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Abstract. A repdigit is a natural number formed by the repetition of a single digit in a
positional number system. This paper addresses the presence of repdigits in the products of
balancing and Lucas-balancing numbers having indices in arithmetic progressions.

1. Introduction

A repdigit is a natural number N expressible in the form N = a
(

10m−1

9

)

for some m ≥ 1
and 1 ≤ a ≤ 9. In addition, if a = 1, then the repdigits are called repunits. Although the
infinitude of repdigits is well-known, their presence in binary recurrence sequences is doubtful.
This motivates researchers to explore all repdigits in such sequences.

Luca [3] showed that F10 = 55 and L5 = 11 are the largest repdigits in the Fibonacci
and Lucas sequences, respectively. Furthermore, Faye and Luca [2] proved that P3 = 5 and
Q2 = 6 are the largest repdigits in the Pell and Pell-Lucas sequences, respectively. Subse-
quently, Marques and Togbé [4] proved that the product of two or more consecutive Fibonacci
numbers can never be a repdigit consisting of at least two digits. In a recent paper [9], the
authors explored repdigits that are balancing numbers, Lucas-balancing numbers, or products
of consecutive balancing or Lucas-balancing numbers. In this paper, we explore repdigits that
are expressible as products of balancing and Lucas-balancing numbers with their indices in
arithmetic progressions.

2. Preliminaries

A natural number n is a balancing number if it satisfies the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some positive integer r, known as the balancer corresponding to n. For each balancing
number B, 8B2 + 1 is a perfect square and C =

√
8B2 + 1 is a Lucas-balancing number. The

sequence of balancing numbers (Bn)n≥0 and Lucas-balancing numbers (Cn)n≥0 satisfy the
binary recurrence xn = 6xn−1 − xn−2, n ≥ 2 with initial terms B0 = 0, B1 = 1, and C0 = 1,
C1 = 3, respectively (see [1, 6, 8, 10]). In this section, we discuss some results concerning
balancing numbers, repdigits, and linear congruences. We will refer back to this section when
necessary.

Theorem 2.1. ([6],Theorem 2.8). If m and n are positive integers, then Bm | Bn if and only

if m | n.
Theorem 2.2. If n is a positive integer, then 3 | Bn if and only if 2 | Bn.

Proof. Modulo 3, the period of the balancing sequence is 4 and Bn ≡ 0 (mod 3) if and only if
n ≡ 0, 2 (mod 4). Thus, 3 | Bn if and only if 2 | n. Because every second term of the balancing
sequence is even, the result follows. �
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Theorem 2.3. If k and n are positive integers, then 2k | Bn if and only if 2k | n.
Proof. Modulo 2k, the period of the balancing sequence is 2k (see [7]) and Bn ≡ 0 (mod 2k)
if and only if n ≡ 0 (mod 2k). Thus, 2k | Bn if and only if 2k | n. �

The following lemma is a basic result on the solvability of linear congruence and can be
found in [5, p. 77].

Lemma 2.4. If a, b, and n are integers, n ≥ 1, and gcd(a, n) = d, then the congruence ax ≡ b
(mod n) is solvable if and only if d | b.

In the following lemma, we present some congruence results regarding repunits.

Lemma 2.5. If m is a positive integer, then

(a) 3 | 10m−1

9
if and only if 3 | m.

(b) 7 | 10m−1

9
if and only if 6 | m.

The proof of this lemma is easy and is omitted.

Lemma 2.6. If m is a positive integer, then 10m−1

9
is periodic modulo 35 with period 6 and

the least nonnegative residues are 1, 11, 6, 26, 16, 21.

3. Main Results

In this section, we prove some theorems ascertaining the absence of repdigits in certain
products of balancing numbers. The balancing numbers appearing in these products are such
that their indices form arithmetic progressions. With similar types of indices, we also prove
that no product of Lucas-balancing numbers is a repdigit.

