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Abstract. We investigate some gibonacci polynomial sums, and extract their implications
to the Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev
families. We also explore the graph-theoretic interpretations of the gibonacci polynomial
sums and the corresponding Jacobsthal versions.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0 [8, 9].

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and
Chebyshev polynomials of both kinds belong to this extended family. They are denoted
by fn(x), ln(x), pn(x), qn(x), Jn(x), jn(x), Vn(x), vn(x), Tn(x), and Un(x), respectively.
Correspondingly, we have the numeric counterparts Fn = fn(1), Ln = ln(1), Pn = pn(1),
Qn = 2qn(1), Jn = Jn(2), and jn = jn(2) [4, 5, 8, 9]. Clearly, Jn(1) = Fn and jn(1) = Ln.

1.1. Bridges Among the Subfamilies. By virtue of the relationships in Table 1, every
ginonacci result has a Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev com-
panion, where i =

√
−1 [5, 8, 9].

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)

Un(x) = Vn+1(2x) 2Tn(x) = vn(2x)

Table 1: Links Among the Subfamilies
In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln and omit

much of the basic algebra.
Finally, let tn denote the nth triangular number n(n+ 1)/2, where n ≥ 1.

2. Gibonacci Sums

With this background, we begin our investigation of four gibonacci sums. Our discourse
hinges on recursive technique [1, 10] and the following gibonacci properties [10], where ∆2 =
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x2 + 4:

f2n = fnln xfn + ln = 2fn+1

l2n −∆2f2
n = 4(−1)n f2

a+b − f2
a−b = f2af2b

l2a+b − l2a−b = ∆2f2af2b f2n + xf2
n = 2fnfn+1

f2n − xf2
n = 2fnfn−1.

Theorem 2.1. Let m be a positive integer. Then,

n
∑

k=1

f2mk2f2mk = f2
2mtn . (2.1)

Proof. Let An and Bn denote the left side and right side of the summation formula, respec-
tively. Then,

Bn −Bn−1 = f2
mn(n+1) − f2

mn(n−1)

= f2
mn2+mn − f2

mn2
−mn

= f2mn2f2mn

= An −An−1.

So An −Bn = An−1 −Bn−1, and hence An −Bn = A1 −B1 = f2
2m − f2

2m = 0. Thus, An = Bn

as desired. �

In particular, we have

n
∑

k=1

f2k2f2k = f2
2tn ;

n
∑

k=1

f4k2f4k = f2
4tn .

It then follows that
n
∑

k=1

F2k2F2k = F 2
2tn [12] and

n
∑

k=1

F4k2F4k = F 2
4tn , respectively.

Theorem 2.2. Let m be a positive integer. Then,

n
∑

k=1

f2mxf2
k

f2mf2k = f2
2mfnfn+1

. (2.2)

Proof. Let An and Bn denote the left side and right side of the formula, respectively. Then,

Bn −Bn−1 = f2
2mfnfn+1

− f2
2mfnfn−1

= f2
mf2n+mxf2

n

− f2
mf2n−mxf2

n

= f2mf2nf2mxf2
n

= An −An−1.

Consequently, An − Bn = An−1 − Bn−1 = A1 − B1 = f2
2mx − f2

2mx = 0. So, An = Bn as
desired. �
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It follows from formula (2.2) that

n
∑

k=1

f2xf2
k

f2f2k = f2
2fnfn+1

;

n
∑

k=1

f4xf2
k

f4f2k = f2
4fnfn+1

.

Consequently,

n
∑

k=1

F2F 2
k

F2F2k
= F 2

2FnFn+1
[12] and

n
∑

k=1

F4F 2
k

F4F2k
= F 2

4FnFn+1
, respectively.

For example,
3

∑

k=1

F4F 2
k

F4F2k
= 2, 149, 991, 424 = F 2

4F3F4
.

The next two theorems establish the Lucas companions of Theorems 2.1 and 2.2.

Theorem 2.3. Let m be a positive integer. Then,

∆2
n
∑

k=1

f2mk2f2mk = l22mtn − 4. (2.3)

Proof. Let An be the left side of the summation formula and Bn its right side. We then have

Bn −Bn−1 = l2mn(n+1) − l2mn(n−1)

= l2mn2+mn − l2mn2
−mn

= ∆2f2mn2f2mn

= An −An−1.

Then An − Bn = An−1 − Bn−1 = A1 − B1 = ∆2f2
2m −

(

l22m − 4
)

= 0. Thus, An = Bn as
expected. �

Because l2mtn ends in 2 [10], the right side does not contain a constant term, which is
consistent with the left side.

