
TRIANGULAR-LIKE NUMBERS THAT ARE TRIANGULAR

GOPAL KRISHNA PANDA AND SUSHREE SANGEETA PRADHAN

Abstract. A balancing-like sequence is a recurrence sequence satisfying the recurrence re-
lation xn+1 = Axn − xn−1 with initial terms x0 = 0 and x1 = 1 and A > 2 is a positive
integer. For any given A, the nth triangular-like number is defined as τn(A) =

xn·x
n+1

A
.

All the triangular-like numbers corresponding to the balancing-like sequence with A = 4 are
triangular numbers. However, no other balancing-like sequence enjoys this property.

1. Introduction

A balancing number B is a natural number such that the equation 1 + 2 + · · ·+ (B − 1) =
(B + 1) + · · · + (B + R) holds for some natural number R, called the balancer corresponding
to B [2]. If B is a balancing number, then 8B2 + 1 is a perfect square and its positive square
root is called a Lucas-balancing number. The nth balancing number is denoted by Bn, and
the balancing sequence satisfies the binary recurrence Bn+1 = 6Bn − Bn−1 with initial terms
B0 = 0 and B1 = 1. Similarly, the nth Lucas-balancing number is denoted by Cn, and the
Lucas-balancing sequence satisfies Cn+1 = 6Cn − Cn−1 with C0 = 1 and C1 = 3 [14].

Panda and Ray [9], with a minor modification to the definition of balancing numbers,
introduced cobalancing numbers. They call a natural number b, a cobalancing number if
1 + 2 + · · · + b = (b + 1) + · · · + (b + r) for some natural number r, which they call the
cobalancer corresponding to b. They proved that a nonnegative integer b is a cobalancing
number if and only if 8b2 +8b+1 is a perfect square. The nth cobalancing number is denoted
by bn and the cobalancing sequence satisfies the binary recurrence bn+1 = 6bn − bn−1 +2 with
initial terms b0 = b1 = 0.

The concept of balancing numbers was further generalized by Panda and Panda [7] with the
introduction of almost balancing numbers. They call a natural number n an almost balancing
number if |{1 + 2 + · · · + (n − 1)} − {(n + 1) + · · · + (n + r)}| = 1 for some natural number
r. They proved that n is an almost balancing number if either 8n2 + 9 or 8n2 − 7 is a perfect
square. If 8n2 + 9 is a perfect square, then they call n an almost balancing number of the
first kind, and if 8n2 − 7 is a perfect square, then they call n an almost balancing number
of the second kind. They further proved that the almost balancing numbers of the first kind
are three times the respective balancing numbers, whereas the almost balancing numbers of
the second kind are partitioned into two classes, and the numbers in these two classes are
respectively Bn+1 − 2Bn and 2Bn+1 −Bn, n = 0, 1, 2, . . .

Several generalizations and variations of balancing numbers are available in the literature
[1, 3, 4, 9, 5, 7, 12, 13, 16]. Panda and Rout [11] generalized balancing numbers by replacing
6, appearing on the right side of their recurrence relation, by an arbitrary positive integer
A > 2. For A > 2, they studied recurrence sequences {xn} defined by xn+1 = Axn−xn−1 with
initial terms x0 = 0 and x1 = 1, which are subsequently known as balancing-like sequences
[15]. In this paper, we denote this sequence by BL(A,−1). Panda and Rout [11] proved that

if x is a balancing-like number with respect to a given A, then Dx2 +1, where D = A2
−4
4 , is a

perfect rational square (a perfect integral square only if A is even) and call its square root a
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Lucas-balancing-like number. The Lucas-balancing-like sequence corresponding to BL(A,−1)
is denoted by {yn} and it satisfies a recurrence relation identical with that of balancing-like
numbers with initial terms y0 = 1 and y1 =

A

2 .
In a recent paper, Panda and Pradhan [8] introduced triangular-like numbers corresponding

to a given balancing-like sequence as the product of any two consecutive terms of the sequence
divided by A. The nth triangular-like number corresponding to the sequence BL(A,−1) is
xn·xn+1

A
. It is easy to see that the sequence of natural numbers satisfies the binary recurrence

xn+1 = 2xn − xn−1, x0 = 0, and x1 = 1, hence the balancing-like sequences generalize the
sequence of natural numbers. The definition of nth triangular-like number is the same as
that of nth triangular number when A = 2. In this paper, we explore all the balancing-like
sequences with the property that all their triangular-like numbers are triangular numbers.

