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Abstract. Zeckendorf’s Theorem states that any positive integer can be written uniquely as
a sum of nonadjacent Fibonacci numbers. We consider higher-dimensional lattice analogues
in a chosen dimension d ≥ 1, where a legal decomposition of a number n is a collection of
lattice points such that each point is included at most once. Once a point is chosen, all
future points must have strictly smaller coordinates, and the pairwise sum of the values of the
points chosen equals n. We prove that the distribution of the number of summands in these
lattice decompositions converges to a Gaussian distribution in d dimensions. As an immediate
corollary, we obtain a new proof for the asymptotic number of certain lattice paths.

1. Introduction

Zeckendorf’s Theorem states that any positive integer can be uniquely written as the sum
of nonconsecutive Fibonacci numbers {Fn}, defined by F1 = 1, F2 = 2, and Fn+1 = Fn +Fn−1

for all n ≥ 2 [30]. We call this sum a number’s Zeckendorf decomposition, and this leads
to an equivalent definition of the Fibonacci sequence: this is the only sequence such that
every positive integer can be written uniquely as a sum of nonadjacent terms. This interplay
between recurrence relations and notions of legal decompositions holds for other sequences and
recurrence rules as well. We report on some of the previous work on properties of generalized
Zeckendorf decompositions for certain sequences, and then discuss our new generalizations to
two-dimensional sequences. There is now extensive literature on the subject (see for example
[2, 3, 4, 5, 8, 9, 13, 14, 15, 16, 18, 17, 19, 26, 27, 28, 29] and the references therein).

Lekkerkerker [22] proved that the average number of summands in the Zeckendorf de-
compositions of m ∈ [Fn, Fn+1) is n

ϕ2+1
+ O(1) ≈ .276n as n → ∞. Later authors ex-

tended this to other sequences and higher moments (see the previous references, in particular
[1, 9, 10, 11, 24, 21, 27]), proving that given any rules for decompositions, there is a unique
sequence such that every number has a unique decomposition, and the average number of
summands converges to a Gaussian.

To date, most of the sequences studied have been one-dimensional; many that appear to be
higher dimensional (such as [6, 7]) can be converted to one-dimensional sequences. Our goal
is to investigate decompositions that are truly higher dimensional. We do so by creating a
sequence arising from two-dimensional lattice paths on ordered pairs of positive integers. A
legal decomposition in d dimensions will be a finite collection of lattice points for which

(1) each point is used at most once, and
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(2) if the point (i1, i2, . . . , id) is included, then all subsequent points (i′1, i
′
2, . . . , i

′
d) have

i′j < ij for all j ∈ {1, 2, . . . , d} (i.e., all coordinates must decrease between any two

points in the decomposition).

We call these sequences of points on the d-dimensional lattice simple jump paths. In
Section 4, we discuss generalizations in which we allow only some of the coordinates to decrease
between two consecutive points in the path; this adds combinatorial difficulties. Note that the
number we assign to each lattice point depends on how we order the points (unless we are in
one dimension). For example, if d = 2 we can order the points by going along diagonal lines,
or L-shaped paths. Explicitly, the first approach gives the ordering

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . , (1.1)

whereas the second yields

(1, 1), (2, 1), (2, 2), (1, 2), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), . . . . (1.2)

For the purposes of this paper, however, it does not matter which convention we adopt as
our results on the distribution in the number of summands of a legal decomposition depend
only on the combinatorics of the problem, and not the values assigned to each tuple; the role
of the values surfaces only in questions of what fraction of integers are represented, and how
often. We call the labeling attached to any choice a Simple Zeckendorf Sequence in d
Dimensions, and comment shortly on how this is done. If d = 1, then we denote the sequence
as {ya}∞a=0 and construct it as follows.

(1) Set y1 := 1.
(2) Iterate through the natural numbers. If we have constructed the first k terms of our

sequence, the (k+1)th term is the smallest integer that cannot be written as a sum of
terms in the sequence, with each term used at most once.

