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Abstract. In the base phi representation, any natural number is written uniquely as a sum
of powers of the golden mean with coefficients 0 and 1, where it is required that the product of
two consecutive digits is always 0. In this paper, we give precise expressions for those natural
numbers for which the kth digit is 1, proving two conjectures for k = 0, 1. The expressions
are all in terms of generalized Beatty sequences.

1. Introduction

Base phi representations were introduced by George Bergman in 1957 ([2]). Base phi repre-

sentations are also known as beta-expansions of the natural numbers, with β = (1+
√
5)/2 = ϕ,

the golden mean.
A natural number N is written in base phi if N has the form

N =

∞∑

i=−∞
diϕ

i,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed. Similar to base 10 numbers, we
write these representations as

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR.

The base phi representation of a number N is unique ([2]). Our main concern will be the
distribution of the digit dk = dk(N) over the natural numbers N ∈ N, where k ≥ 0. Several
authors have interpreted this in the frequency sense. The following result was conjectured by
Bergman, and proved in [7].

Theorem 1.1. The frequency of 1’s in (d0(N)) exists, and limN→∞
1
N

∑N
M=1 d0(M) = 1

ϕ+2 =

5−
√
5

10 .

A more detailed description, obviously implying the previous theorem, was conjectured by
Baruchel in 2018 (see A214971 in [9]):

Conjecture 1.1. Digit d0(N) = 1 if and only if N = ⌊nϕ⌋+ 2n + 1 for a natural number n,
or N = 1.

Here ⌊·⌋ denotes the floor function, and (⌊nϕ⌋) is the well-known lower Wythoff sequence.
The corresponding result for digit d1 was conjectured by Kimberling in 2012 (see A054770 in
[9]):

Conjecture 1.2. Digit d1(N) = 1 if and only if N = ⌊nϕ⌋+ 2n− 1 for a natural number n.
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Both conjectures will be proved in Section 5. In Sections 2, 3, and 4, we introduce some
objects and tools used in the proof. Finally, Section 6 gives the result for any digit dk(N) with
k ≥ 1 of the base phi expansion.

In future work, we plan to extend our results to the metallic means, or more generally to
arbitrary quadratic bases, as defined and analyzed in [3].

2. Generalized Beatty Sequences

The sequences occurring in the conjectures are sequences V of the type V (n) = p⌊nα⌋ +
q n + r, n ≥ 1, where α is a real number, and p, q, and r are integers. As in [1], we call
them generalized Beatty sequences. If S is a sequence, we denote its sequence of first order
differences as ∆S, i.e., ∆S is defined by

∆S(n) = S(n + 1)− S(n), for n = 1, 2 . . . .

It is well-known ([8]) that the sequence ∆(⌊nϕ⌋) is equal to the Fibonacci word x1,2 =
1211212112 . . . on the alphabet {1, 2}. More generally, we have the following simple lemma.

Lemma 2.1. ([1]) Let V = (V (n))n≥1 be the generalized Beatty sequence defined by V (n) =
p⌊nϕ⌋+ qn+ r, and let ∆V be the sequence of its first differences. Then ∆V is the Fibonacci
word on the alphabet {2p+ q, p+ q}. Conversely, if xa,b is the Fibonacci word on the alphabet
{a, b}, then any V with ∆V = xa,b is a generalized Beatty sequence V = ((a− b)⌊nϕ⌋) + (2b−
a)n + r) for some integer r.

3. Morphisms

A morphism is a map from the set of infinite words over an alphabet to itself, respecting the
concatenation operation. The canonical example is the Fibonacci morphism σ on the alphabet
{0, 1} given by

σ(0) = 01, σ(1) = 0.

A central role in this paper is played by the morphism γ on the alphabet {A,B,C,D} given
by

γ(A) = AB, γ(B) = C, γ(C) = D, γ(D) = ABC.

In the following, we write |w| for the length of a finite word w. Here are some useful properties
of the morphism γ.

Lemma 3.1. The morphism γ has the following properties

i) |γn(A)| = Ln, for all n ≥ 2, where Ln is the nth Lucas number (see next section).

ii) γn(A) = γn(C) and γn(A) = γn+1(B) for all n ≥ 2.