It is well-known that a natural number T is a triangular number if 8T + 1 is a perfect
square. Panda and Pradhan [8] proved that a natural number τ is a triangular-like number
corresponding to BL(A,−1) if both (A2+2A)τ +1 and (A2− 2A)τ +1 are perfect squares. If
A = 2, observe that the second condition becomes trivial. It can be verified that if A > 2, then
fulfillment of merely one of the two conditions is not sufficient for τ to become a triangular-like
number of BL(A,−1)

2. Preliminaries

In this section, we recall certain results on balancing sequence, cobalancing sequence, al-
most balancing sequence, balancing-like sequence, Pell sequence, and associated Pell sequence.
These results are essential for the development of the main results of this paper. We shall
keep referring back to this section whenever necessary with or without further reference.

The Pell sequence is defined by means of a second order recurrence relation Pn+1 = 2Pn +
Pn−1, with initial terms P0 = 0 and P1 = 1, whereas the associated Pell sequence is defined
recursively as Qn+1 = 2Qn +Qn−1, with initial terms Q0 = 1 and Q1 = 1.

Lemma 2.1. For any natural number n, the following hold:

(a) b2n = P2nQ2n−1 and b2n+1 = P2nQ2n+1.

(b) P2n = 2Bn and Q2n+1 = Bn +Bn+1.

(c) xn−1 · xn+1 = x2n − 1.
(d) x1 + x3 + · · · + x2n−1 = x2n.

(e) x2 + x4 + · · · + x2n = xn · xn+1.

(f) x1 + x2 + · · · + x2n−1 = xn · (xn + xn−1).
(g) x1 + x2 + · · · + x2n = xn · (xn + xn+1).

The proofs of (a) and (b) are available in [10]. For the proofs of (c), (d), and (e), see [6].
(f) and (g) are direct consequences of (d) and (e), respectively.

3. Main Results

For a fixed positive integer A > 2, we denote the nth triangular-like number xn·xn+1

A
of

this sequence by τn(A). Also, we denote the nth triangular number n(n+1)
2 by Tn. The main

objective of this section is to prove that BL(4,−1) is the only balancing-like sequence such
that all its triangular-like numbers are triangular numbers.

For an arbitrary positive integer A > 2, the terms of BL(A,−1) are x1 = 1, x2 = A,
x3 = A2 − 1, x4 = A3 − 2A, . . . and accordingly, the triangular-like numbers of this sequence
are τ1(A) = 1, τ2(A) = A2−1, τ3(A) = (A2−2)(A2−1), . . .. The first triangular-like number
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τ1(A) = 1 is also a triangular number for each A. Next, we discuss the condition under which
the second triangular-like number τ2(A) is a triangular number.

Theorem 3.1. τ2(A) is a triangular number if and only if A is an almost balancing number

of the second kind. In particular, A = Bn+1 − 2Bn or A = 2Bn+1 −Bn for some nonnegative

integer n.

Proof. τ2(A) = A2−1 is a triangular number if and only if 8(A2−1)+1 = 8A2−7 is a perfect
square and hence, A is an almost balancing number of the second kind ([7], p. 150). Thus,
A = Bn+1 − 2Bn or A = 2Bn+1 −Bn for some nonnegative integer n. �

Because our focus is on balancing-like sequences with the property that all their triangular-
like numbers are triangular numbers, it is natural to examine what makes τ3(A) a triangular
number. The following theorem establishes the association of such A with cobalancing num-
bers.

Theorem 3.2. τ3(A) is a triangular number if and only if 8A4−24A2+17 is a perfect square

or equivalently, A2 − 2 is a cobalancing number.