Note this sequence is just powers of 2,

1 2 4 8 16 32 64 128 256 512 . . . , (1.3)

and a legal decomposition of n is just its binary representation.
If d = 2, on the other hand, as remarked above we have choices. We describe the Simple

Zeckendorf Diagonal Sequence {ya,b}∞a,b=0; its construction is analogous to the d = 1 case and
uses the following procedure.

(1) Set y1,1 := 1.
(2) Iterate through the natural numbers. For each such number, check if any path of

numbers in our sequence with a strict leftward and downward movement between each
two points sums to the number. If no such path exists, add the number to the sequence
so that it is added to the shortest unfilled diagonal moving from the bottom right to
the top left.

(3) If a new diagonal must begin to accommodate a new number, set the value yk,1 to be
that number, where k is minimized so that yk,1 has not yet been assigned.

In (1.4), we illustrate several diagonals’ worth of entries when d = 2, where the elements
are always added in increasing order. Note that unlike the Fibonacci sequence, we immedi-
ately see that we have lost the uniqueness of decompositions (for example, 25 has two legal
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decompositions: 20 + 5 and 24 + 1).

280 · · · · · · · · · · · · · · · · · · · · · · · · · · ·
157 263 · · · · · · · · · · · · · · · · · · · · · · · ·
84 155 259 · · · · · · · · · · · · · · · · · · · · ·
50 82 139 230 · · · · · · · · · · · · · · · · · ·
28 48 74 123 198 · · · · · · · · · · · · · · ·
14 24 40 66 107 184 · · · · · · · · · · · ·
7 12 20 33 59 100 171 · · · · · · · · ·
3 5 9 17 30 56 93 160 · · · · · ·
1 2 4 8 16 29 54 90 159 · · ·

(1.4)

Analogous procedures to the one which creates (1.4) exist for higher dimensions, but the
intended illustration is most intuitive in two dimensions. For the same reason as in the d = 2
case, there are clearly multiple procedures to generate the higher-dimensional sequences, even
if one fixes restrictions on how to choose the summands in as many as d− 2 dimensions.

Numerical explorations (see Figure 1) suggest that, similar to sequences mentioned earlier,
the distribution of the number of summands converges to a Gaussian.
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Figure 1. Gaussian distribution of the number of simple jump paths of
varying lengths; in particular, if the paths have length (n, n), then the mean is
1
2n + 1 and the variance is n2

4(2n−1) . Left: Starting at (10, 10). Right: Starting

at (40, 40). In both cases, the horizontal axis is the number of summands and
the vertical axis is the probability of obtaining a simple jump path with some
number of summands when selecting one from all simple jump paths uniformly
at random.

Our main result is that in any number of dimensions, we converge to a Gaussian as n → ∞.

Theorem 1.1. (d-dimensional Gaussianity) Let n be a positive integer, and consider the dis-
tribution of the number of summands among all simple jump paths of dimension d with starting
point (i, i, . . . , i) where 1 ≤ i ≤ n, and each distribution represents a (not necessarily unique)
decomposition of some positive number. This distribution converges to a Gaussian as n → ∞.

In Section 2, we motivate our problem further, explore the notion of a simple jump path
in more depth, and prove some needed lemmas. Then, we prove Theorem 1.1 in Section
3. The result is proven with the Central Limit Theorem for a binomial random variable if
d = 1. If d = 2, it can be proved directly through combinatorial identities, but for larger d the
combinatorial lemmas do not generalize, and we are forced to resort to analytic techniques.
We show that the functional dependence is that of a Gaussian, and thus, as the probabilities
add up to 1, the normalization constant, which depends on the number of paths, must have
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a certain asymptotic formula. Thus, as an immediate consequence, we obtain new proofs for
the asymptotic number of paths. We conclude the paper with a discussion of future work and
generalizations of the simple jump paths.