Proof. i) Starting at n = 2, it follows by induction from the recursion of the Lucas numbers
that one has |γn(A)| = Ln, |γn(B)| = Ln−1, |γn(C)| = Ln, |γn(D)| = Ln+1.

ii) This follows immediately from γ2(A) = γ(AB) = ABC = γ(D) = γ2(C). �

It is notationally convenient to extend the semigroup of words to the free group of words.
For example, one has DC−1B−1BC = D.
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4. Lucas Numbers

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . ) are defined by

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

The Lucas numbers have a particularly simple base phi representation.
From the well-known formula L2n = ϕ2n + ϕ−2n, and the recursion L2n+1 = L2n + L2n−1, we
have for all n ≥ 1

β(L2n) = 102n · 02n−11, β(L2n+1) = 1(01)n · (01)n.

Exercise. Show that the base phi representation of L2n+1 +1 equals β(L2n+1 +1) = 102n+1 ·
(10)n01 – see also Lemma 3.3 (2) in [7], but note that these authors write the digits in reverse
order.

Since β(L2n) consists of only 0’s between the exterior 1’s, the following lemma is obvious.

Lemma 4.1. For all n ≥ 1 and k = 1, . . . , L2n−1 one has β(L2n + k) = β(L2n) + β(k) =
10 . . . 0β(k) 0 . . . 01.

As in [6], [7], and [10], the strategy will be to partition the natural numbers in intervals
[Ln + 1, Ln+1], and establish recursive relations for the β-expansions of the numbers in these
intervals. However, an analogous formula as in Lemma 4.1 starting from an odd Lucas number
does not exist. To obtain recursive relations, the interval [L2n+1+1, L2n+2−1] has to be divided
into three subintervals. These three intervals are

In = [L2n+1 + 1, L2n+1 + L2n−2 − 1],

Jn = [L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn = [L2n+1 + L2n−1 + 1, L2n+2 − 1].

Note that In and Kn have the same length L2n−2 − 1, that Jn has length L2n−3 + 1, and that
the starting point L2n+1 + L2n−2 of Jn can be written as 2L2n.

From parts b. and c. of Proposition 3.1 and part c. of Proposition 3.2 in the paper by Sanchis
and Sanchis ([10]), we obtain1 recursions for the beta-expansions of the natural numbers in
the intervals In, Kn, and Jn.

Lemma 4.2. ([10]) For all n ≥ 2 and k = 1, . . . , L2n−2 − 1

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001

= 10β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.

As an illustration, we write out what Lemma 4.2 gives for n = 2. In the first part, k takes
the values 1 and L2− 1 = 2, giving (10)−1β(5)(01)−1 = 00 · 10 and (10)−1β(6)(01)−1 = 10 · 00.
So, the beta expansions of L5 + 1 = 12, L5 + 2 = 13, L5 + L3 + 1 = 16, and L5 + L3 + 2 = 17
are

β(12) = 100000 · 101001, β(13) = 100010 · 001001,
β(16) = 101000 · 100001, β(17) = 101010 · 000001.

1N.B.: these authors write the beta-expansions in reverse order.
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In the second part of Lemma 4.2, k takes the values 0 and L1 = 1, giving (10)−1β(3)(01)−1 = 0·
and (10)−1β(4)(01)−1 = 1·. So, the beta expansions of L5 +L2+1 = 14 and L5+L2 +1 = 15
are

β(14) = 100100 · 001001, β(15) = 100101 · 001001.

5. A Proof of the Conjectures

The conjectures in the introduction will be part of the following more general result.

Theorem 5.1. Let β(N) = (di(N)) be the base phi representation of a natural number N .
Then:

d0(N) = 1 if and only if N = ⌊nϕ⌋+ 2n+ 1 for some natural number n,

d1d0(N) = 10 if and only if N = ⌊nϕ⌋+ 2n− 1 for some natural number n,

d1d0d−1(N) = 000 if and only if N = ⌊nϕ⌋+ 2n for some natural number n,

d1d0d−1(N) = 001 if and only if N = 3⌊nϕ⌋ + n+ 1 for some natural number n.

A proof of Theorem 5.1 will be given just after the proof of Theorem 5.3.

It is convenient to code the four possibilities for the digits of N by a map T to an alphabet
of four letters {A,B,C,D}. We let

T (N) = A if and only if d1d0(N) = 10, T (N) = B if and only if d1d0d−1(N) = 000,

T (N) = C if and only if d0(N) = 1, T (N) = D if and only if d1d0d−1(N) = 001.

Thus, we have the following scheme.