Proof. A natural number N is a triangular number if and only if 8N + 1 is a perfect square
and consequently, τ3(A) is a triangular number if and only if

8τ3(A) + 1 = 8(A2 − 2)(A2 − 1) + 1 = 8A4 − 24A2 + 17

is a perfect square. A nonnegative integer b is a cobalancing number if and only if 8b2+8b+1
is a perfect square [9]. Because 8A4 − 24A2 + 17 = 8(A2 − 2)2 +8(A2 − 2) + 1, the conclusion
of the theorem follows. �

One can check that (A,B) = (1, 1), (2, 7), (4, 41) satisfies the Diophantine equation 8A4 −
24A2+17 = B2. We tried to solve 8A4−24A2+17 = B2, but did not succeed. We did not find
any more solutions in the range 1 ≤ A ≤ 106. Because we restrict A to be greater than 2, the
only feasible solution among the three available solutions is (A,B) = (4, 41), which indicates
that if A = 4, then τ3(A) is triangular. However, we are interested in balancing-like sequences
with the property that all their triangular-like numbers are triangular numbers. Hence, it is a
better idea to look for those A for which both τ2(A) and τ3(A) are triangular numbers. The
following theorem characterizes such A.

Theorem 3.3. For A > 2, both τ2(A) and τ3(A) are triangular numbers if and only if A = 4.

Proof. It is easy to see that if A = 4, then τ2(A) and τ3(A) are triangular numbers. Conversely,
if τ2(A) is a triangular number, then, in view of Theorem 3.1, A is an almost balancing number
of the second kind and which are of the form Bn+1− 2Bn, 2Bn+1−Bn, for n = 0, 1, 2, . . .. For
n = 1, 2, . . ., let

A2n−1 = Bn − 2Bn−1, A2n = 2Bn −Bn−1.

We need to look for triangular numbers in the sequence {τ3(An)}. The requirement A > 2
disqualifies A1 = 1 and A2 = 2 from our search. A3 = 4 and also τ3(4) = (42−2)(42−1) = 210
is a triangular number. However, A4 = 11 and τ3(11) = (112 − 2)(112 − 1) = 14280 is not a
triangular number.

In view of Theorem 3.2, τ3(A) is a triangular number if and only if A2 − 2 is a cobalancing
number, such as A2 − 2 = b or A2 = b + 2. We will show that if n > 3 (and hence An > 4),
then

A2
n−1 < bn + 2 < A2

n, (3.1)
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where bn is the nth cobalancing number. We divide the proof into two parts. First, we show
that

A2
2n−1 < b2n + 2 < A2

2n (3.2)

for n ≥ 2. By virtue of Lemma 2.1(a),

b2n = P2nQ2n−1 = 2Bn(Bn +Bn−1) = 2B2
n + 2BnBn−1,

and consequently,

A2
2n − (b2n + 2) = 2B2

n +B2
n−1 − 6BnBn−1 − 2 = 2Bn(Bn − 3Bn−1) +B2

n−1 − 2.

Because Bn = 6Bn−1 −Bn−2 > 5Bn−1, it follows that

A2
2n − (b2n + 2) > 4BnBn−1 +B2

n−1 − 2 > 0 (3.3)

for n ≥ 2. Furthermore,

(b2n + 2)−A2
2n−1 = B2

n − 4B2
n−1 + 6BnBn−1 + 2 > 21B2

n−1 + 6BnBn−1 + 2 > 0 (3.4)

for n ≥ 1. Now (3.2) follows from (3.3) and (3.4).
We next show that

A2
2n < b2n+1 + 2 < A2

2n+1 (3.5)

for n ≥ 2. In view of Lemma 2.1(a) and the recurrence relation for balancing numbers,

b2n+1 = P2nQ2n+1 = 2Bn(Bn +Bn+1) = 2B2
n + 2BnBn+1 = 14B2

n − 2BnBn−1,

and this implies

A2
2n+1− (b2n+1+2) = (4Bn−Bn−1)

2− (b2n+1+2) = 2Bn(Bn− 3Bn−1)+B2
n−1− 2 > 0 (3.6)

for n ≥ 2. Lastly,

(b2n+1 + 2)−A2
2n = 10B2

n −B2
n−1 + 2BnBn−1 + 2 > 0 (3.7)

for n ≥ 1 and (3.5) follows from (3.6) and (3.7). From (3.2) and (3.5), it follows that bn +2 is
not a perfect square and hence, τ3(An) is also not a triangular number if n > 3; the only value
of n for which τ3(An) is a triangular number is n = 3, in which case An = 4. This completes
the proof. �

The conclusion of Theorem 3.3 is that if A > 4, then τ2(A) and τ3(A) cannot be simulta-
neously triangular numbers. This suggests that if A > 4, then all the triangular-like numbers
corresponding to BL(A,−1) cannot be triangular numbers. However, the case A = 4 is an
exception as will be seen in the following theorem.