2. Properties of Simple Jump Paths

We first set some notation for our simple jump paths. We have walks in d dimensions starting
at some initial point (a1, a2, . . . , ad) with each aj > 0, and ending at the origin (0, 0, . . . , 0).
Note that our simple jump paths must always have movement in all dimensions at each step.
We are just adding one extra point, at the origin, and saying every path must end there. Note
that as we always change all of the indices during a step, we never include a point where only
some of the coordinates are zero, and thus, there is no issue in adding one extra point and
requiring all paths to end at the origin.

Our walks are sequences of points on the lattice grid with positive indices or the origin, and
we refer to movements between two such consecutive points as steps. Thus, a simple jump path
is a walk where each step has a strict movement in all d dimensions. More formally, a simple
jump path of length k starting at (a1, a2, . . . , ad) is a sequence of points {(xi,1, . . . , xi,d)}ki=0
where the following hold:

• (x0,1, . . . , x0,d) = (a1, . . . , ad),
• (xk,1, . . . , xk,d) = (0, . . . , 0), and
• for each i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}, xi,j > xi+1,j.

For a fixed d and any choice of starting point (n, n, . . . , n) ∈ R
d, we let sd(n) denote the

number of simple jump paths from (n, n, . . . , n) to the origin, and td(k, n) denote the subset
of these paths with exactly k steps. As we must reach the origin, every path has at least one
step, the maximum number of steps is n, and

sd(n) =
n
∑

k=1

td(k, n). (2.1)

We now determine td(k, n). In one dimension we have td(k, n) =
(n−1
k−1

)

, because we must

choose exactly k−1 of the first n−1 terms (we must choose the nth term as well as the origin,
and thus, choosing k−1 additional places ensures there are exactly k steps). The generalization
to higher dimensions is immediate because we are looking at simple paths, and thus, there is
movement in each dimension in each step; this is why we restrict ourselves to simple paths,
because in the general case we do not have tractable formulas like the one below.

Lemma 2.1. For a1, . . . , ad positive integers, let td(k; a1, . . . , ad) denote the number of sim-
ple paths of length k starting at (a1, . . . , ad) and ending at (0, . . . , 0). Then for 1 ≤ k ≤
min(a1, . . . , ad),

td(k; a1, . . . , ad) =

(

a1 − 1

k − 1

)(

a2 − 1

k − 1

)

· · ·
(

ad − 1

k − 1

)

. (2.2)

If a1 = · · · = ad = n, we write td(k, n) for td(k; a1, . . . , ad). We have

sd(n) =
n
∑

k=1

td(k, n), (2.3)

and s1(n) = 2n−1, s2(n) =
(2n−2
n−1

)

(for higher d, we are unaware of the existence of any closed

form expressions).

204 VOLUME 57, NUMBER 3



GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES

The proof is an immediate, repeated application of the one-dimensional result, with the two
formulas (for s1(n) and s2(n)) being well-known binomial identities (see for example [25]).

3. Gaussianity in d-Dimensional Lattices

3.1. Mean and Variance. To prove Theorem 1.1, we start by determining the density,
pd(k, n), for the number of simple jump paths of length k starting at (n, . . . , n):

pd(k, n) =
td(k, n)

sd(n)
. (3.1)

Much, though not all, of the proof when d = 1 carries over to general d. We therefore concen-
trate on d = 1 initially and then remark on what issues arise when we generalize and discuss
the resolution of these problems.

We begin by determining the mean and standard deviation. The analysis for the mean holds
for all d, but the combinatorial argument for the variance requires d ≤ 2. Due to the presence
of n− 1 in the formula for td(k, n), we work with n+ 1 below to simplify some of the algebra.