N β(N) T (N)

1 1 C
2 10 · 01 A
3 100 · 01 B
4 101 · 01 C
5 1000 · 1001 D
6 1010 · 0001 A
7 10000 · 0001 B
8 10001 · 0001 C

N β(N) T (N)

9 10010 · 0101 A
10 10100 · 0101 B
11 10101 · 0101 C
12 100000 · 101001 D
13 100010 · 001001 A
14 100100 · 001001 B
15 100101 · 001001 C
16 101000 · 100001 D

N β(N) T (N)

17 101010 · 000001 A
18 1000000 · 000001 B
19 1000001 · 000001 C
20 1000010 · 010001 A
21 1000100 · 010001 B
22 1000101 · 010001 C
23 1001000 · 100101 D
24 1001010 · 000101 A

The reader may check the validity of the following T -values, which we use in the proof of
Theorem 5.3:

T (L2n) = B, T (L2n + 1) = C, T (L2n+1 + 1) = D for all n ≥ 1.

Theorem 5.2. The sequence (T (N))N≥2 is the unique fixed point of the morphism γ.

Theorem 5.2 is an immediate consequence of Theorem 5.3.

Theorem 5.3. Let γ be the morphism given by A 7→ AB, B 7→ C, C 7→ D, D 7→ ABC. Then,

a) T (2)T (3) · · · T (Ln+1) = γn(A) for n ≥ 2,

b) T (Ln+2)T (Ln+3) · · · T (Ln+1+1) = γn−1(A) for n ≥ 3.
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Proof. We prove a) and b) simultaneously by induction.

For n = 2 and L2 = 3, one finds T (2)T (3)T (4) = ABC, which equals γ2(A).

Also for n = 3, one has T (2)T (3)T (4)T (5) = ABCD = γ3(A).

Part b) for n = 3 is checked by T (6)T (7)T (8) = ABC = γ2(A).

In the following, we do not formally perform an induction step n → n + 1, but show how
T -images of intervals can be expressed in T -images of intervals with lower indices. We have
for part a)

T (2) · · · T (Ln+1+1) = T (2) · · · T (Ln+1)T (Ln+2) · · · T (Ln+1+1)

= γn(A) γn−1(A)

= γn(AB) = γn+1(A).

Here, we used Lemma 3.1 part ii).

For part b), this formula follows for even indices directly from Lemma 4.1 and part a):

T (L2n+2) · · · T (L2n+1)T (L2n+1+1) = T (L2n+2) · · · T (L2n+1)D

= T (2) . . . T (L2n−1)D

= T (2) . . . T (L2n−1)T (L2n−1 + 1) = γ2n−1(A).

For odd indices, we use Lemma 4.2. We have

T (L2n+1 + 1) · · · T (L2n+1 + L2n−2−1)

= T (L2n+1 + 1) γ2n−2(A)T (L2n + 1)−1 T (L2n)
−1 = D γ2n−2(A)C−1B−1,

T (L2n+1 + L2n−2) · · · T (L2n+1 + L2n−1)

= T (L2n−2)T (L2n−2 + 1) · · ·T (L2n−1 + 1)T (L2n−1 + 1)−1 = BC γ2n−3(A)D−1,

T (L2n+1 + L2n−1 + 1) · · · T (L2n+2−1) = D γ2n−2(A)C−1B−1.

Concatenating the T -images of the intervals In, Jn, and Kn, we obtain, using Lemma 3.1 ii)

T (L2n+1 + 2) · · · T (L2n+2 + 1)

= T (L2n+1 + 1)−1 D γ2n−2(A)C−1B−1BC γ2n−3(A)D−1D γ2n−2(A)C−1B−1BC

= γ2n−2(A) γ2n−3(A) γ2n−2(A) = γ2n−2(ABC) = γ2n−2(γ2(A)) = γ2n(A).

�

Proof of Theorem 5.1. From Theorem 5.2, we know that the digit d0(N) = 1 if and only if
T (N) = C, where (with some abuse of notation) T = CABCABCD . . . is the fixed point of γ,
prefixed by C. We see from the form of γ2 that (apart from the prefix C) T is a concatenation
of the words ABC and D. Suppose we apply a code: ψ(ABC) = 0, ψ(D) = 1. Then γ induces
a morphism σ on the alphabet {0, 1}:

σ : 0 7→ ψ(γ(ABC)) = ψ(ABCD) = 01, 1 7→ ψ(γ(D)) = ψ(ABC) = 0.

