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Abstract. Hermite’s identity states that
∑

0≤k≤n−1

⌊

x+
k

n

⌋

= ⌊nx⌋ for all x ∈ R and n ∈ N.

In this article, we give a generalization of this identity and show some applications. For
example, we consider the above sum when k ranges over the integers from a to b, where a < b

are integers. Then, we apply it to give another proof of a recent result of Tverberg. We also
obtain a formula for the corresponding sum when k ranges over a complete residue system
modulo n.

1. Introduction

For each x ∈ R, the greatest integer function of x (or the floor function of x), denoted by
⌊x⌋, is defined as the largest integer not exceeding x, and the fractional part of x, denoted by
{x}, is given by {x} = x− ⌊x⌋.

The study of sums involving the floor function and the distribution of fractional parts of
certain sequences has been a popular area of research. For example, Dirichlet’s divisor problem
is to obtain the best estimate for the sum

N
∑

n=1

d(n) =
N
∑

m=1

⌊

N

m

⌋

,

or more precisely, the infimum of θ > 0 such that
∣

∣

∣

∣

∣

∣

∑

m≤N

⌊

N

m

⌋

− (N logN + (2γ − 1)N)

∣

∣

∣

∣

∣

∣

≪ N θ,

where d(n) is the number of positive divisors of n and γ is Euler’s constant. For some recent
results on Dirichlet’s divisor problem, we refer the reader to Khan [8]; Liu, Shparlinski, and
Zhang [11]; and Pongsriiam and Vaughan [20, 21]. Other sums involving the floor function
are also considered by Jacobsthal [7], Carlitz [1], Grimson [6], and recently by Tverberg [23],
Onphaeng and Pongsriiam [13], and Thanatipanonda and Wong [22]. For an elementary sum,
we recall Hermite’s identity that states

∑

0≤k≤n−1

⌊

x+
k

n

⌋

= ⌊nx⌋ for all x ∈ R and n ∈ N.

In this article, we generalize Hermite’s identity and give some applications. For example,
in Corollary 3.3, we obtain a closed form for a sum similar to Hermite’s identity, where a < b
are integers and k ranges from a to b. Then, we apply this result to give another proof of a
recent result of Tverberg. Theorem 3.6 presents a formula for the corresponding sum when k
ranges over a complete residue system modulo n.
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In Section 2, we recall some preliminaries and lemmas for the reader’s convenience. Then,
we give our main results and their applications in Section 3. For other topics related to the
floor function, see for example, [2, 3, 4, 9, 14, 15, 16, 18, 17, 19].

2. Preliminaries and Lemmas

We first recall that for integers a < b, the notations such as

b
∑

n=a

f(n),
∑

a≤n≤b

f(n),
∑

a≤n<b+1

f(n), and f(a) + f(a+ 1) + · · · + f(b)

have the same meaning. In addition, we assign the value zero to an empty sum such as
∑

0≤n≤−1 f(n). Next, we recall some basic properties of ⌊x⌋ and {x}, which are used through-
out this article, sometimes without reference.

Lemma 2.1. Let x, y ∈ R and n ∈ Z. Then, the following statements hold.

(i) ⌊x⌋ = n if and only if n ≤ x < n+ 1.
(ii) If x < y, then ⌊x⌋ ≤ ⌊y⌋.
(iii) ⌊x+ n⌋ = ⌊x⌋+ n.
(iv) If x ∈ Z, then ⌊x⌋ = x.
(v) 0 ≤ {x} < 1.

Proof. These are well-known and can be proved easily. For more details, we refer the reader
to Chapter 3 of the book by Graham, Knuth, and Patashnik [5]. �

We will use Fibonacci numbers in examples. Recall that the Fibonacci sequence (Fn)n≥0 is
defined by the recurrence relation F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. We have
the following result.

Lemma 2.2. Let α = 1+
√
5

2 be the golden ratio and β = 1−
√
5

2 its conjugate. Then, the
following statements hold.

(i) (Binet’s formula) Fn = αn−βn

α−β
for all n ≥ 0.

(ii) Fnα = Fn+1 − βn for all n ≥ 0.

