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Abstract. We use a factorization of the independence polynomials of Fibonacci trees and
the properties of a relation between polynomials called partial synchronization to prove that
these independence polynomials are log-concave.

1. Introduction

The Fibonacci number of a graph is defined as the number of its independent sets [13].
This is a generalization of Fibonacci numbers in the sense that the usual Fibonacci numbers
are recovered as the Fibonacci numbers of the path graphs. A further generalization is the
independence polynomial of a graph [5] (or Fibonacci polynomial [6]), which is the polynomial
with coefficients given by the number of independent sets of each size. The Fibonacci number
of the graph is just the evaluation of the independence polynomial of that graph at x = 1.

The most famous conjecture about independence polynomials, made by Alavi, et al. [1],
is that each tree must have a unimodal independence polynomial, where a real polynomial
p =

∑t
i=0 aix

i is called unimodal if there exists 1 ≤ m ≤ t such that a0 ≤ a1 ≤ · · · ≤ am ≥
am+1 ≥ · · · ≥ at. To verify this conjecture, many authors have considered particular classes
of trees in the hope that these could uncover the behavior of the general case. In this paper,
we will consider the class of Fibonacci trees.

A concept related to unimodality is log-concavity. A real polynomial p =
∑t

i=0 aix
i is

called log-concave if a2i ≥ ai−1ai+1 for i = 1, . . . , t − 1. Because a log-concave polynomial
with nonnegative coefficients and without internal zeros is unimodal, a common technique
is to prove log-concavity instead of directly proving unimodality. In this paper, we confirm
the conjecture of Alavi, et al. for Fibonacci trees by means of the log-concavity concept and
using the relation between polynomials called partial synchronization [9]. More specifically,
our main result is that the independence polynomials of the Fibonacci trees are log-concave.

The Fibonacci trees {Tn}n≥0 are rooted graphs defined recursively as follows: T0 = K1 and
T1 = K1 with roots r0 ∈ V (T0) and r1 ∈ V (T1). For n ≥ 2, the tree Tn is defined as the
disjoint union of Tn−1 and Tn−2, together with a new vertex rn connected to the roots rn−1

and rn−2 [7, 8, 4, 10]. However, other types of Fibonacci trees appear in the literature with
different initial conditions: T0 = K1 and T1 = K2 [3, 15]. Bencs [3] proved a stronger result
than ours for this second type of Fibonacci tree: namely, that their independence polynomials
have only real roots (recall that polynomials with only real roots are log-concave because of
Newton’s theorem [14]). In spite of that, our Fibonacci trees have nonreal complex roots
(Corollary 4.2), thus we have to use related, but different techniques than Bencs.

In the following, we will work with the first mentioned version of Fibonacci trees, unless
otherwise stated. Changes in the initial conditions can be made to apply our results to the
second version of Fibonacci trees. The details are presented in Section 5.
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2. Partial Synchronization Properties

Let R≥0[x] be the semiring of polynomials with nonnegative real coefficients in variable x.
The partial synchronization [9] concept is defined over this semiring. All our proofs are based
on this concept.

Definition 2.1. Let p =
∑

i aix
i and q =

∑
i bix

i be a pair of polynomials with nonnegative

coefficients. The polynomials p and q are partially synchronized, written p ∼p q, if

am+1bn−1 + an−1bm+1 ≤ ambn + anbm (2.1)

for all m ≥ n.

An internal zero of a polynomial with real coefficients p =
∑

i aix
i is a coefficient aj such

that there exist m and n with m < j < n, aman 6= 0, and aj = 0.
Let L denote the set of log-concave polynomials in R

≥0[x] that do not have internal zeros;
let L∗ stand for L − {0}.

Hu, et al. [9] originally defined the partial synchronization relation on the set L. However,
it is convenient to extend this definition to the whole semiring R

≥0[x]. It is clear that ∼p is
symmetric on R

≥0[x] and reflexive on L.
Straightforward calculations show that the partial synchronization relation is preserved by

the sum of polynomials, in the following sense.

