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Abstract. We discuss properties of certain recursive sequences, constructed in ways that
guarantee pairwise coprimality of their iterative factors. As a direct application, we obtain a
couple of new proofs of Euclid’s Theorem concerning the infinitude of the prime numbers. In
particular, one class of proofs of the theorem can be obtained from the following estimate:

ω (an
− 1) ≥ Ω(n),

which we establish for all a ≥ 2 and n ∈ N with gcd(a− 1, n) = 1.

1. Introduction

Let n ∈ N. Recall the definitions of the arithmetical functions ω(n) and Ω(n),

ω(n) =
∑

p|n

1 and Ω(n) =
∑

pα||n

α,

counting the number of distinct prime factors of n and the total number of prime factors of n,
respectively. Also, recall that φ(n) = #{m ≤ n : gcd(m,n) = 1} is the multiplicative Euler’s
totient function, defined in 1758 (see [8]). In what follows, p and q will denote prime numbers,
and π(x) =

∑

p≤x 1 will be the prime counting function. It was Euclid, in his epoch-making

Elements [5], who noticed (see [5], Liber IX, Proposition 20) that for all 1 ≤ i ≤ k we have

gcd

(

pi, 1 +

k
∏

i=1

pi

)

= 1, (⋆)

which implies that the set of prime numbers {pi} cannot be finite; in other words: π(x) → ∞
as x → ∞. Over the course of the past two millennia, many proofs of this result have been
discovered, see the original work of Goldbach [11], Euler [7], Kummer [16], Hermite [13],
Stieltjes [25], Thue [26], and Erdős [4], or compendiums of related ideas [2], [21], and [19].

The property of coprimality, which plays a key role in Euclid’s original argument, can be
used in other ways to prove the theorem that today bears his name. One idea (suggested
in [22]) makes use of two consecutive integers that are always coprime – and because n and
n + 1 are coprime for all n ∈ N, we necessarily have ω(n(n + 1)) ≥ 1 + ω(n). Iteratively
repeating this construction, one immediately obtains a sequence of integers whose terms have
ever-increasing numbers of distinct prime factors. This implies that there must exist infinitely
many prime numbers. The main goal of this short paper is to generalize this simple idea and
see how far one can extend it using purely elementary techniques.

2. Quadratic Iterations

In a way analogous to the above construction, let us start with the following observation:
if x is an odd integer, then x and x + 2 will always be coprime, so x(x + 2) will have more
prime factors than each of x and x + 2. Notice that x(x + 2) = x2 + 2x = (x + 1)2 − 1,
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so iterating this construction, with that starting value x = 1, one generates the sequence:
1, 22 − 1, 24 − 1, 28 − 1, 216 − 1, . . . with at least one new prime factor in each iteration:

22
0 − 1 = 1

22
1 − 1 = 3 = 3

22
2 − 1 = 15 = 3 · 5

22
3 − 1 = 255 = 3 · 5 · 17

22
4 − 1 = 65535 = 3 · 5 · 17 · 257

22
5 − 1 = 4294967295 = 3 · 5 · 17 · 257 · 65537

22
6 − 1 = 18446744073709551615 = 3 · 5 · 17 · 257 · 65537 · (641 · 6700417)

It follows that, for all n ∈ N,

ω(22
n − 1) ≥ n. (1)

This gives another proof of Euclid’s Theorem.

NOTE 1: The integers 22
n − 1 are a special kind of Mersenne numbers, studied at great

length by Marin Mersenne during the 1630s and 1640s (see [18] for more detail), but have
been considered before 300 BC, making their appearance already in Euclid’s Elements ([5],
Liber IX, Proposition 36) in connection with the even perfect numbers.

NOTE 2: Reversing the process behind the construction of (1) actually leads back to the
famous proof of Euclid’s Theorem via pairwise coprimality of the Fermat numbers 22

n

+ 1
(first defined in [10]), given by Christian Goldbach [11] in 1730:

22
n − 1 = (22

n−1
+ 1)(22

n−1 − 1)

= (22
n−1

+ 1)(22
n−2

+ 1)(22
n−2 − 1)

= · · ·
= (22

n−1
+ 1)(22

n−2
+ 1)(22

n−3
+ 1) · · · (220 + 1) =⇒

22
n

+ 1 = (22
n−1

+ 1)(22
n−2

+ 1)(22
n−3

+ 1) · · · (220 + 1) + 2.