In particular, formula (2.3) implies

5

n
∑

k=1

F2mk2F2mk = L2
2mtn − 4.

Consequently, L2
2mtn ≡ 4 (mod 5).

Theorem 2.4. Let m be a positive integer. Then,

∆2
n
∑

k=1

f2mxf2
k

f2mf2k = l22mfnfn+1
− 4. (2.4)

Proof. Let An denote the left side of the formula and Bn its right side. Then,

Bn −Bn−1 = l22mfnfn+1
− l22mfnfn−1

= l2mf2n+mxf2
n

− l2mf2n−mxf2
n

= ∆2f2mf2nf2mxf2
n

= An −An−1.

NOVEMBER 2019 305



THE FIBONACCI QUARTERLY

So An − Bn = An−1 − Bn−1 = A1 − B1 = ∆2f2
2mx −

(

l22mx − 4
)

= 0. Thus, An = Bn as
desired. �

It follows by Theorem 2.4 that

5

n
∑

k=1

F2mF 2
k

F2mF2k
= L2

2mFnFn+1
− 4.

2.1. Graph-Theoretic Interpretations. Theorems 2.1 through 2.4 can be interpreted using
graph-theoretic tools. To this end, consider the weighted digraph D1 with vertices v1 and v2
in Figure 1 [7]. It follows by induction

Figure 1. Fibonacci Digraph D1

from its weighted adjacency matrix Q =

[

x 1
1 0

]

that

Qn =

[

fn+1 fn
fn fn−1

]

,

where n ≥ 1 [7].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The following theorem provides a powerful tool for computing the sum of the weights of
walks of length n from vi to vj [7].

Theorem 2.5. Let A be the weighted adjacency matrix of a weighted and connected digraph

with vertices v1, v2, . . . , vk. Then the ijth entry of the matrix An gives the sum of the weights

of all walks of length n from vi to vj , where n ≥ 1.

The next result follows from this theorem.

Corollary 2.6. The ijth entry of Qn gives the sum of the weights of all walks of length n
from vi to vj in the weighted digraph D1, where 1 ≤ i, j ≤ n.
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Consequently, the sum of the weights of all closed walks of length n originating at v1 is
fn+1, and that of closed walks of length n originating at v2 is fn−1. So, the sum of the weights
of all closed walks of length n is fn+1 + fn−1 = ln.

With this background, we are ready for the interpretations.

Formula (2.1): Let ak and bk denote the sums of the weights of closed walks of lengths 2mk2−1
and 2mk − 1 originating at v1, respectively. Then,

n
∑

k=1

akbk =

n
∑

k=1

f2mk2f2mk

= f2
2mtn

=

(

sum of the weights of closed walks of
length 2mtn − 1 originating at v1

)2

.

For example, when m = 1 and n = 3, we have

n
∑

k=1

akbk = f2
2 + f8f4 + f18f6

= x22 + 20x20 + 172x18 + 832x16 + 2486x14 + 4744x12

+ 5776x10 + 4352x8 + 1897x6 + 420x4 + 36x2

= f2
3·4,

as expected.
Formula (2.3): Let ck denote the sum of the weights of closed walks of length f2mk2−1 and dk
that of those of length f2mk−1 originating at v1. Then,

∆2
n
∑

k=1

ckdk = ∆2
n
∑

k=1

f2mk2f2mk

= l22mtn − 4

=

(

sum of the weights of closed walks
of length 2mtn originating at v1

)2

− 4.

Formulas (2.2) and (2.4) can be interpreted similarly.

2.2. Pell Implications. Because pn(x) = fn(2x) and qn(x) = ln(2x), it follows from Theo-
rems 2.1 through 2.4 that

n
∑

k=1

p2mk2p2mk = p22mtn ;

n
∑

k=1

p2mxf2
k

p2mf2k = p22mfnfn+1
;

4(x2 + 1)

n
∑

k=1

p2mk2p2mk = q22mtn − 4;

4(x2 + 1)

n
∑

k=1

p2mxf2
k

p2mf2k = q22mfnfn+1
− 4.
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Consequently, we have
n
∑

k=1

P2mk2P2mk = P 2
2mtn ;

n
∑

k=1

P2mF 2
k

P2mF2k
= P 2

2mFnFn+1
;

2
n
∑

k=1

P2mk2P2mk = Q2
2mtn − 1;

2
n
∑

k=1

P2mF 2
k

P2mF2k
= Q2

2mFnFn+1
− 1.