Theorem 2.2. Let p, q, r ∈ R
≥0[x]. If p ∼p r and q ∼p r, then p+ q ∼p r.

A proof of Theorem 2.2 is given in the proof of Theorem 3.6 in [9]. In addition, [9] also
proved the following two theorems.

Theorem 2.3. Let p, q, r ∈ L∗. If p ∼p q, then pr ∼p qr.

Theorem 2.4. If p, q ∈ L and p ∼p q, then p+ q ∈ L.

The following lemma will be used in the proof of Lemma 4.3.

Lemma 2.5. If p ∈ L∗, then p ∼p xp.

Proof. Because p has no internal zeros, we can write p =
∑t

i=h aix
i, where each ai > 0 for

h ≤ i ≤ t. Now, for q = xp in Definition 2.1, condition (2.1) becomes

am+1an−2 ≤ anam−1. (2.2)

Therefore, we must prove (2.2) for all m ≥ n. Let us assume that m ≥ n. We have several
cases: a) h > n− 2, b) h ≤ n− 2 and m ≤ t, and c) h ≤ n− 2 and m > t.

Case a): We have an−2 = 0. Thus, (2.2) trivially holds.
Case b): We have t ≥ m ≥ m−1 ≥ · · · ≥ n > h. Then, t > m−2 ≥ m−3 ≥ · · · ≥ n−2 > h.

Thus, we can write am+1/am ≤ am/am−1 and am/am−1 ≤ am−1/am−2 because p is log-concave.
Next, by multiplying such inequalities side by side, we get am+1/am−1 ≤ am/am−2. Similarly,

am
am−2

≤
am−1

am−3

≤ · · · ≤
an
an−2

.

Then, by transitivity, am+1/am−1 ≤ an/an−2, which is equivalent to (2.2).
Case c): In this case, am+1 = 0. Thus, (2.2) trivially holds. �
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3. Other Properties of Polynomials

The classic result of the product of two log-concave polynomials also being log-concave will
be useful for us [12].

Theorem 3.1. If p, q ∈ L, then pq ∈ L.

For a given graph G, we use I(G;x) to denote the independence polynomial of G. The
following lemma helps calculate the independence polynomial of an arbitrary graph [2, 5].

Lemma 3.2. If G, G1, and G2 are arbitrary simple graphs and v is an arbitrary vertex of G,

then

I(G;x) = I(G− v;x) + xI(G−N [v];x) (3.1)

and

I(G1 ⊔G2;x) = I(G1;x)I(G2;x), (3.2)

where ⊔ stands for the disjoint union operator, and N [v] is the closed neighborhood of v, i.e.,

N [v] = {v} ∪ {w ∈ V (G) : w is neighbor of v}.

4. Fibonacci Trees and Their Independence Polynomials

Let pn = I(Tn;x) be the independence polynomial of the Fibonacci tree Tn, n ≥ 0. From
Lemma 3.2 with v = rn, the natural root of Fibonacci tree Tn, it follows that

pn = pn−2(pn−1 + x p2n−3pn−4), n ≥ 4. (4.1)

The initial conditions are the following:

p0 = x+ 1

p1 = x+ 1

p2 = x2 + 3x+ 1

p3 = 2x3 + 6x2 + 5x+ 1.

Also, for any n ≥ 0, define a graph Gn with vertex set {0, . . . , n} and edges

En = {{i, j} | 0 < |i− j| ≤ 2}\{{0, 1}}.

Let p̂n = I(Gn;x) be the independence polynomial of the graph Gn, n ≥ 0. The following is a
factorization of the polynomials pn, which can be deduced from [3] or can be proved directly
by mathematical induction. We show the latter.

Theorem 4.1. For any integer n ≥ 1,

pn =

(
p̂1
p̂0

)fn−1 n∏

i=2

p̂
fn−i

i , (4.2)

where the sequence {fn} is a variant of the Fibonacci numbers defined by f0 = 1, f1 = 0, and
fn = fn−1 + fn−2 for n ≥ 2.