The first three theorems show that products of balancing numbers with indices in arithmetic
progression cannot be repdigits for a large class of common differences.

Theorem 3.1. If m, n, k, d, and a are natural numbers, m ≥ 2, 1 ≤ a ≤ 9, gcd(d, 3) = 1,
and d 6≡ ±23 (mod 60), then the Diophantine equation

BnBn+dBn+2d · · ·Bn+kd = a
(10m − 1

9

)

(3.1)

has no solution.

Proof. First of all, we will show that (3.1) has no solution if k ≥ 2. Since 3 ∤ d, it follows that
one of n, n+d, and n+2d is divisible by 3 and hence, by Theorem 2.1, B3 = 35 | BnBn+dBn+2d.
Thus,

35 | BnBn+dBn+2d · · ·Bn+kd = a
(10m − 1

9

)

.

If a ∈ {1, 2, 3, 4, 6, 7, 8, 9}, then 35 | 10m−1

9
implies that 5 | 10m−1

9
, which is a contradiction. If

a = 5, then 7 | 10m−1

9
and in view of Lemma 2.5, m ≡ 0 (mod 6), which is possible only if

3 | m. But, 3 | m implies that 3 | 10m−1

9
and hence, 3 | BnBn+dBn+2d · · ·Bn+kd. So 3 | Bn+id

for some 0 ≤ i ≤ k and in view of Theorem 2.2, 2 | Bn+id and consequently, 2 | 5 · 10m−1

9
,

which is a contradiction. Hence, 35 ∤ a · 10m−1

9
for any a ∈ {1, 2, . . . , 9} and so (3.1) has no

solution for k ≥ 2.
Finally, if k = 1, (3.1) reduces to

BnBn+d = a
(10m − 1

9

)

.

For the proof, we need the periodic least residues of the sequence of balancing numbers modulo
4, 5, 7, 8, 9, 11, 20, and 100. We list them in Table 1.
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Row no. m Bn mod m Period

1 4 0, 1, 2, 3 4
2 5 0, 1, 1, 0, 4, 4 6
3 7 0, 1, 6 3
4 8 0, 1, 6, 3, 4, 5, 2, 7 8
5 9 0, 1, 6, 8, 6, 1, 0, 8, 3, 1, 3, 8 12
6 11 0, 1, 6, 2, 6, 1, 0, 10, 5, 9, 5, 10 12
7 20 0, 1, 6, 15, 4, 9, 10, 11, 16, 5, 14, 19 12

0, 1, 6, 35, 4, 89, 30, 91, 16, 5, 14, 79, 60, 81, 26, 75, 24, 69, 90, 71,
8 100 36, 45, 34, 59, 20, 61, 46, 15, 44, 49, 50, 51, 56, 85, 54, 39, 80, 41, 66, 55, 60

64, 29, 10, 31, 76, 25, 74, 19, 40, 21, 86, 95, 84, 9, 70, 11, 96, 65, 94, 99

Table 1

To complete the proof, we discuss eight cases corresponding to the values of d.
Case 1: d ≡ ±1 (mod 12). Modulo 20, the least residues of BnBn+d ∈ {0, 6, 10, 16}, from

which it follows that a /∈ {1, 2, 3, 4, 5, 7, 8, 9}. So, the only possible case is a = 6. We will show
that a = 6 is also not possible. For this, it is sufficient to show that BnBn+d 6≡ 66 (mod 100).
If d ≡ ±1 (mod 12), then d ≡ ±1,±11,±13,±23,±25 (mod 60). For d ≡ k (mod 60), we list
the least residues of BnBn+d (mod 100) in Table 2.