As an example, suppose we let m = 2 and n = 3. Then,

2
3

∑

k=1

P4F 2
k

P4F2k
= 590, 436, 102, 659, 356, 800

= Q2
4F3F4

− 1,

as expected.

3. Jacobsthal Implications

It follows by the relationships Jn(x) = x(n−1)/2fn(1/
√
x) and jn(x) = xn/2ln(1/

√
x) that

Theorems 2.1 through 2.4 have Jacobsthal consequences as well:
n
∑

k=1

xm(n−k)(n+k+1)J2mk2(x)J2mk(x) = J2
2mtn(x); (3.1)

n
∑

k=1

x2m(fnfn+1−fkfk+1)J2mxf2
k

(x)J2mf2k (x) = J2
2mfnfn+1

(x); (3.2)

(4x+ 1)
n
∑

k=1

xm(n−k)(n+k+1)J2mk2(x)J2mk(x) = j22mtn(x)− 4x2mtn ; (3.3)

(4x+ 1)
n
∑

k=1

x2m(fnfn+1−fkfk+1)J2mxf2
k

(x)J2mf2k (x) = j22mfnfn+1
(x)− 4x2mfnfn+1 . (3.4)

The proofs are straightforward. In the interest of brevity, we will confirm formulas (3.3)
and (3.4) only, and omit the other two.

Proof of Formula (3.3): Replace x with 1/
√
x in Formula (2.3). Multiplying the resulting

equation by xmn(n+1) yields

(4x+ 1)
n
∑

k=1

xm(n−k)(n+k+1)
[

x(2mk2−1)/2f2mk2

] [

x(2mk−1)/2f2mk

]

=
[

xmn(n+1)/2lmn(n+1

]2
− 4xmn(n+1)

(4x+ 1)

n
∑

k=1

xm(n−k)(n+k+1)J2mk2(x)J2mk(x) = j22mtn(x)− 4x2mtn ,
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where gn = gn(1/
√
x).

Proof of Formula (3.4): Replace x with u = 1/
√
x in formula (2.4). Multiply the resulting

equation by x2mfnfn+1 . We then obtain

(4x+ 1)

n
∑

k=1

x2m(fnfn+1−fkfk+1)
[

x(2mxf2
k
−1)/2f2mxf2

k

(u)
] [

x(2mf2k−1)/2f2mf2k(u)
]

=
[

x(2mfnfn+1)/2l2mfnfn+1
(u)

]2
− 4x2mfnfn+1

(4x+ 1)
n
∑

k=1

x2m(fnfn+1−fkfk+1)J2mxf2
k

(x)J2mf2k (x) = j22mfnfn+1
(x)− 4x2mfnfn+1 .

3.1. Graph-Theoretic Interpretations. Next, we interpret formulas (3.1) and (3.2) using
the weighted digraph D2 in Figure 2 with vertices v1 and v2. Its weighted adjacency matrix

M =

[

1 x
1 0

]

yields

Mn =

[

Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

.

Figure 2. Jacobsthal Digraph D2

So, the sum of the closed walks of length n from v1 to itself is Jn+1(x), and that from v2
to itself is xJn−1(x). Consequently, the sum of the weights of all closed walks of length n is
Jn+1(x) + xJn−1(x) = jn(x) [10].

We are now ready for the interpretations.

Formula (3.1): Let ak and bk denote the sums of the weights of closed walks of lengths 2mk2−1
and 2mk − 1 originating at v1, respectively. Then,

n
∑

k=1

xm(n−k)(n+k+1)akbk =
n
∑

k=1

xm(n−k)(n+k+1)J2mk2(x)J2mk(x)

= J2
2mtn(x)

=

(

sum of the weights of closed walks
of length 2mtn − 1 originating at v1

)2

.
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Formula (3.2): Let ck be the sum of the weights of closed walks of length f2mxf2
k
−1, and dk

that of those of length f2mf2k−1, all originating at v1. Then,

n
∑

k=1

x2m(fnfn+1−fkfk+1)ckdk =

n
∑

k=1

x2m(fnfn+1−fkfk+1)J2mxf2
k

(x)J2mf2k (x)

= J2
2mfnfn+1

(x)

=

(

sum of the weights of closed walks of
length 2mfnfn+1 − 1 originating at v1

)2

.

The interpretations of formulas (3.3) and (3.4) follow similarly.