Let us also remark that the identity x2 − y2 = (x + y)(x − y) (also found in Elements [5],
Liber II, Proposition 5), applied repeatedly in the above decomposition of the special type of
the Mersenne numbers from (1), can be used in a more general way. For example, observe

32
n − 22

n

= (32
n−1

+ 22
n−1

)(32
n−1 − 22

n−1
),

where the two factors are again relatively prime because any common divisor would have to

divide their difference, which equals 2 · 22n−1
, and that is impossible. Also, note that there

is nothing special about 2 and 3 as bases. As long as a and b are coprime (and of different

parity), any common divisor of a2
n−1

+ b2
n−1

and a2
n−1 − b2

n−1
would have to divide 2 · b2n−1

,

but because this divisor cannot be even, it would have to divide b2
n−1

, but then also a2
n−1

,
contradicting the condition of the coprimality of a and b. Thus, splitting off coprime factors
of a2

m − b2
m

, with m running from n down to 0, one can deduce (see also Maji [17]):

ω(a2
n − b2

n

) ≥ n, (2)

whenever a and b are of opposite parity and satisfy gcd(a, b) = 1.
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3. Cubics and Beyond

On closer inspection, several extensions of (1) and (2) offer themselves. Let us look in more
detail at a couple of those that appear most natural and easiest to analyze. The original
quadratic iteration x → x(x+ 2), which created our coprime factors, is itself a special case of
something more general: notice that if we repeatedly employ x → (x+ 1)3 − 1, then because
(x+1)3−1 = x(x2+3x+3), the iteration will produce a split into two factors x and x2+3x+3,
and these will be coprime as long as gcd(x, 3) = 1. In other words (renaming x+ 1 as a, for
the sake of simplicity), if gcd(a− 1, 3) = 1, then, just as in the quadratic case, we have

ω(a3
n − 1) ≥ n. (3)

The coprime factors of the double-exponentials in (3) can be listed explicitly (see NOTE 3
below), but first we look at a further extension of the idea to arbitrary powers. Let s ∈ N. As
above, it can be seen that the sth degree iteration x → (x+ 1)s − 1 will generate two factors
x and Ψs(x) := xs−1 +

( s
s−1

)

xs−2 + · · ·+
(s
2

)

x+
(s
1

)

, and these factors will be coprime as long

as gcd(x, s) = 1. Starting with x = 1, this immediately yields

ω(2s
n − 1) ≥ n,

for all s ≥ 2. More generally, for all a, s ≥ 2, with gcd(a− 1, s) = 1, we get

ω(as
n − 1) ≥ n. (4)

NOTE 3. We can explicitly exhibit at least n coprime factors of the integers of the form (4).
This is especially useful in the special cases when s = p for prime p. From Fermat’s Little

Theorem (see [9]), the condition p ∤ (a − 1) gives us: 1 6≡ a ≡ ap ≡ ap
2 ≡ ap

3 ≡ · · · (mod p),
enabling us to write out the decomposition:

ap
n − 1 = (ap

n−1 − 1)Ψp(a
pn−1 − 1) =

= (ap
n−2 − 1)Ψp(a

pn−2 − 1)Ψp(a
pn−1 − 1)

= · · ·

= (a− 1)
n−1
∏

i=1

Ψp(a
pi − 1) =

n−1
∏

i=0

Ψp(a
pi − 1),

where the values of the Ψ function in the last product are coprime by pairs.

NOTE 4. Considering the bound in (1), writing x = 22
n − 1, and taking natural logarithms

twice, one gets nontrivial information about the growth of π(x), namely:

π(x) >
log log x

log 2
.

With a change of base to a > 2, the bound stays essentially unchanged. The same is true
for more elaborate iterative constructions xk+1 = f(xk), analogous to those discussed above,
except incorporating groups of coprime integers < xk. For example, modifying x → x(x+2) to
x → xΘ(x), where Θ(x) is a product of integers < x and coprime to x, if in the kth iteration
one could generate bk new coprime factors, then up to aG = (· · · ((ab1)b2)b3 · · · )bk , we would
be guaranteed existence of at least A = b1 + b2 + · · · + bk different prime numbers; i.e.,

π
(

aG
)

≥ A ≥ k
k
√
G,
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by the elementary AM-GM inequality (see [15]). Choosing x = aG, this can be rewritten as

π(x) ≫ k(log x)1/k, the right side of which, with growing k, attains its minimum value when

0 =
(

ke
log log x

k

)′
= e

log log x

k − k
log log x

k2
e

log log x

k =

(

1− log log x

k

)

(log x)1/k,

i.e., when k = log log x. Unfortunately, this means that we cannot get a bound better than
π(x) ≫ log log x. This seems to be a limitation of all constructions of the above type. Any
substantially better estimates would require more detailed information concerning the behavior
of the iterations of Euler’s φ function and its generalizations.

