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Abstract. The “Choix de Bruxelles” operation replaces a positive integer n by any of the
numbers that can be obtained by halving or doubling a substring of the decimal representation
of n. For example, 16 can become any of 16, 26, 13, 112, 8, or 32. We investigate the properties
of this interesting operation and its iterates.

1. Introduction

Let n be a positive integer with decimal expansion d1d2d3 . . . dk. The “Choix de Bruxelles”
operation replaces n by any of the numbers that can be formed by taking a number s repre-
sented by a substring dpdp+1 . . . dq, with 1 ≤ p ≤ q ≤ k, where the initial digit dp is not zero,
and replacing the substring in situ by the decimal expansion of 2s or (if s is even) by the
decimal expansion of s/2. One may also leave n unchanged (corresponding to choosing the
empty substring).

Because the definition may be confusing at first glance, we give a detailed example. Suppose
n = 20218. By choosing substrings of length 1, we can obtain any of

10218,40218,20118, 20418, 20228, 20214, and 202116(!).

(For the last of these, we replaced 8 by 16 in situ.) Using substrings of length 2 we can obtain

10218 and 40218 again,20428,2029(!),20236,

and using substrings of lengths 0,3,4,5 we obtain

20218; 10118,40418, 20109, 20436; 40428; 10109, and 40436.

It is the possibility of increasing or decreasing the number of digits by one that makes this
operation interesting. Changing 16 to 112, for example, increases the number by a factor of
7. As we see in Theorem 2.3, n may change by a factor ranging from 1

10
to 10. Note that the

operation is symmetric: if n can be changed to m, then m can be changed to n.
The name “Choix de Bruxelles” arose from a combination of several notions: this is a kind

of mathematical game, like “sprouts” [1], sprouts are “choux de Bruxelles”, the operation was
proposed by the first author, who lives in Brussels, and involves making choices.

Our goal is to investigate the properties of this operation, and to study what happens when
it is iterated.

Section 2 studies the range of numbers that can be reached by applying the operation once.
Theorems 2.1 and 2.2 give the largest and smallest numbers that can be obtained from n, and
Theorem 2.3 describes their range.

Section 3 shows that by repeatedly applying the operation, any number not ending with 0
or 5 can be transformed into any other such number, and any number ending in 0 or 5 can
be be transformed into any other number of that form, but the two classes always remain
separate. The final section studies how many steps are needed to reach n from 1, assuming
that n does not end in 0 or 5.
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One could also consider this operator in other bases. However, we did not pursue the binary
version (see sequence A3234651 in [2]) because the operation preserves the binary weight.

Notation. For clarity, we will sometimes use the symbol ∥ to indicate that the digits of two
numbers are to be concatenated. For example, if x = 7 and y = 8, (2x) ∥ y would indicate the
number 148.

2. Numbers That Can Be Reached in One Step.

Table 1 shows the numbers that can be reached from n in one step, for 1 ≤ n ≤ 16. The rows
of this table form sequence A323460 in the OEIS [2].

Table 1. Numbers arising when “Choix de Bruxelles” is applied to the num-
bers 1 to 16.

n Goes to any of n Goes to any of
1 1,2 9 9,18
2 1,2,4 10 5,10,20
3 3,6 11 11,12,21,22
4 2,4,8 12 6,11,12,14,22,24
5 5,10 13 13,16,23,26
6 3,6,12 14 7,12,14,18,24,28
7 7,14 15 15,25,30,110
8 4,8,16 16 8,13,16,26,32, 112

The smallest (M0(n), A323462) and largest (M1(n), A323288) numbers in each row are as
follows:

n ∶ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ⋯
M0(n) ∶ 1 1 3 2 5 3 7 4 9 5 11 6 13 7 15 8 ⋯
M1(n) ∶ 2 4 6 8 10 12 14 16 18 20 22 24 26 28 110 112 ⋯

(2.1)

Theorem 2.1. The largest number M1(n) that can be obtained from

n = d1d2d3 . . . dk (2.2)

by the Choix de Bruxelles operation is 2n, if all di < 5, and otherwise is obtained by doubling

the substring dp . . . dk where dp is the right-most digit ≥ 5.

Proof. If all di < 5, the number of digits will not change during the operation, and so the best
we can do is to double every digit, getting M1(n) = 2n.

If there are digits di ≥ 5, then doubling any substring beginning with such a di will increase
the number of digits by one. The doubled substring will begin with 1 instead of di, and so
should be as far to the right as possible. (e.g., if we double a substring starting at d3 = 7, we get
a number d1d21 . . ., whereas if we double a substring starting at d5 = 6, we get d1d2d3d41 . . .,
which is a larger number since d3 ≥ 5.)