3.2. Some Special Cases. It follows from formula (3.1) that
n
∑

k=1

2(n−k)(n+k+1)J2k2J2k = J2
2tn .

For example,
4

∑

k=1

2(4−k)(5+k)J2k2J2k = 122, 167, 725, 625 = J2
4·5.

Formula (3.2) implies that
n
∑

k=1

4fnfn+1−fkfk+1J2xf2
k

J2f2k = J2
2fnfn+1

.

Consequently,
n
∑

k=1

4FnFn+1−FkFk+1J2F 2
k

J2F2k
= J2

2FnFn+1
.

For example,

4
∑

k=1

4F4F5−FkFk+1J2F 2
k

J2F2k
= 128, 102, 389, 162, 151, 481 = 357, 913, 9412 = J2

2F4F5
.

It also follows from formula (3.2) that
n
∑

k=1

4m(PnPn+1−PkPk+1)J4mP 2
k

J2mP2k
= J2

2mPnPn+1
.

As an example,

2
∑

k=1

4P2P3−PkPk+1J4P 2
k

J2P2k
= 122, 167, 725, 625 = J2

2P2P3
.

From formula (3.3), we get

9
n
∑

k=1

2(n−k)(n+k+1)J2k2J2k = j22tn − 4tn+1. (3.5)

For example,

9

n
∑

k=1

2(4−k)(5+k)J2k2J2k = 1, 099, 509, 530, 625 = j22t4 − 4t4+1.
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Formula (3.5) has an interesting byproduct:

j22tn ≡

{

7 (mod 9) if n ≡ 1 (mod 3)

4 (mod 9) otherwise.

It follows from formula (3.4) that

9
n
∑

k=1

4FnFn+1−FkFk+1J2F 2
k

J2F2k
= j22FnFn+1

− 4FnFn+1+1.

For example,

9
4

∑

k=1

4F4F5−FkFk+1J2F 2
k

J2F2k
= 1, 152, 921, 502, 459, 363, 329 = j22F4F5

− 4F4F5+1.

It follows from equations (3.1) and (3.3), and (3.2) and (3.4) that

(4x+ 1)J2
mn(n+1)(x) = j22mtn (x)− 4x2mtn ; (3.6)

(4x+ 1)J2
2mfnfn+1

(x) = j22mfnfn+1
(x)− 4x2mfnfn+1 , (3.7)

respectively.
Let λ = tn or FnFn+1. It then follows from equations (3.6) and (3.7) that

9J2
2λ = j22λ − 4λ+1; (3.8)

9J2
4λ = j24λ − 42λ+1, (3.9)

respectively.
For example,

j22t4 − 4 · 4t4 = 1,099,509,530,625 = 9J2
2t4 ;

j24t3 − 4 · 42t3 = 281,474,943,156,225 = 9J2
4t3

;
j22F4F5

− 4 · 4F4F5 = 1,152,921,502,459,363,329 = 9J2
2F4F5

;

j24F3F4
− 4 · 42F3F4 = 281,474,943,156,225 = 9J2

4F3F4
.

Because J2n = Jnjn [10], equations (3.8) and (3.9) imply that

j42λ = j24λ + 4λ+1j22λ − 42λ+1.

In addition, they yield two interesting congruences:

J2
2λ + j22λ ≡

{

6 (mod 10) if λ is odd

4 (mod 10) otherwise;

J2
4λ + j24λ ≡ 4 (mod 10).

For instance, when n = 3, λ = 6. Then J4λ ≡ 5 (mod 10) and j4λ ≡ 7 (mod 10); so
J2
24 + j224 ≡ 4 (mod 10).
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4. Vieta and Chebyshev Implications

Finally, it follows by the relationships in Table 1 that formulas (2.1) through (2.4) also have
Vieta and Chebyshev companions:

n
∑

k=1

(−1)m(n−k)(n+k+1)V2mk2(x)V2mk(x) = V 2
2mtn(x);

n
∑

k=1

V2mxf2
k

(x)V2mf2k (x) = V 2
2mfnfn+1

(x);

(x2 − 4)

n
∑

k=1

(−1)m(n−k)(n+k+1)V2mk2(x)V2mk(x) = v22mtn(x)− 4;

(x2 − 4)

n
∑

k=1

V2mxf2
k

(x)V2mf2k (x) = v22mfnfn+1
(x)− 4.

In the interest of brevity, we omit their confirmations.
The Chebyshev counterparts now follow by the relationships Un(x) = Vn+1(2x) and 2Tn(x) =

vn(2x).
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