Lemma 3.1. Consider all simple jump paths from (n+1, . . . , n+1) to the origin in d dimen-
sions. If K is the random variable denoting the number of steps in each path, then its mean
µd(n+ 1) and standard deviation σd(n+ 1) are

µd(n+ 1) =
1

2
n+ 1 (3.2)

and

σ1(n+ 1) =

√
n

2
, σ2(n+ 1) =

n

2
√
2n − 1

≈
√
n

2
√
2
. (3.3)

Further, we have

σd(n+ 1) ≤ σ1(n+ 1) ≤
√
n/2. (3.4)

Proof. The results for d = 1 are well-known, because we have a binomial random variable. For
d = 2, one can compute the mean and the variance by combinatorial arguments (see Appendix
A); whereas these can be generalized to give the mean for any d, they do not generalize for the
variance.

Because we must end at the origin, note that each path must have length at least 1. Thus,
instead of studying the number of paths of length k ∈ {1, . . . , n + 1}, we instead study the
number of paths of length κ ∈ {0, . . . , n} and then add 1 to obtain the mean (there is no need
to add 1 for the variance because the variance of K and K − 1 are the same).

Because

td(k;n+ 1) =

(n
k

)d

sd(n+ 1)
, (3.5)

the symmetry of the binomial coefficients about n/2 implies the mean of K − 1 is n/2. All
that remains is to prove the variance bound for d ≥ 2. Note that the variance of K − 1 is

σd(n+ 1) =
n
∑

κ=0

(κ− n/2)2
(

n
κ

)d

sd(n+ 1)
. (3.6)
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By symmetry, it suffices to investigate κ ≥ n/2. Since the binomial coefficients are strictly
decreasing as we move further from the mean, for such κ we find that

pd(κ)

pd(κ+ 1)
=

(n
κ

)d

( n
κ+1

)d
≥ 1, (3.7)

and thus for every g > 0, we see that the probability of K − 1 being within g of the mean
increases as d increases. Thus, the variance is smallest at d = 1, completing the proof. �

Next, we show that K is close to the mean with high probability.

Lemma 3.2. Consider all simple jump paths from (n + 1, . . . , n + 1) to the origin in d di-
mensions. If K is the random variable denoting the number of steps in each path, then the
probability that K is at least nǫn1/2/2 from the mean is at most n−2ǫ.

Proof. By Chebyshev’s Inequality,

Prob (|K − (n/2 + 1)| ≥ nǫσd(n+ 1)) ≤ 1

n2ǫ
. (3.8)

Because σd(n + 1) ≤ n1/2/2 by Lemma 3.1, we only decrease the probability on the left if we

replace σd(n+ 1) with n1/2/2, and thus the claim follows. �

One important consequence of the above lemma is that if we write k as µd(n+1)+ ℓn1/2/2,
then with probability tending to 1, we may assume |ℓ| ≤ nǫ.

3.2. Gaussianity. The proof of Theorem 1.1 in general proceeds similar to the d = 1 case.
For d ≤ 2, we have closed formulas for the variance and sd(n+1), which simplify the proof. For
general d, we show that the resulting distribution has the same functional form as a Gaussian,
and from this we obtain asymptotics for the variance and the number of paths.

Proof of Theorem 1.1. From Lemma 3.2, if we write

k = µd(n+ 1) + ℓn1/2/2 (3.9)

then the probability of |ℓ| being at least n1/9 is at most n2/9, so in the arguments below, we
assume |ℓ| ≤ n1/9. In particular, this means that k and n− k are close to n/2 with probability

tending to 1 as n → ∞. We are using n1/2/2 and not σd(n + 1), because this way a quantity
below will perfectly match the d = 1 case.

For m large, Stirling’s Formula states that

m! = mme−m
√
2πm

(

1 +O

(

1

m

))

. (3.10)

Thus,

pd(k, n + 1) =

(n
k

)d

sd(n + 1)
=

1

sd(n+ 1)

(

n!

k!(n− k)!