Row no. k BnBn+d mod 100 belongs to

1 ±1 {0, 6, 10, 20, 30, 40, 50, 56, 60, 70, 80, 90}
2 ±11 {0, 10, 20, 30, 36, 40, 50, 60, 70, 80, 86, 90}
3 ±13 {0, 10, 20, 26, 30, 40, 50, 60, 70, 76, 80, 90}
4 ±23 {0, 10, 16, 20, 30, 40, 50, 60, 66, 70, 80, 90}
5 ±25 {0, 10, 20, 30, 40, 46, 50, 60, 70, 80, 90, 96}

Table 2

It follows from the above discussion and Table 1 and Table 2 that (3.1) has no solution if
m ≥ 2, 1 ≤ a ≤ 9, and d ≡ k (mod 60), where k ∈ {1, 11, 13, 25, 35, 47, 49, 59}.

Case 2: d ≡ 2 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 15, 4,
15, 0, 19, from which it is clear that a /∈ {1, 2, 3, 6, 7, 8} or a ∈ {4, 5, 9}.

If a = 4, then BnBn+d ≡ 0 (mod 4). But, the least residues of BnBn+d in a period modulo
4 are 0, 3 and hence, n is even. Since d ≡ 2 (mod 12), by virtue of Theorem 2.3, we have
BnBn+d ≡ 0 (mod 8), i.e., 2 | 10m−1

9
, which is a contradiction.

If a = 5, then BnBn+d ≡ 0 (mod 5) and since the least residues of BnBn+d in a period modulo
5 are 0, 0, 4, it follows that n ≡ 0, 1 (mod 3). If n ≡ 0 (mod 3), then 3 | n and if n ≡ 1
(mod 3), then 3 | (n + d), implying B3 | BnBn+d, which is a contradiction. It can also be
observed the least residues of BnBn+d in a period modulo 7 are 0, 0, 6 and thus, if n ≡ 1
(mod 3), then BnBn+d ≡ 0 (mod 7). Hence, 7 | 10m−1

9
, which is a contradiction.
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If a = 9, then BnBn+d ≡ 0 (mod 9). But, the least residues of BnBn+d in a period modulo 9
are 0, 8, which implies that 2 | n. Thus, 2 | 9 · 10m−1

9
, which is impossible.

Case 3: d ≡ 4 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 9, 0,
5, 4, 5 from which it is clear that a /∈ {1, 2, 3, 5, 6, 7, 8, 9}. So, the only possible case is a = 4.
But, BnBn+d ≡ 4 (mod 20) implies n ≡ 4 (mod 6). Since the least residues of BnBn+d in a
period modulo 11 are 0, 1, 0, 9, 8, 9, it follows if n ≡ 4 (mod 6), then BnBn+d ≡ 8 (mod 11).
But, this implies 10m−1

9
≡ 2 (mod 11), which is a contradiction.

Case 4: d ≡ 5 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 10, 6,
0, 0, 6, 10, 0, 16, 10, 10, 16 from which it is clear that a /∈ {1, 2, 3, 4, 5, 7, 8, 9}. So, the only
possible case is a = 6. But, BnBn+d ≡ 6 (mod 20) implies n ≡ 2, 5 (mod 12). Since the least
residues of BnBn+d in a period modulo 11 are 0, 0, 5, 10, 10, 5, it follows if n ≡ 2, 5 (mod 12),
then BnBn+d ≡ 5 (mod 11), which implies 10m−1

9
≡ 10 (mod 11), which is a contradiction.

Case 5: d ≡ 7 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 16, 10,
10, 16, 0, 10, 6, 0, 0, 6, 10, 0 and therefore, a /∈ {1, 2, 3, 4, 5, 7, 8, 9}. So, the only possible
case is a = 6. But, BnBn+d ≡ 6 (mod 20) implies that n ≡ 7, 10 (mod 12). Since the least
residues of BnBn+d in a period modulo 11 are 0, 5, 10, 10, 5, 0, it follows that, if n ≡ 7, 10
(mod 12), then BnBn+d ≡ 5 (mod 11), which implies that 10m−1

9
≡ 10 (mod 11), which is not

true.