Finally, if dp is the right-most digit ≥ 5, let tq (where p ≤ q ≤ k) denote the result of doubling
just the substring from dp through dq. Then,

tq = d1 . . . dp−1 ∥ 2(dp . . . dq) ∥ dq+1 . . . dk,

and this number is maximized by taking q = k. �

1Six-digit numbers prefixed by A refer to entries in the On-Line Encyclopedia of Integer Sequences [2].
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Theorem 2.2. The smallest number M0(n) that can be obtained from (2.2) by the Choix de

Bruxelles operation is as follows: If there is a substring dr...ds of (2.2) that starts with dr = 1
and ends with an even digit ds, take the string of that form that starts with the left-most 1 and

ends with the right-most even digit, and halve it. Otherwise, if there is any even digit, take

the substring from d1 to the right-most even digit and halve it. In the remaining case, all di
are odd, and M0(n) = n.

The proof uses similar arguments to the proof of Theorem 2.1, and is omitted.
We can use Theorems 2.1 and 2.2 to get precise bounds on the range of numbers produced

by the operation.

Theorem 2.3. The numbers m obtained by applying the Choix de Bruxelles operation to n

lie in the range
n

10
< m < 10n, (2.3)

and there are values of n for which m is arbitrarily close to either bound.

Proof. For the upper bound, by Theorem 2.1 we can assume there is a digit of n that is ≥ 5.
Let d be the right-most such digit, and write n = A ∥ d ∥ B = A10i+d10i−1+B. Let 2d = 10+x,
x ∈ {0,2,4,6,8}. Then

M1(n) = A10i+1 + 10i + x10i−1 + 2B

and M1(n) < 10n follows immediately. Numbers of the form n = 99 . . . 9 with d = 9, i = 1, B = 0
have M1(n) = 99 . . . 918 = 10n − 72, so M1(n)/n = 10 − 72/n, which comes arbitrarily close to
the bound.

For the lower bound, from Theorem 2.1 the only nontrivial case is when there is a substring
B = 1 . . . e, e even, and then n = A10i+j + B 10j + C, M0(n) = A10i+j−1 + B

2
10j + C, which

implies n < 10M0(n). Numbers of the form n = 10t + 10, t ≥ 2, with M0(n) = 10t−1 + 5,
M0(n)/n =

1

10
(1 + 4/10t−1 +⋯) come arbitrarily close to this bound. �

3. Which Numbers Can Be Reached from 1?

If we start with 1 and repeatedly apply the Choix de Bruxelles operation, which numbers
can we reach? From2

1Ð 2Ð 4Ð 8Ð 16Ð 112Ð 56Ð 28Ð 14Ð 12 Ð 6Ð 3 (3.1)

we can reach 3 in 11 steps3, as well as reaching 2,4,8, and 6, and ⋯ Ð 28 Ð 14 Ð 7 and
⋯ Ð 28 Ð 14 Ð 18 Ð 9 give us all the numbers less than 10 except 5. Further experimenting
suggests that 5 and 10 may be impossible to reach. This is true, as we now show.

Let us define an undirected graph G with vertices labeled by the positive integers, where
vertices n and m are joined by an edge if Choix de Bruxelles takes n to m.

Theorem 3.1. The graph G has two connected components, one containing all numbers whose

decimal expansion does not end in 0 or 5, the other containing all numbers that do end in 0
or 5.

Proof. (i) All numbers not ending in 0 or 5 are connected to 1. If not, let n be the smallest
number, not ending in 0 or 5, that cannot be reached from 1. Any number m that is reachable
from n must be larger than n, or else by symmetry m would be a smaller counter-example.
This means that all digits of n are odd, and cannot be 3, 7, or 9 (since by (3.1) etc. they

2We write Ð rather than → in describing these transformations, because the operation is symmetrical.
3Found by Lorenzo Angelini.
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could be reduced to 1). If n has an internal digit 5, we can use 51 Ð 102 Ð 52 Ð 26 to get
a smaller number. So any 5s must appear in a string at the end of n, which contradicts our
assumptions. The only remaining possibility is that n = 11 . . . 11. But these numbers can be
reduced by using 11 Ð 12Ð 6.

(ii) Any number ending in 0 or 5 is connected to 5. This follows from (i), using n0Ð 10Ð 5
and n5Ð n ∥ 10 Ð 10Ð 5.

(iii) The Choix de Bruxelles operations never change a final 0 or 5 into any digit other than
0 or 5. �

4. How Many Steps to Reach n?

Let τ(n) be the minimal number of steps needed to reach n from 1 using the Choix de
Bruxelles operation, or −1 if n cannot be reached from 1. We found the values of τ(n) for
n ≤ 10000 by computer (A323454). The initial values are shown in Table 2.

