
ON A CURIOUS PROPERTY OF F184

ALAA ALTASSAN AND FLORIAN LUCA

Abstract. We prove that the density of the set N of n such that Fn has no nonzero digit in
its base 10 expansion is zero. We give some heuristics that the set N is finite with the largest
member being n = 184.

1. Introduction

The number

F184 = 127127879743834334146972278486287885163

has all its base 10 digits different than 0. This might not seem strange until one learns that
n = 184 is the largest n ≤ 104 with this property. That is, for each n ∈ (184, 10000], Fn has
at least one digit equal to 0. We offer the following conjecture.

Conjecture 1.1. If n > 184, then Fn has a digit equal to 0 in its base 10 expansion.

Let

N = {n : Fn has only nonzero digits in base 10}.
Although we cannot prove that N is finite, we can at least prove that it is thin. For a positive
real number x, let

N (x) = N ∩ [1, x].

We use the Landau symbols O and o and the Vinogradov symbol ≪, ≫, ≍ with the usual
meaning. Recall that f(x) = O(g(x), f(x) ≪ g(x) and g(x) ≫ f(x) are all equivalent to
|f(x)| < Kg(x), which holds with some constant K for all x > x0, whereas f(x) ≍ g(x) means
that f(x) ≪ g(x) and g(x) ≪ f(x) hold. Further, f(x) = o(g(x)) if f(x)/g(x) → 0 as x → ∞.
We have the following theorem.

Theorem 1.2. The estimate

#N (x) ≪ x1−c

holds with c = 1− log 9/ log 10 = 0.045757 . . ..

In particular, by the Abel summation formula, we have

∑

n∈N

1

n
= O(1).
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2. The Proof of Theorem 1.2

It is well-known that the sequence {Fn}n≥0 is periodic modulo m with some period ρ(m)
(see [1]). That is, the congruence Fn+ρ(m) ≡ Fn (mod m) holds for all n ≥ 0. Further,

ρ(5k) = 4×5k, whereas ρ(2k) = 3×2k−1. Since ρ(lcm[m1,m2]) = lcm[ρ(m1), ρ(m2)], it follows
that

ρ(10k) = 15× 10k−1 for all k ≥ 3.

Lemma 2.1. Let k ≥ 5. For each nonzero residue class a (mod 10k), there are at most 16
values of n modulo ρ(10k) such that Fn ≡ a (mod 10k).

Proof. Assume that there are 17 values of n (mod ρ(10k)) such that Fn ≡ a (mod 10k). Then,
there are at least five of them, 0 ≤ n1 < n2 < · · · < n5 ≤ 15 × 10k−1 − 1, such that ni are in
the same residue class modulo 4 for i = 1, 2, 3, 4, 5. Clearly, n1 > 0 because a is nonzero. It is
well-known that if u < v and u ≡ v (mod 4), then

Fv − Fu = F(v−u)/2L(v+u)/2,

where {Lm}m≥0 is the Lucas companion of the Fibonacci sequence. Applying this with u = n1

and v = ni for i = 2, 3, 4, 5, we get that

Fni
− Fn1

= F(ni−n1)/2L(ni+n1)/2. (2.1)

In (2.1), the left side is a multiple of 10k. Thus, 10k | F(ni−n1)/2L(ni+n1)/2. It is easy to

check that 5 ∤ Lm for any m. Furthermore, 8 ∤ Lm for any m. Thus, 5k | F(ni−n1)/2 and

2k−2 | F(ni−n1)/2. Recall that the index of appearance of the positive integer m in {Fn}n≥0

is the minimal k such that m | Fk. This number k always exists and it is denoted by z(m).
Since z(5k) = 5k and z(2k) = 3 × 2k−2 for k ≥ 3, it follows that 5k | (ni − n1)/2 and
3 × 2k−4 | (ni − n1)/2. Thus, 5k | (ni − n1) and also 3 × 2k−3 | (ni − n1), which show that
lcm[5k, 3×2k−3] = 15×10k−1/4 divides ni−n1. Thus, the only possibilities of ni ≤ 15×10k−1

are

n1 + λ× 15× 10k−1/4

with λ ∈ {1, 2, 3}. Thus, there are at most three such ni and not four of them, which is the
desired contradiction. �

Now, let x be large and let k be a positive integer such that 15× 10k−1 ≤ x. Assume k ≥ 5.
If n ∈ N (x), then it follows that none of the digits in the base 10 expansion of Fn is zero.
In particular, none of its last k digits is zero. Thus, Fn ≡ a (mod 10k), where a belongs to
the set of numbers with exactly k-digits, none of which is zero, which has 9k elements. For
each such a, by Lemma 2.1, the equation Fn ≡ a (mod 10k) has at most 16 solutions modulo
ρ(m) = 15×10k−1. Thus, choosing k maximal with the above property (namely, 15×10k−1 ≤ x
but 15× 10k > x), it follows that the interval [1, x] contains less than 10 multiples of ρ(m), so
there are at most 160 values of n ≤ x such that Fn ≡ a (mod 10k). This shows that

#N (x) ≤ 160× 9k = (160 × 9)
(

10k−1
)1−c

=

(

160× 9

151−c

)

x1−c < 110x1−c,

which is what we wanted to prove.
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3. Heuristics

By the same argument, the counting function of the set of n ≤ x with only nonzero digits in
base 10 is O(x1−c). This can be interpreted by saying that the “expectation” or “probability”
that n has only nonzero digits is O(1/nc). Assuming that a Fibonacci number Fn behaves like
a regular integer with respect to the above property, we then expect that Fn has only nonzero
digits with a frequency of O(1/F c

n). Since Fn ≍ αn/
√
5, where α = (1+

√
5)/2, it follows that

the number of Fibonacci numbers that have only nonzero digits in their base 10 expansion
should be

≪
∑

n≥1

1

F c
n

≪
∑

n≥1

1

(αc)n
≪ 1

αc − 1
.

Strangely enough, 1/(αc − 1) = 44.9171 . . ., and there are exactly 45 known values of Fn that
have only nonzero digits, and these correspond to the following values of n:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28,

29, 31, 33, 35, 37, 39, 42, 43, 53, 54, 55, 56, 57, 58, 78, 80, 85, 87, 97, 125, 184

(we do not count n = 1 because F1 = F2 = 1). Similar observations apply to other bases or
other similar problems, like asking if Fn has only odd digits or only even digits in its base 10
expansion. Computations up to n ≤ 104 revealed that the largest n in this range for which Fn

has only odd digits is n = 22 with F22 = 17711, the largest n in this range for which Fn has
only even digits is n = 6 with Fn = 8, and the largest n for which Fn has only prime digits is
n = 14 for which F14 = 377.
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