Proof. Statement (i) is well-known and can be found in the book by Koshy [10, p. 78]. For

(ii), we first observe that αβ = −1 and β2 + 1 = β + 2 = −
√
5β. Then, by Binet’s formula,

Fnα is equal to
(

αn − βn

α− β

)

α =
αn+1 + βn−1

α− β
=

αn+1 − βn+1

α− β
+

βn+1 + βn−1

α− β
= Fn+1 +

βn+1 + βn−1

α− β
.

The second term above is

βn−1(β2 + 1)

α− β
=

βn−1(−
√
5β)√

5
= −βn.

This proves (ii). �

3. Main Results

We begin with a simple generalization of Hermite’s identity.
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Theorem 3.1. Let x ∈ R, m,n ∈ Z, and 0 ≤ m ≤ n. Then,
∑

0≤k≤m−1

⌊

x+
k

n

⌋

= max {m ⌊x⌋ ,m ⌊x⌋+m− n+ ⌊n{x}⌋} . (3.1)

In particular, if m = n are positive integers, then (3.1) is the same as Hermite’s identity.

Proof. By Lemma 2.1(v), we know that n{x} < n, and so −n + ⌊n{x}⌋ < 0. When m = 0,
the left side of (3.1) is an empty sum and so it is equal to 0, and the right side of (3.1) is also
equal to max{0,−n + ⌊n{x}⌋} = 0. Therefore, we may assume that m ≥ 1. Then, by the
definition of {x} and by Lemma 2.1(iii), we have

⌊

x+
k

n

⌋

=

⌊

⌊x⌋+ {x}+ k

n

⌋

= ⌊x⌋+
⌊

n{x}+ k

n

⌋

.

So, the left side of (3.1) is equal to

m ⌊x⌋+
∑

0≤k≤m−1

⌊

n{x}+ k

n

⌋

.

Since 0 ≤ n{x} < n, there exists an r ∈ {0, 1, 2, . . . , n − 1} such that r ≤ n{x} < r + 1. By
Lemma 2.1(i), we have r = ⌊n{x}⌋. For 0 ≤ k ≤ m− 1, we have

0 ≤ k

n
≤ n{x}+ k

n
<

n+ k

n
< 2.

So,
⌊

n{x}+k

n

⌋

= 0 or 1. In addition,
⌊

n{x}+k

n

⌋

= 1 ⇔ n{x}+k

n
≥ 1. If k ≥ n − r, then

n{x}+k

n
≥ n+n{x}−r

n
≥ 1. If k < n−r, then n{x}+k

n
≤ n{x}+n−r−1

n
< 1. Therefore,

⌊

n{x}+k

n

⌋

= 1

if and only if k ≥ n− r. Hence,

∑

0≤k≤m−1

⌊

n{x}+ k

n

⌋

=
∑

n−r≤k≤m−1

1 =

{

m− n+ r, if m ≥ n− r + 1;

0, otherwise.

Therefore, the left side of (3.1) is equal to m ⌊x⌋ +m− n + r if m− n + r ≥ 1, and is equal
to m ⌊x⌋ if m− n+ r ≤ 0. Recalling that r = ⌊n{x}⌋, the result follows. �

We can extend Theorem 3.1 as follows.

Theorem 3.2. Let x ∈ R and m,n ∈ N. Then,
∑

0≤k≤m−1

⌊

x+
k

n

⌋

=
n

2

⌊m

n

⌋(⌊m

n

⌋

− 1
)

+
⌊m

n

⌋

⌊nx⌋+
⌊m

n

⌋

r

+max {r ⌊x⌋ , r ⌊x⌋+ r − n+ ⌊n{x}⌋} , (3.2)

where r = m− n
⌊

m
n

⌋

is the remainder in the division of m by n.