Table 2. τ(n) = number of steps to reach n from 1, or −1 if n cannot be reached.

n 1 2 3 4 5 6 7 8 9 10 11 12
τ(n) 0 1 11 2 −1 10 9 3 9 −1 10 9

n 13 14 15 16 17 18 19 20 21 22 23 24
τ(n) 5 8 −1 4 7 8 8 −1 10 9 6 8

n 25 26 27 28 29 30 31 32 33 34 35 36
τ(n) −1 5 8 7 9 −1 6 5 10 6 −1 9

We will derive upper and lower bounds on τ(n) for large n. The record high values of τ(n)
that are presently known, and the values of n where they occur, are as follows (see A323463):

n ∶ 1 2 3 99 369 999 1999 9879
τ(n) ∶ 0 1 11 12 13 14 15 16

(4.1)

In particular, the entry τ(n) = 12 for n = 99 means that every number less than 100 and not
ending in 0 or 5 can be reached from 1 in at most 12 steps.

We also need analogous data for the other class of numbers. The minimal numbers of steps
needed to reach 5m from 5 (A323484) are:

5m ∶ 5 10 15 20 25 30 35 40 45 50 55 60 ⋯
steps ∶ 0 1 11 2 11 12 8 3 10 12 9 11 ⋯

(4.2)

and the record high values that are presently known, and the values of 5m where they occur,
are as follows (see A323464):

5m ∶ 5 10 15 30 100 200 400 9875 19995
steps ∶ 0 1 11 12 13 14 15 16 17

(4.3)

In particular, the entry 13 for n = 100 means that every multiple of 5 less than 100 can be
reached from 5 in at most 12 steps, and so all numbers less than 100 can be reached from 1
or 5 in at most 12 steps.

To get an upper bound on τ(n) for larger n, consider a k-digit number n given by (2.2).
We can repeatedly replace the two leading digits by a single digit (by 1 or 5) at the cost of at
most 12 steps. So we can reach 1 or 5 in at most 12(k − 1) steps. Since k = ⌊1 + log10 n⌋, this
takes at most 12 log10 n steps. In particular, τ(n) ≤ 12 log10 n.
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To get a lower bound on τ(n), we note that Theorem 2.3 implies that at least log10 n steps
will be needed to reach n from 1. We can make this more precise by finding R(n), the largest
number that can be reached from 1 in n steps. The values of R(n) can almost be found by
a greedy algorithm. Set r(0) = 1, and, for n > 0, let r(n) be the largest number that can be
obtained by applying Choix de Bruxelles to r(n − 1). That may not be the best strategy, so
at the moment all we can say is that R(n) ≥ r(n). Theorem 2.1 tells us how to calculate r(n),
and the first 20 values are shown in Table 3. We find that r(n + 4) = 8112 ∥ r(n) for n ≥ 10
(this can be seen in the table for 10 ≤ n ≤ 16, and it is clear that the pattern will continue for
ever).

Table 3. Values of r(n).

n r(n) n r(n)
0 1 10 88224
1 2 11 816448
2 4 12 8164416
3 8 13 81644112
4 16 14 811288224
5 112 15 8112816448
6 224 16 81128164416
7 448 17 811281644112
8 4416 18 8112811288224
9 44112 19 81128112816448

Theorem 4.1. R(n), the largest number that can be reached from 1 in n steps, is equal to

r(n) for n ≠ 7, and R(7) = 512.

Proof. By computer calculation, the result is true for n ≤ 16. Suppose n ≥ 17. The candidates
for R(n) are all the numbers that can be obtained by applying Choix de Bruxelles to the
(n − 1)st generation numbers—numbers that can be reached from 1 in n − 1 steps. In view of
Theorem 2.3, we can discard any (n − 1)st generation number that is less than 1

10
r(n). The

collection of surviving candidates forms a repeating pattern of period four, which, starting in
generation 14, are as follows (here i = 1,2,3,⋯ and P denote i copies of the string 8112):

Generation Remaining candidates

10 + 4i P81646, P81652, P81662, P81664, P84112, P88112, P88212, P88222, P88224

11 + 4i P816442, P816444, P816448

12 + 4i P8164416

13 + 4i P81128826, P81128832, P81644112

At each new generation, the largest number is obtained by expanding the final number in each
row (using Theorem 2.3), and the resulting numbers are the r(n), as claimed. �

In summary, we have:

Theorem 4.2. For n ≥ 14,

8.112 10n−6 < R(n) ≤ 8.113 10n−6. (4.4)
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The upper bound in Theorem 4.2 states that, starting at 1, we cannot reach a number
greater than c10n−6 in n steps, where c = 8.113. By solving c10n−6 =m, we see that to reach
m from 1 we require at least n = 6 + log10(m/c) = log10m + 5.09 . . . steps.

By combining this with our earlier result, we have our final theorem.

Theorem 4.3. The number of steps needed to reach n from 1 by the Choix de Bruxelles

operation, assuming n does not end in 0 or 5, is bounded by

log10 n + 5 < τ(n) ≤ 12 log10 n. (4.5)
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