Quarterly, 50.2 (2012), 99–105.
[17] V. E. Hoggatt, Generalized Zeckendorf Theorem, The Fibonacci Quarterly, 10.1 (1972), (special

issue on representations), 89–93.
[18] T. J. Keller, Generalizations of Zeckendorf ’s Theorem, The Fibonacci Quarterly, 10.1 (1972),

(special issue on representations), 95–102.
[19] M. Kologlu, G. Kopp, S. J. Miller, and Y. Wang, On the number of summands in Zeckendorf de-

compositions, The Fibonacci Quarterly, 49.2 (2011), 116–130. http://arxiv.org/abs/1008.3204.
[20] C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fi-

bonacci, Simon Stevin, 29 (1951–1952), 190–195.
[21] S. J. Miller and Y. Wang, From Fibonacci numbers to Central Limit Type The-

orems, Journal of Combinatorial Theory, Series A, 119 (2012), no. 7, 1398–1413.
https://arxiv.org/pdf/1008.3202.

[22] S. J. Miller and Y. Wang, Gaussian behavior in generalized Zeckendorf decompositions, Combi-
natorial and Additive Number Theory, CANT 2011 and 2012 (Melvyn B. Nathanson, editor),
Springer Proceedings in Mathematics & Statistics (2014), 159–173.

[23] W. Steiner, Parry expansions of polynomial sequences, Integers, 2 (2002), Paper A14.
[24] W. Steiner, The joint distribution of greedy and lazy Fibonacci expansions, The Fibonacci

Quarterly, 43.1 (2005), 60–69.
[25] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci
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