)d

=
1

sd(n + 1)





√
2πnnn

√

4π2k(n− k)kk(n − k)n−k
·

(

1 +O
(

1
n

))

(

1 +O
(

1
n−k

))

(

1 +O
(

1
k

))





d

,

(3.11)

and the ratio of the big-Oh terms is 1+O(1/n), since k and n−k are approximately n/2 (note
the big-Oh constant here is allowed to depend on d, which is fixed).
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We now turn to the other part of the above expression. If we divide the rest of the quantity in
parentheses by 2n, then we have the probability in one dimension, whose analysis is well-known;
thus,

pd(k, n + 1) =
2ndnd/2

sd(n+ 1)

(

nn

2nkk(n− k)n−k
√

2πk(n − k)

)d

· (1 +O(1/n)) . (3.12)

The quantity to the dth power converges (up to the normalization factor) to a Gaussian by the
Central Limit Theorem for a binomial random variable; for completeness we sketch the proof.

Using that n and n− k are close to n/2, we find

pmain,1(k) :=
nn

2nkk(n− k)n−k
√

2πk(n − k)

=
1

√

1
2πn

2
· 1
(

1−
ℓ
√

n
2

n/2

)n/2− ℓ
√

n
2

+ 1
2
(

1 +
ℓ
√

n
2

n/2

)n/2+ ℓ
√

n
2

+ 1
2

. (3.13)

Let qn be the denominator of the second fraction above. We approximate log(qn) and then

exponentiate to estimate qn. As |ℓ| ≤ n1/9, when we take the logarithms of the terms in qn,
only the first two terms in the Taylor expansion of log(1 + u) contribute as n → ∞. Thus,

log qn =

(

n

2
− ℓ

√
n

2
+

1

2

)(

− ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

+

(

n

2
+

ℓ
√
n

2
+

1

2

)(

ℓ√
n
− ℓ2

2n
+O

(

ℓ3

n3/2

))

=
ℓ2

2
+O

(

n · n
1/3

n3/2
− ℓ2

2n

)

=
ℓ2

2
+O

(

n−1/6
)

, (3.14)

which implies (since k = µd(n+ 1) + ℓ
√
n/2)

qm = e
(k−µd(n+1))2

n/2 eO(n−1/6). (3.15)

Thus, collecting our expansions yields, for |ℓ| ≤ n1/9,

pd(k, n+ 1) =
2ndnd/2

sd(n+ 1)(πn2/2)d/2
e
−

d(k−µd(n+1))2

n/2 · eO(n−1/6). (3.16)

Note the second exponential is negligible as n → ∞, and the first exponential is that of a
Gaussian with mean µd(n + 1) and variance σd(n + 1)2 = n/4d. Because this is a probability
distribution, it must sum to 1 (the terms with |ℓ| large contribute negligibly in the limit), and

thus, 2nd/(sd(n+ 1)(πn/2)d/2) must converge to the normalization constant of this Gaussian,

which is 1/
√

2πsd(n + 1)2. In particular, we obtain

sd(n+ 1) ∼ 2ndnd/2

(πn2/2)d/2
·
√

2πn/4d = 2nd
(πn

2

)− d
2
+ 1

2
d−1/2. (3.17)

�
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4. Future Work and Concluding Remarks

We could also consider the Compound Zeckendorf Diagonal Sequence in d dimen-

sions, which is constructed in a similar way to (1.3) and (1.4), but allows more paths to be
legal (explicitly, each step is no longer required to move in all of the dimensions). Whereas
the d = 1 Compound Zeckendorf Diagonal Sequence is the same as the simple one, the two
notions of paths give rise to different sequences when d = 2. In that case, the Compound
Zeckendorf Diagonal Sequence is denoted {za,b}∞a = 0,b = 0, and is constructed as follows.

(1) Set z1,1 := 1.
(2) Iterate through the natural numbers. For each such number, check if any path of

distinct numbers without upward or rightward movements sums to the number. If no
such path exists, add the number to the sequence so that it is added to the shortest
unfilled diagonal, moving from the bottom right to the top left.

(3) If a new diagonal must begin to accommodate a new number, set the value zk,1 to be
that number, where k is minimized so that zk,1 has not yet been assigned.