Proof. For n = 1, we have p̂1 = (x+1)2 and p̂0 = x+1, so p1 = x+1 = (p̂1/p̂0)
f0 . For n = 2,

p2 = p̂2 because T2 is isomorphic to G2. For n = 3, straightforward calculations show that

p3 = (x + 1)(2x2 + 4x + 1), whereas (p̂1/p̂0)
f2 = x + 1 and p̂f03 = 2x2 + 4x + 1. Thus, (4.2)

holds for n = 3. For n = 4, from (4.1) we get

p4 = p2(p3 + xp21p0).
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After substituting the previous values for pn, n = 1, 2, 3 we get

p4 = p̂2

(
p̂1
p̂0

p̂3 + x

(
p̂1
p̂0

)2

p0

)
= p̂2(x+ 1)(p̂3 + x(x+ 1)2).

Because p̂4 = p̂3 + x(x+1)2 (from (3.1) with G = G4 and v = 4), we obtain p4 = (x+1)p̂2p̂4,
which is the formula (4.2) for n = 4.

Now, the induction step follows from the recurrence (4.1) and because

p̂n = p̂n−1 + xp̂n−3 (4.3)

for n ≥ 3, which can be deduced from (3.1) with G = Gn and v = n. �

The Fibonacci trees of [3] have independence polynomials with only real roots. Our Fi-
bonacci trees have independence polynomials with nonreal complex roots.

Corollary 4.2. For n ≥ 6, the independence polynomial of Tn has nonreal complex roots.

Proof. For n ≥ 6, the factorization (4.2) tells us that pn has a factor p̂4 = x3 + 4x2 + 5x+ 1.
Standard calculus techniques show that such a factor has just one real root. �

Not just the roots of p̂4 have nonreal complex roots of pn. Computer calculations [11]
show that p̂12 = 11x5 + 56x4 + 93x3 + 56x2 + 13x + 1 also has nonreal complex roots.
Nevertheless, we can show that all the polynomials p̂n are log-concave with the help of the
partial synchronization relationship.

Due to (4.2), Theorem 3.1, and p̂1/p̂0 = x+1, to prove that pn is log-concave, it suffices to
show that p̂i is log-concave for i ≥ 2. This result follows from the following general lemma.

Lemma 4.3. Let {qn}n≥0 be a sequence of polynomials in R
≥0[x] such that qn = qn−1+xqn−3

for n ≥ 3. If

qn ∼p xqn−2, qn ∼p xqn−1, and qn ∈ L (4.4)

holds for n = 2, 3, 4, then (4.4) holds for all n ≥ 2.

Proof. We proceed by mathematical induction on n. We only have to prove the induction
step. Our induction hypothesis is

qm ∼p xqm−2, qm ∼p xqm−1, and qm ∈ L

for 2 ≤ m < n. In addition, we assume that n ≥ 5. Then, from qn−1 ∼p qn−1 (since qn−1 ∈ L)
and qn−1 ∼p xqn−3, we get

qn−1 ∼p qn−1 + xqn−3 = qn (4.5)

because of Theorem 2.2. Similar to (4.5), we get qn−2 ∼p qn−1. This, with qn−2 ∼p xqn−3 and
Theorem 2.2, again, implies

qn−2 ∼p qn−1 + xqn−3 = qn. (4.6)

Similar to (4.6), we get qn−3 ∼p qn−1. Then, xqn−3 ∼p xqn−1 (Theorem 2.3). In addition,
Lemma 2.5 ensures that qn−1 ∼p xqn−1. It follows that qn = qn−1+xqn−3 ∼p xqn−1 (Theorem
2.2).

Now, from qn−1 ∼p xqn−2 and qn−3 ∼p qn−2 (which is obtained in a similar way to (4.5)),
we get qn = qn−1 + xqn−3 ∼p xqn−2 (Theorem 2.3 and Theorem 2.2).