Case 6: d ≡ 8 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 5, 4, 5,
0, 9 and hence, a /∈ {1, 2, 3, 5, 6, 7, 8, 9}. So, the only possible case is a = 4. But, BnBn+d ≡ 4
(mod 20) implies n ≡ 2 (mod 6). Since the least residues of BnBn+d in a period modulo 11
are 0, 9, 8, 9, 0, 1, it follows if n ≡ 2 (mod 6), then BnBn+d ≡ 8 (mod 11), which implies
10m−1

9
≡ 2 (mod 11), which is not possible.

Case 7: d ≡ 10 (mod 12). The least residues of BnBn+d in a period modulo 20 are 0, 19, 0,
15, 4, 15, so a /∈ {1, 2, 3, 6, 7, 8} or a ∈ {4, 5, 9}.

If a = 4, then BnBn+d ≡ 4 (mod 20), which implies n ≡ 4 (mod 6). Since the least residues
of BnBn+d in a period modulo 11 are 0, 10, 0, 2, 3, 2, 0, 10, 0, 2, 3, 2, 0, it follows if n ≡ 4
(mod 6), then BnBn+d ≡ 3 (mod 11), which implies 10m−1

9
≡ 9 (mod 11). This is not true.

If a = 5, then BnBn+d ≡ 0 (mod 5), and since the least residues of BnBn+d in a period
modulo 5 are 0, 4, 0, it follows that n ≡ 0, 2 (mod 3). If n ≡ 0 (mod 3), then 3 | n and if
n ≡ 2 (mod 3), then 3 | (n + d), implying B3 | BnBn+d, which is a contradiction. It can
also be observed that the least residues of BnBn+d in a period modulo 7 are 0, 6, 0 from
which it follows if n ≡ 2 (mod 3), then BnBn+d ≡ 0 (mod 7). Hence, 7 | 10m−1

9
, which is a

contradiction.

If a = 9, then BnBn+d ≡ 0 (mod 9) and since the least residues of BnBn+d in a period modulo
9 are 0, 8, it follows that 2 | n. Thus, 2 | 9 · 10m−1

9
, which is impossible.

It follows from the above discussion that (3.1) has no solution if m ≥ 2, 1 ≤ a ≤ 9, and
d 6≡ ±23(mod 60). This completes the proof. �

Remark. It is clear if m = 1, then the only solution of (3.1) is (n, k, d, a) = (1, 1, 1, 6) i.e.,
B1B2 = 6.
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Theorem 3.2. If m, n, k, d, and a are natural numbers, 1 ≤ a ≤ 9, a 6= 6, and d ≡
±23(mod 60), then the Diophantine equation

BnBn+dBn+2d · · ·Bn+kd = a
(10m − 1

9

)

(3.2)

has no solution.

Proof. If d ≡ ±23(mod 60), then d ≡ ±1 (mod 12). The proof follows from the proof of
Theorem 3.1. �

In Theorems, 3.1 and 3.2, we discussed the existence of repdigits that are products of
balancing numbers with indices in arithmetic progression, and the common differences are not
divisible by 3. In what follows, we discuss the existence of such repdigits where the common
differences are multiples of 3.

Theorem 3.3. If m, n, k, d, and a are natural numbers and 1 ≤ a ≤ 9, then the Diophantine

equation

BnBn+3dBn+6d · · ·Bn+3kd = a
(10m − 1

9

)

(3.3)

has no solution if one of the following condition holds:

(1) 3 | n
(2) d is even

(a) k is odd, a 6∈ {1, 6}
(b) k is even

(i) a 6∈ {1, 6}, n ≡ 1, 2 (mod 6)
(ii) a 6∈ {4, 9}, n ≡ 4 (mod 6)
(iii) a 6= 4, n ≡ 5 (mod 6)