The difference between this and the Simple Zeckendorf Diagonal Sequence is that we now
allow movement in just one direction. This greatly complicates the combinatorial analysis
because now the simultaneous movements in different dimensions depend on each other. In
particular, if a step contains a movement in one direction, it no longer needs to contain a
movement in other directions to be regarded as a legal step. In (4.1), we illustrate several
diagonals’ worth of entries, where the elements are always added in increasing order.

6992 · · · · · · · · · · · · · · · · · · · · · · · ·
2200 6054 · · · · · · · · · · · · · · · · · · · · · · · ·
954 2182 5328 · · · · · · · · · · · · · · · · · · · · ·
364 908 2008 5100 · · · · · · · · · · · · · · · · · ·
138 342 862 1522 4966 · · · · · · · · · · · · · · ·
44 112 296 520 1146 2952 · · · · · · · · · · · ·
16 38 94 184 476 1102 2630 · · · · · · · · ·
4 10 22 56 168 370 1052 2592 · · · · · ·
1 2 6 18 46 140 366 1042 2270 · · ·

(4.1)

Just as in (1.4), uniqueness of decompositions does not hold in the compound case. For
instance, 112+38+10 and 140+18+2 are both legal decompositions of 160 in (4.1). Moreover,
just like the Simple Zeckendorf Diagonal Sequences (1.3) and (1.4), Compound Zeckendorf
Diagonal Sequences can be built in higher dimensions with multiple ways of formulating how
to add terms to the sequence.

Many of the articles in the literature use combinatorial methods and manipulations of bi-
nomial coefficients to obtain similar results (see, for instance, [12, 23, 27]). Thus, a question
worth future study is to extend the combinatorial variance calculation to d dimensions (see
Lemma A.3).

Finally, similar to [3, 20] and related work, we can investigate the distribution of gaps
between summands in legal paths. One can readily obtain explicit combinatorial formulas for
the probability of a given gap; the question is whether or not nice limits exist in this case, as
they do for the one-dimensional recurrences previously studied.
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Appendix A. Derivation of Mean and Standard Deviation for Simple Jump

Paths

Before we compute the mean and the standard deviation, we record a simple combinatorial
lemma that will be needed later.

Lemma A.1. For n a positive integer,

n
∑

k=0

k2
(

n

k

)2

= n2

(

2n− 2

n− 1

)

. (A.1)

Proof. Expanding the binomial coefficient and canceling ks yields

n
∑

k=0

k2
(

n

k

)2

=

n
∑

k=0

k2
(

n!

k!(n − k)!

)2

=

n
∑

k=1

n2

(

(n− 1)!

(k − 1)!(n − k)!

)2

. (A.2)

Shifting indices, we can rewrite the above as

n
∑

k=0

k2
(

n

k

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)2

= n2
n−1
∑

ℓ=0

(

n− 1

ℓ

)(

n− 1

n− 1− ℓ

)

, (A.3)

and the sum equals
(2n−2
n−1

)

(it is the number of ways to choose n−1 objects from 2n−2, where

we consider n− 1 of the items to be in one set and the remaining n− 1 in another). �

Lemma A.2 (Mean for Simple Jump Path Distribution). If µd(i) denotes the mean number
of steps in a d-dimensional simple jump path from (i, i, . . . , i) to the origin, then

µd(n+ 1) =
1

2
n+ 1. (A.4)

Proof. By the definition of the first moment,

µd(n+ 1) =

∑n+1
k=1 k · td(k, n + 1)

sd(n+ 1)

=

∑n
k=0(k + 1)td(k + 1, n + 1)

sd(n+ 1)
=

∑n
k=0 k

(n
k

)d
+ sd(n+ 1)

sd(n+ 1)
. (A.5)

We complete the proof based on the parity of n. We first assume n is odd. Then,

n
∑

k=0

k

(

n

k

)d

=

⌊n
2
⌋

∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

= n

⌊n
2
⌋

∑

k=0

(

n

k

)d

. (A.6)