It remains to prove that qn ∈ L. By the induction hypothesis, qn−1 ∼p xqn−3. Then,
qn = qn−1 + xqn−3 ∈ L because of Theorem 2.4. �

Theorem 4.4. For n ≥ 0, the independence polynomial of the Fibonacci tree Tn is log-concave.
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Proof. For n = 0, 1, the result is obvious. For n ≥ 2, it suffices to prove that each p̂i, for i ≥ 2,
is log-concave, as explained above. Straightforward calculations show that

p̂i ∼p xp̂i−2, p̂i ∼p xp̂i−1, and p̂i ∈ L

for i = 2, 3, 4. Then, Lemma 4.3 shows that p̂i ∈ L for all i ≥ 2, because the polynomials p̂i
satisfy the recurrence (4.3). �

5. Generalized Initial Conditions

In this section, we study the Fibonacci trees with generalized initial conditions T0 = G,
an arbitrary graph with root r0, and T1 = H, also an arbitrary graph with root r1. We find
conditions under which the independence polynomial of these generalized Fibonacci trees have
log-concave polynomials.

For n ≥ 0, define Ḡn as the graph obtained from Gn, G, and H by gluing the vertices 0
and 1 of Gn to the roots r0 and r1, respectively. Let p̄n = I(Ḡn;x) and pn = I(Tn;x) be the
independence polynomials of Ḡn and Tn, respectively, for n ≥ 0. We get a generalized version
of the factorization (4.2).

Theorem 5.1. For any integer n ≥ 1,

pn =

(
p̄1
p̄0

)fn−1 n∏

i=2

p̄
fn−i

i , (5.1)

where the sequence {fn} is a variant of the Fibonacci numbers defined by f0 = 1, f1 = 0, and
fn = fn−1 + fn−2 for n ≥ 2.

Proof. This proof goes along the same lines as Theorem 4.1. For n = 1, p1 = g = p̄1/p̄0,
since p̄1 = gh and p̄0 = h. For n = 2, we have p2 = p̄2 because T2 is isomorphic to Ḡ2. For
n = 3, from (3.1) with graph T3 and v, the root vertex of T3, we get p3 = h(p̄2 + xgh̄), where
g = I(G;x), h = I(H;x), and h̄ = I(H −N [r1];x). Also, from (3.1), for Ḡ3 and v the vertex
3, we obtain p̄3 = p̄2 + xgh̄. Thus,

p3 = hp̄3 =

(
p̄1
p̄0

)
p̄3.

In other words, (5.1) holds for n = 3. For n = 4, from (4.1) we get

p4 = p2(p3 + xp21p0).

After substituting the previous values for pn, n = 1, 2, 3 we get

p4 = p̄2

(
p̄1
p̄0

p̄3 + x

(
p̄1
p̄0

)2

p0

)
= hp̄2(p̄3 + xgh)

Because p̄4 = p̄3 + xgh2 (from (3.1) with G = Ḡ4 and v = 4), we obtain p4 = hp̄2p̄4, which is
the formula (4.2) for n = 4.

The induction step follows because the independence polynomials pn satisfy the recurrence
(4.1) and because p̄n = p̄n−1 + xp̄n−3 for n ≥ 3, just as in the proof of Theorem 4.1. �

As a consequence of factorization (5.1) and Theorem 3.1, to prove that pn is log-concave, it
suffices to show that the factors on the right side are log-concave. Note that p̄1/p̄0 = I(H;x),
and Lemma 4.3 gives us some conditions for the log-concavity of the factors p̄i. These remarks
are summarized in the following theorem.
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Theorem 5.2. If I(H;x) ∈ L and

p̄n ∼p xp̄n−2, p̄n ∼p xp̄n−1, and p̄n ∈ L

hold for n = 2, 3, 4, then for n ≥ 1, the independence polynomial pn of the Fibonacci tree Tn

with generalized initial conditions is log-concave.
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sur y Av. San Claudio, FM7-207, Ciudad Universitaria, Puebla, Pue., 72570 Mexico

Email address: 218570075@alumnos.fcfm.buap.mx

54 VOLUME 58, NUMBER 1