Theorem 3.4. All the triangular-like numbers corresponding to BL(4,−1) are triangular

numbers.

Proof. It is well-known that a natural number T is a triangular number if and only if 8T +1 is
a perfect square. The nth triangular-like number of the sequence BL(4,−1) is τn(4) =

xn·xn+1

4 .
Using the Lemma 2.1 (c) and (e), we get

8τn(4) + 1 = 2xn · xn+1 + 1 = 2xn · xn+1 + x2n − xn−1 · xn+1

= 2xn · xn+1 + x2n − (4xn − xn+1)xn+1 = (xn+1 − xn)
2.

Because n is an arbitrary positive integer, it follows that τn(4) is a triangular number for each
positive integer n. �
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In the previous theorem, we proved that τn(4) is a triangular number for each positive
integer n. But, it is interesting to see which triangular number τn(4) represents. The following
theorem answers this question.

Theorem 3.5. The nth triangular-like number corresponding to BL(4,−1) is the (
∑

n

i=1 xi)th

triangular number. In other words, τn(4) =
(
∑

n

i=1
xi)(

∑
n

i=1
xi+1)

2 .

Proof. We divide the proof into two parts. First, let n be even, for example n = 2k. Then,

τn(4) = τ2k(4) =
x2k · x2k+1

4
.

By virtue of Lemma 2.1 (d) and (e), x2k = xk(xk+1 − xk−1) and x2k+1 = x2
k+1 − x2

k
. Hence,

we can write τ2k(4) as

τ2k(4) =
xk(xk+1 − xk−1)(x

2
k+1 − x2

k
)

4

and using the recurrence relation xk+1 = 4xk − xk−1 and Lemma 2.1 (c), we get

τ2k(4) =
xk(2xk − xk−1)(x

2
k+1 − x2

k
)

2
=

xk(xk+1 + xk)(2xkxk+1 − 3x2
k
+ xkxk−1 + 1)

2

=
xk(xk+1 + xk)(xkxk+1 + x2

k
+ 1)

2
= Tuk

,

where uk = xk(xk+1 + xk). If n is odd, for example n = 2k − 1, then

τn(4) = τ2k−1(4) =
x2k−1 · x2k

4
.

Once again using Lemma 2.1 (d) and (e), we can write τ2k−1(4) as

τ2k−1(4) =
xk(xk+1 − xk−1)(x

2
k
− x2

k−1)

4
.

Now, using the recurrence relation xk+1 = 4xk − xk−1 and Lemma 2.1 (c), we get

τ2k−1(4) =
xk(2xk − xk−1)(x

2
k
− x2

k−1)

2
=

xk(xk + xk−1)(2x
2
k
− 3xkxk−1 + x2

k−1)

2

=
xk(xk+1 + xk)(2x

2
k
− xk−1xk+1 + xkxk−1)

2

=
xk(xk + xk−1)(xkxk−1 + x2

k
+ 1)

2
= Tvk

,

where vk = xk(xk + xk−1). By Lemma 2.1 (g), uk =
∑2k

i=1 xi, and by 2.1 (f), vk =
∑2k−1

i=1 xi;
the conclusion of the theorem follows. �

In the last theorem, we showed that all the triangular-like numbers corresponding to
BL(4,−1) are triangular numbers. Instead of calculating these triangular numbers using
the terms of the sequence BL(4,−1), it is possible to calculate them by means of a recur-
rence relation for the indices of these triangular numbers. In view of ([8],Theorem 3.1), these
indices determine a sequence that is nothing but the sequence of cobalancing-like numbers
corresponding to BL(4,−1) divided by 2.