Proof. If m < n, then
⌊

m
n

⌋

= 0, r = m, and the right side of (3.2) is the same as that of (3.1).
If m = n, then r = 0 and the right side of (3.2) is equal to ⌊nx⌋+max{0,−n+⌊n{x}⌋} = ⌊nx⌋.
This shows that if m ≤ n, then (3.2) reduces to (3.1). Therefore, we assume that m > n. By
the division algorithm, there exist q ∈ N and r ∈ Z such that m = nq + r and 0 ≤ r < n.
Then,

⌊

m
n

⌋

=
⌊

q + r
n

⌋

= q +
⌊

r
n

⌋

= q and r = m− nq = m− n
⌊

m
n

⌋

. Thus, we have

∑

0≤k≤m−1

⌊

x+
k

n

⌋

=

q−1
∑

ℓ=0

∑

ℓn≤k≤(ℓ+1)n−1

⌊

x+
k

n

⌋

+
∑

qn≤k≤qn+r−1

⌊

x+
k

n

⌋

.
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By replacing k by k+ ℓn in the first sum and k by k+ qn in the second sum on the right side
of the above equation, we see that

∑

0≤k≤m−1

⌊

x+
k

n

⌋

=

q−1
∑

ℓ=0

∑

0≤k≤n−1

⌊

x+
k + ℓn

n

⌋

+
∑

0≤k≤r−1

⌊

x+
k + qn

n

⌋

. (3.3)

Since
⌊

x+ k+ℓn
n

⌋

=
⌊

x+ k
n
+ ℓ

⌋

= ℓ+
⌊

x+ k
n

⌋

, we obtain, by Theorem 3.1, that the first sum
on the right side of (3.3) is

q−1
∑

ℓ=0



nℓ+
∑

0≤k≤n−1

⌊

x+
k

n

⌋



 =

q−1
∑

ℓ=0

(nℓ+ ⌊nx⌋) = nq(q − 1)

2
+ q ⌊nx⌋ . (3.4)

The second sum can also be evaluated by Theorem 3.1 and is equal to

qr +max {r ⌊x⌋ , r ⌊x⌋+ r − n+ ⌊n{x}⌋} . (3.5)

Recall that q =
⌊

m
n

⌋

and r = m − n
⌊

m
n

⌋

is the remainder in the division of m by n. Then,
substituting (3.4) and (3.5) in (3.3) leads to the desired result. �

Now, we can extend Hermite’s identity to a sum where k ranges over the integers from a to
b for any a < b as follows.

Corollary 3.3. Let x ∈ R, n ∈ N, a, b ∈ Z, and a < b. Then,
∑

a≤k<b

⌊

x+
k

n

⌋

=
n

2

⌊m

n

⌋(⌊m

n

⌋

− 1
)

+
⌊m

n

⌋

r +
⌊m

n

⌋

⌊nx⌋

+ max
{

r
⌊

x+
a

n

⌋

, r
⌊

x+
a

n

⌋

+ r − n+
⌊

n
{

x+
a

n

}⌋}

,

where m = b− a and r is the remainder in the division of b− a by n.

Proof. Replacing k by k + a, we see that the left side is
∑

0≤k<b−a

⌊

(

x+
a

n

)

+
k

n

⌋

,

which is suitable for an application of Theorem 3.2. This leads to the desired result. �

For each a, b, k ∈ Z and m ∈ N, define fa,b,m(k) by

fa,b,m(k) =

⌊

a+ b+ k

m

⌋

−
⌊

a+ k

m

⌋

−
⌊

b+ k

m

⌋

+

⌊

k

m

⌋

.

For N ∈ N, Jacobsthal [7] introduced the sum

Sa,b,m(N) =

N
∑

k=0

fa,b,m(k),

and used the analytic method to show that Sa,b,m(N) ≥ 0 for all N ≥ 1. Tverberg [23] gives
another proof of this inequality, generalizes the sum Sa,b,m(N), and obtains some upper and
lower bounds for those generalizations. Onphaeng and Pongsriiam [13] and Thanatipanonda
and Wong [22] extend Tverberg’s result further; we refer the reader to [13] or [22] for some
open problems concerning the bounds for Tverberg’s generalization of the sum Sa,b,m(N). In
the next corollary, we combine Tverberg’s argument and our result to give another proof of
the inequality

Sa,b,m(N) ≥ 0 for all N ≥ 1. (3.6)
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Corollary 3.4. The inequality (3.6) holds.