4. General Result

Now, we combine some of the above ideas to prove our main result.

Theorem 4.1. For a ≥ 2 and n ∈ N, with gcd(a− 1, n) = 1, we have:

ω (an − 1) ≥ Ω(n). (5)

Proof. Write n = 2αM , where M is odd. We handle the even components first. Clearly,

an − 1 = a2
αM − 1 = (a2

α−1M + 1)(a2
α−1M − 1)

= (a2
α−1M + 1)(a2

α−2M + 1)(a2
α−2M − 1)

= · · ·

= (aM − 1)
α−1
∏

i=0

(a2
iM + 1),

where every step of the decomposition produces coprime factors, because for i ≥ 1 we have

gcd(a2
iM + 1, a2

iM − 1) = gcd(a2
iM − 1, 2) = gcd(a− 1, 2) = 1, by assumption. Therefore,

ω (an − 1) ≥ ω(aM − 1) + α = ω(aM − 1) + Ω(2α).

Now, to handle aM − 1, we proceed by induction on the number of distinct prime factors
of M , with (4) serving as the base step. Let us assume that the bound in (5) is true for all
integers with exactly k prime factors. Then, any M with k + 1 prime factors can be written
as M = mq∆, where q is its smallest prime factor, ω(m) = k, and gcd(q,m) = 1. Again, by

Fermat’s Little Theorem, for all i ≥ 0, amqi − 1 ≡ am − 1 6≡ 0 (mod q), because if q | am − 1,

then q | (am−1)q
∆
, and (because of the Binomial Theorem) q would divide amq∆ −1 = aM −1,

which would mean (q − 1) | M , by Euler’s Theorem [8]. This is impossible, because q is the
smallest prime factor of M . Thus, the decomposition outlined in NOTE 4 can be applied:

aM − 1 = amq∆ − 1 = (amq∆−1 − 1)Ψq(a
mq∆−1 − 1)

= (amq∆−2 − 1)Ψq(a
mq∆−2 − 1)Ψq(a

mq∆−1 − 1)

= · · ·

= (am − 1)

∆−1
∏

i=0

Ψq(a
mqi − 1),

where, once again, all the factors are coprime by pairs. But this implies

ω(aM − 1) ≥ Ω(am − 1) + ∆ = Ω(M),

by the inductive assumption concerning m. Hence,

ω (an − 1) ≥ ω(aM − 1) + Ω(2α) ≥ Ω(M) + Ω(2α) = Ω(n),
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as desired. This finishes the proof. �

NOTE 5. Maximal values of Ω(n), unlike those of ω(n), will grow to infinity, whether or not
there exist infinitely many prime numbers. Therefore, for any a ≥ 2, the bound in (5) implies

max
n≤x

ω(an − 1) ≥ max
n≤x

gcd(a−1,n)=1

Ω(n) → ∞

as x → ∞. Equivalently, each sequence {an − 1}∞n=1 confirms Euclid’s Theorem.

NOTE 6. If gcd(a, b) = 1, with positive integers a and b of opposite parity, then we expect
the following general result to be true for all exponents α, β ∈ N:

ω
(

aα − bβ
)

≥ Ω(gcd(α, β)). (6)

This generalizes (5). Due to some cumbersome congruence restrictions and the technical
nature of analysis that is involved, we leave claim (6) as a conjecture. But, we remark that
the Prime Number Theorem, π(x) ∼ x/ log x (see [14]), rewritten in the form

∑

p≤x log p ∼ x,

suggests that
∏

p≤x p & ex. This means that any number with at least ω prime factors must

be much larger than eω. Therefore, if one could establish (6), it would also follow that

aα − bβ > eΩ(gcd(α,β)), (7)

a bound related to the Catalan and abc conjectures (see [20] and [1], respectively).

NOTE 7. If gcd(a, b) > 1, then the powers aα and bβ will have extra prime factors in
common, and those will likely result in ω(aα − bβ) being even larger than when aα and bβ are
coprime. This is what one expects to happen in most, but not all cases. Heuristically, the same
should be true of the bound in (5) of our main theorem, in situations when gcd(a− 1, n) > 1.
However, the iterative coprimality method we have employed in our proof of (5) will not work
in these more general cases, because factoring out the common divisors in every step destroys
the recursive process. So, in a way similar to the discussion in NOTE 4, although the bound
in (5) is not optimal, its usefulness lies in its uniformity and simplicity.
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