Theorem 3.6. If τn(4) = Twn
for n = 0, 1, 2, . . ., then the sequence {wn} satisfies the nonho-

mogeneous binary recurrence wn+1 = 4wn − wn−1 + 1 with initial terms w0 = 0, and w1 = 1.
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Proof. In view of Theorem 3.5, wn =
∑

n

i=1 xi. Thus, w0 = 0 and w1 = 1, and

4wn − wn−1 + 1 = 4

n∑

i=1

xi −

n−1∑

i=1

xi + 1 =

n∑

i=1

(4xi − xi−1) + 1 = 1 +

n+1∑

i=2

xi =

n+1∑

i=1

xi = wn+1.

This completes the proof. �

The sequence of triangular numbers can be calculated in two ways. The nth triangular
number is defined as the product of the nth and (n + 1)st natural numbers divided by the
second natural number, and this has motivated the authors in [8] to define the triangular-like
numbers corresponding to BL(A,−1). Coincidentally, the nth triangular number is also equal
to the sum of the first n natural numbers. But, in the case of BL(A,−1), the sum of the first
n terms is not equal to the nth triangular-like number τn(A). The following theorem tells us
about the sequence, the sum of whose first n terms is equal to τn(A).

Theorem 3.7. If A > 2 is any given positive integer, then the nth triangular-like number

corresponding to the sequence BL(A,−1) is equal to the sum of the first n terms of the sequence

BL(A2 − 2,−1).

Proof. By a proof similar to Theorem 3.6, it is easy to see that the partial sum sequence {sn}
of BL(A2 − 2,−1) satisfies the recurrence relation

sn+1 = (A2 − 2)sn − sn−1 + 1; s0 = 0, s1 = 1. (3.8)

Now, going back to the sequence BL(A,−1),

(A2 − 2)τn(A)− τn−1(A) + 1 =
(A2 − 2)xn · xn+1 − xn−1 · xn +A

A
.

Using the recurrence relation xn+1 = Axn − xn−1 and Lemma 2.1 (c), we get

(A2 − 2)τn(A)− τn−1(A) + 1 =
A(xn+1 + xn−1)xn+1 − 2xn · xn+1 − (Axn − xn+1)xn +A

A

=
Ax2n+1 − xn · xn+1

A
=

xn+1 · xn+2

A
= τn+1(A). (3.9)

For each A, τ0(A) = 0 and τ1(A) = 1. It is clear from (3.8) and (3.9) that the sequences {sn}
and {τn(A)} satisfy identical recurrence relations with identical initial terms. Hence, the two
sequences are identical and the proof ends. �

4. Conclusion

In Theorem 3.3, we proved that for A > 2, the second and third triangular-like numbers
τ2(A) and τ3(A) are triangular if and only if A = 4. To prove this, we first noticed that τ2(A)
is a triangular number if and only if A is an almost balancing number of the second kind.
In this process, we do not take into consideration the numbers 1 and 2 that are the first two
almost balancing numbers of the second kind because of the restriction A > 2. If A = 2,
then the sequence generated by the recurrence relation xn+1 = Axn − xn−1; x0 = 0, x1 = 1 is
the sequence of natural numbers where the concept of triangular-like numbers and triangular
numbers coincide. Further, if A = 1, then the recurrence relation xn+1 = Axn −xn−1; x0 = 0,
x1 = 1 generates the sequence 1, 1, 0,−1,−1, 0, . . . and each triangular-like number of this
sequence (if we extend the definition to this sequence) is 1 or 0. But, 1 or 0 are triangular
numbers.

Among the values of A(> 2) that make τ2(A) a triangular number, we notice that A = 4 is
the only one for which τ3(A) is also triangular. In this process, we proved that A = 1, 2, 4, are
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the only positive integral values of A such that both 8A2 − 7 and 8A4 − 24A2 +17 are perfect
squares. After verifying several special cases, we believe that the following is true.

Conjecture 4.1. The only solutions of the Diophantine equation 8x4 − 24x2 + 17 = y2 in

positive integers are (x, y) = (1, 1), (2, 7), (4, 41).

We also believe that the following two conjectures are also true.

Conjecture 4.2. There does not exist any cobalancing number b other than b2 = 2 and b3 = 14
such that b+ 2 is a perfect square.

Conjecture 4.3. There does not exist any positive cobalancing number b other than b2 = 2
and b3 = 14 such that b+ 1 is a triangular number.
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