Proof. Tverberg observes that fa,b,m(k) is invariant when we replace a, b, k by a±m, b±m,
k ±m, respectively. So, we can assume that 0 ≤ a, b < m. Since the sum Sa,b,m(N) is taken
over k = 0, 1, . . . , N , it suffices to consider only the case 1 ≤ N ≤ m− 1. By the definition of
Sa,b,m(N), we have Sa,b,m(N) = A1 −A2 −A3 +A4, where

A1 =
∑

0≤k≤N

⌊

a+ b

m
+

k

m

⌋

, A2 =
∑

0≤k≤N

⌊

a

m
+

k

m

⌋

,

A3 =
∑

0≤k≤N

⌊

b

m
+

k

m

⌋

, and A4 =
∑

0≤k≤N

⌊

k

m

⌋

.

By Theorem 3.1, A1 is equal to

max

{

(N + 1)

⌊

a+ b

m

⌋

, (N + 1)

⌊

a+ b

m

⌋

+ α1

}

= (N + 1)

⌊

a+ b

m

⌋

+max{0, α1},

where α1 = N+1−m+
⌊

m
{

a+b
m

}⌋

. Since m
{

a+b
m

}

= m
(

a+b
m

−
⌊

a+b
m

⌋)

= a+b−m
⌊

a+b
m

⌋

∈ Z,

we see that α1 = N + 1 − m + a + b − m
⌊

a+b
m

⌋

. Similarly, since 0 ≤ a, b < m, we obtain
⌊

a
m

⌋

=
⌊

b
m

⌋

= 0 and A2 = max{0, α2}, A3 = max{0, α3}, where α2 = N + 1 − m + a,
α3 = N + 1−m+ b. In addition, since N < m, A4 = 0. Therefore,

Sa,b,m(N) = (N + 1)

⌊

a+ b

m

⌋

+max{0, α1} −max{0, α2} −max{0, α3}. (3.7)

Since 0 ≤ a+ b < 2m,
⌊

a+b
m

⌋

= 0 or 1. So, we divide our calculation into two cases.

Case 1. 0 ≤ a + b < m. Then,
⌊

a+b
m

⌋

= 0, α1 = N + 1 −m + a+ b, α1 ≥ α2, α1 ≥ α3, and
(3.7) becomes

Sa,b,m(N) = max{0, α1} −max{0, α2} −max{0, α3}. (3.8)

If α1 < 0, then α2 and α3 < 0 and so, the right side of (3.8) is zero. Suppose α1 ≥ 0. Then,
there are four possible values for the right side of (3.8), namely, α1, α1 − α2, α1 − α3, or
α1 − α2 − α3. They satisfy α1 = α1, α1 − α2 = (N + 1−m+ a + b) − (N + 1−m+ a) = b,
α1 − α3 = (N + 1−m+ a+ b)− (N + 1−m+ b) = a, and α1 − α2 − α3 = m− 1−N , which
are nonnegative.
Case 2. m ≤ a+ b < 2m. We have

⌊

a+b
m

⌋

= 1, α1 = N +1−m+a+ b−m, α1 < α2, α1 < α3,
and (3.7) becomes

Sa,b,m(N) = (N + 1) + max{0, α1} −max{0, α2} −max{0, α3}. (3.9)

If α1 ≥ 0, then α2, α3 ≥ 0 and the right side of (3.9) is

N +1+α1−α2−α3 = N +1+(N +1− 2m+a+ b)− (N +1−m+a)− (N +1−m+ b) = 0.