Notice that by the symmetry of binomial coefficients,

⌊n
2
⌋

∑

k=0

(

n

k

)d

=

n
∑

k=⌈n
2
⌉

(

n

k

)d

, (A.7)

so

n

⌊n
2
⌋

∑

k=0

(

n

k

)d

=
1

2
n

n
∑

k=0

(

n

k

)d

=
1

2
nsd(n+ 1), (A.8)

and substituting into (A.5) completes the proof in this case.
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Now, we consider n even. A similar analysis as in the previous case works, except we need
to address the term where k = n/2, which is matched with itself:

n
∑

k=0

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

k

(

n

k

)d

+

n
∑

k=n
2
+1

k

(

n

k

)d

=
n

2

(

n

n/2

)d

+

n
2
−1
∑

k=0

[

k

(

n

k

)d

+ (n− k)

(

n

n− k

)d
]

=
n

2

(

n

n/2

)d

+ n

n
2
−1
∑

k=0

(

n

k

)d

. (A.9)

Again, utilizing the symmetry of binomial coefficients,
n
2
−1
∑

k=0

(

n

k

)d

=
n
∑

k=n
2
+1

(

n

k

)d

, (A.10)

so (A.9) is equivalent to

n

2

(

n

n/2

)d

+
n

2

∑

k∈{0,1,...,n}\{n/2}

(

n

k

)d

=
n

2

n
∑

k=0

(

n

k

)d

=
n

2
sd(n+ 1), (A.11)

completing the proof. �

Lemma A.3 (Standard Deviation for Two-Dimensional Simple Jump Paths). If σ2(i) repre-
sents the standard deviation for the number of steps in a simple jump path in d dimensions
from (i, i) to the origin, then

σ2(n + 1) =
n

2
√
2n− 1

. (A.12)

Because the variance in the one-dimensional case is well-known (it is the variance of a
binomial random variable), we provide details only for d = 2. As remarked earlier, the
combinatorial approach taken below does not generalize to higher d.

Proof. We use the simple closed form expression for s2(n+ 1), namely that it equals
(2n
n

)

. By
the definition of the second standardized moment and use of (A.4) where d = 2, we have

σ2(n+ 1)2 =

∑n+1
k=1 k

2
(

n
k−1

)2

(

2n
n

) −
(

1

2
n+ 1

)2

. (A.13)

Shifting the index of summation to start at k = 0 and expanding yields

σ2(n+ 1)2 =

∑n
k=0(k + 1)2

(n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(

2n
n

) +

∑n
k=0 2k

(n
k

)2

(

2n
n

) +

∑n
k=0

(n
k

)2

(

2n
n

) −
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(

n
k

)2

(2n
n

) + 2µ2(n+ 1)−
∑n

k=0

(

n
k

)2

(2n
n

) −
(

1

2
n+ 1

)2

. (A.14)
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Using (3.2) for the mean and recalling that
∑n

k=0

(

n
k

)2
=
(

2n
n

)

, we have

σ2(n+ 1)2 =

∑n
k=0 k

2
(

n
k

)2

(2n
n

) + 2

(

1

2
n+ 1

)

− 1−
(

1

2
n+ 1

)2

=

∑n
k=0 k

2
(n
k

)2

(2n
n

) − n2

4
. (A.15)

Substituting the identity (A.1) from Lemma A.1 into (A.15) gives

σ2(n+ 1)2 =
n2
(2n−2
n−1

)

(2n
n

) − n2

4

=
n3

4n − 2
− n2

4
=

n2

8n − 4
. (A.16)

Taking the square root of both sides of (A.16) gives the desired result. �

We remark on the difficulty in generalizing the above argument to arbitrary d. The problem
is in (A.1). There it was crucial that d = 2, because we then canceled the k2 with the two
factors of k in the denominator. In higher dimensions, we do not have such perfect alignment.
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