(3) d is odd

(a) k ≡ 0 (mod 4)
(i) a 6∈ {1, 6}, n ≡ 1, 2 (mod 6)
(ii) a 6∈ {4, 9}, n ≡ 4 (mod 6)
(iii) a 6= 4, n ≡ 5 (mod 6)

(b) k ≡ 1 (mod 4), a 6∈ {4, 9}
(c) k ≡ 2 (mod 4)

(i) a 6∈ {4, 9}, n ≡ 1 (mod 6)
(ii) a 6= 4, n ≡ 2 (mod 6)
(iii) a 6∈ {1, 6}, n ≡ 4, 5 (mod 6)

(d) k ≡ 3 (mod 4), a 6∈ {1, 6}
Proof. In view of Theorem 2.1, if 3 | n, then B3 | BnBn+3dBn+6d · · ·Bn+3kd and consequently,

B3 | a
(

10m−1

9

)

. But, while proving Theorem 3.1, we saw no repdigit is a multiple of B3 = 35.

This completes the proof of (1).

Modulo 35, the least residues of Bn are 0, 1, 6, 0, 29, 34 and in view of (3.3),

BnBn+3dBn+6d · · ·Bn+3kd = a
(10m − 1

9

)

≡ 1, 6, 29, 34 (mod 35). (3.4)

In view of Lemma 2.4, a
(

10m−1

9

)

≡ 1, 6, 29, 34 (mod 35) has a solution if and only if a ∈
{1, 2, 3, 4, 6, 8, 9}. Using the least residues of the repunits modulo 35 (see Lemma 2.6) and the
restrictions over d, k, n, and a in (3.4), the other proofs are similar to Theorem 3.1. �

AUGUST 2019 235



THE FIBONACCI QUARTERLY

The following is an immediate consequence of the above results.

Corollary 3.4. If m, n, k, and d are natural numbers and a ∈ {2, 3, 5, 7, 8}, then the

Diophantine equation

BnBn+dBn+2d · · ·Bn+kd = a
(10m − 1

9

)

has no solution.

Next, we discuss the existence of repdigits in the products of Lucas-balancing numbers with
indices in arithmetic progression.

Theorem 3.5. If m, n, k, d, and a are natural numbers, 1 ≤ a ≤ 9, then the Diophantine

equation

CnCn+dCn+2d · · ·Cn+kd = a
(10m − 1

9

)

(3.5)

has no solution.

Proof. Because Lucas-balancing numbers are odd, (3.5) implies a ∈ {1, 3, 5, 7, 9}. It is easy
to see (3.5) has no solution if m = 1, 2. To complete the proof, we need the least residues of
Lucas-balancing numbers and their products modulo 5, 7, and 8. We list them in Table 3.

m Cn mod m CnCn+d · · ·Cn+kd mod m belongs to

5 1, 3, 2, 4, 2, 3 {1, 2, 3, 4}
7 1, 3, 3 {1, 2, 3, 4, 5, 6}
8 1, 3 {1, 3}

Table 3

For m ≥ 3, (3.5) implies that CnCn+dCn+2d · · ·Cn+kd = a
(

10m−1

9

)

≡ 7a (mod 8). A

quick look at the last row of Table 3 implies 7a ≡ 1, 3 (mod 8) so a ∈ {5, 7}. Furthermore,
CnCn+dCn+2d · · ·Cn+kd ≡ 0 (mod a). But, 0 is not a least residue of CnCn+dCn+2d · · ·Cn+kd

modulo 5 or 7 and hence, (3.5) has no solution for m ≥ 3. This completes the proof. �

4. Conclusion

In this work, we showed no product of Lucas-balancing numbers with indices in arithmetic
progression is a repdigit and, as far as balancing numbers are concerned, similar products of
balancing numbers cannot be repdigits in most cases. However, we failed to prove the existence
or nonexistence of repdigits of the form if d 6≡ ±23 (mod 60). We also failed to handle some
cases when d ≡ 0 (mod 3). We leave these as open problems for the interested researchers.
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