If α1 < 0, then the right side of (3.9) is N+1, N+1−α2, N+1−α3, or N+1−α2−α3 = N+1,
m − a, m − b, or −α1, which are nonnegative. Therefore, Sa,b,m(N) ≥ 0, as required. This
completes the proof. �

Example 3.5. Let (Fn)n≥0 be the Fibonacci sequence, α = 1+
√
5

2 the golden ratio, and 3 ≤
m ≤ n. Then,

∑

0≤k≤Fm−1

⌊

α+
k

Fn

⌋

=

{

2Fm − Fn−2, if m ≥ n− 2;

Fm, otherwise.
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Proof. By writing n{x} = nx − n ⌊x⌋, we see that ⌊n{x}⌋ = ⌊nx⌋ − n ⌊x⌋. The expression
m ⌊x⌋ +m − n + ⌊n{x}⌋ in Theorem 3.1 can be written as ⌊nx⌋ − (n −m)(⌊x⌋ + 1). Then,
the sum in question is equal to

max {Fm ⌊α⌋ , ⌊Fnα⌋ − (Fn − Fm)(⌊α⌋+ 1)} = max {Fm, ⌊Fnα⌋ − 2(Fn − Fm)} . (3.10)

Let β = 1−
√
5

2 . Since −1 < β < 0, we obtain that 0 < βn < 1 if n is even and −1 < βn < 0
if n is odd. Therefore, we obtain, by Lemma 2.2(ii), that Fn+1 < Fnα < Fn+1 + 1 if n is
odd and Fn+1 − 1 < Fnα < Fn+1 if n is even. Therefore, ⌊Fnα⌋ = Fn+1 if n is odd and
⌊Fnα⌋ = Fn+1 − 1 if n is even. We consider two cases.
Case 1. n is odd. Then, ⌊Fnα⌋ − 2(Fn − Fm) = 2Fm − Fn−2 and (3.10) becomes

max{Fm, 2Fm − Fn−2},
which is equal to 2Fm−Fn−2 if 2Fm−Fn−2 ≥ Fm, otherwise, it is Fm. Recall that 3 ≤ m ≤ n.
Thus, we have 2Fm − Fn−2 ≥ Fm if and only if m ≥ n− 2. Therefore,

∑

0≤k<Fm

⌊

α+
k

Fn

⌋

=

{

2Fm − Fn−2, if m ≥ n− 2 and n is odd;

Fm, if m < n− 2 and n is odd.

Case 2. n is even. Similar to Case 1, (3.10) becomes max{Fm, 2Fm − Fn−2 − 1}, and
2Fm − Fn−2 − 1 ≥ Fm if and only if m ≥ n− 2. The result follows. �

Recall that a set of positive integers a0, a1, . . ., an−1 is called a complete residue system
modulo n if for each i ∈ {0, 1, 2, . . . , n − 1}, there exists a unique j ∈ {0, 1, . . . , n − 1} such
that aj ≡ i (mod n). Another generalization of Hermite’s identity is as follows.

Theorem 3.6. Let x ∈ R and n ∈ N. Assume that the set {a0, a1, . . . , an−1} is a complete
residue system modulo n. Then,

∑

0≤k≤n−1

⌊

x+
ak
n

⌋

= ⌊nx⌋ − n− 1

2
+

1

n

n−1
∑

k=0

ak.

In particular, if {a0, a1, . . . , an−1} = {0, 1, . . . , n − 1}, then this is the same as Hermite’s
identity.

Proof. We can assume, without loss of generality, that for each k = 0, 1, . . . , n − 1, we have
ak ≡ k (mod n). Then, (ak − k)/n is an integer and we obtain, by Lemma 2.1(iii), that

⌊

x+
ak
n

⌋

=

⌊

x+
ak − k

n
+

k

n

⌋

=
ak − k

n
+

⌊

x+
k

n

⌋

.

From this and Theorem 3.1, we see that the sum in question is equal to

1

n





∑

0≤k≤n−1

(ak − k)



+ ⌊nx⌋ = ⌊nx⌋ − n− 1

2
+

1

n

n−1
∑

k=0

ak. �

Corollary 3.7. Let x ∈ R, a ∈ Z, n ∈ N, and (a, n) = 1. Then,

n−1
∑

k=0

⌊

x+
ka

n

⌋

=
(a− 1)(n − 1)

2
+ ⌊nx⌋ .

In particular, if a = 1, then this is the same as Hermite’s identity.

Proof. Since (a, n) = 1, the set {ka | k = 0, 1, . . . , n− 1} is a complete residue system modulo
n. So, we can apply Theorem 3.6 to obtain the result. �
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