We see that σ is the Fibonacci morphism, with fixed point x0,1, given as A003849 in [9]. But,
the 0’s in x0,1 occur at positions ⌊nϕ⌋ for n = 1, 2 . . . (see, e.g., [8]). Because the differences
between the indices of the positions of C in T are expanded by two by the inverse of ψ,
and because of the prefix C, this implies that the C’s occur at positions ⌊nϕ⌋ + 2n + 1 for
n = 0, 1, . . . . But, A’s always occur at two places before a C, implying that the positions of A
are given by ⌊nϕ⌋+2n− 1 for n = 1, . . . . Similarly, the positions of B are given by ⌊nϕ⌋+2n.
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Finding the positions of D is more involved. In the following display, we underline the
locations of D in the images of A, B, C, and D under the morphism γ4:

γ4 : A 7→ ABCDABC, B 7→ ABCD, C 7→ ABCDABC, D 7→ ABCDABCABCD.

We see from this that the difference between the indices of occurrence of D in T = γ4(T )
is always 4 or 7. Moreover, these differences as generated by A, B, C, and D under γ4 are
respectively 7, 4, 7, and the pair 7,4. Mapping A 7→ 7, B 7→ 4, C 7→ 7, and D 7→ 74,
the morphism γ induces for A, C, and B a morphism 7 7→ 74 and 4 7→ 7. Moreover, this
morphism is compatible with the part induced by D: 74 7→ 747. It follows that the sequence
of differences of indices of occurrence of D is nothing else but the Fibonacci word x7,4 on
the alphabet {7, 4}. Lemma 2.1 then gives that this word, written as a sequence, equals
(3⌊nϕ⌋ + n+ 1)n≥1. ✷

Remark 5.1. With induction, using Lemma 4.1 and 4.2, one proves that d1d0(N) = 10 forces
d−1(N) = 0. It follows that Theorem 5.1 implies that

Digit d−1(N) = 1 if and only if N = 3⌊nϕ⌋ + n+ 1 for some natural number n.

6. A General Result

Here, we give an expression for the set of N with dk(N) = 1 for any k > 1. Recall
that we partitioned the natural numbers in Lucas intervals Λ2n = [L2n, L2n+1] and Λ2n+1 =
[L2n+1 + 1, L2n+2 − 1].
The basic idea behind this partition is that if

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR,

then the left most index L = L(N) and the right most index R = R(N) satisfy

L(N) = 2n = |R(N)| if and only if N ∈ Λ2n,

L(N) = 2n+ 1, |R(N)| = 2n+ 2 if and only if N ∈ Λ2n+1.

This is not hard to see from the simple expressions we have for the β-expansions of the Lucas
numbers, see also Theorem 1 in [5]. For the cardinality |Λn| of Λn, we have

|Λn| = ⌊ϕn+1⌋ − ⌊ϕn⌋.

Theorem 6.1. Let β(N) = (di(N)) be the base phi representation of a natural number N ,
and let k ≥ 2. Then dk(N) = 1 if and only if N is a member of one of the generalized Beatty
sequences (⌊nϕ⌋Lk + nLk−1 + r), where r = r1, r1+ 1, . . . , r1+ |Λk|− 1, with r1 = −Lk−1 if k
is even, and r1 = −Lk−1+1 if k is odd.

Proof. It turns out that the coding with the alphabet {A,B,C,D} is still useful. We extend this
alphabet to an alphabet {A0,A1,B0,B1,C0,C1,D0,D1} via the extended coding T+ defined
for j = 0, 1 by

T+(N) = Aj if and only if d−2(N) = j, T (N) = A, . . . ,

T+(N) = Dj if and only if d−2(N) = j, T (N) = Dj .

We also want to extend the morphism γ to a morphism γ+. Here, it turns out that one has to
extend γk+2 instead of γ. For simplicity in notation, we suppress the dependence on k in γ+.
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We obtain γ+ by looking at γk+2(A)γk+2(B)γk+2(C)γk+2(D) – note that this word is always
a prefix of (T (N))N≥2 as a consequence of Theorem 5.2. We define

γ+(A0) = γ+(A1) = T+(2) · · · T+(Lk+2 + 1),

γ+(B0) = γ+(B1) = T+(Lk+2 + 2) · · · T+(Lk+2 + Lk+1 + 1) = T+(Lk+2 + 2) · · · T+(Lk+3 + 1),

γ+(C0) = γ+(C1) = T+(Lk+3 + 2) · · · T+(Lk+3 + Lk+2 + 1) = T+(Lk+3 + 2) · · · T+(Lk+4 + 1),

γ+(D0) = γ+(D1) = T+(Lk+4 + 2) · · · T+(Lk+4 + Lk+3 + 1) = T+(Lk+4 + 2) · · · T+(Lk+5 + 1).

In view of the complexity of the proof, we start with the case k = 2, so γk+2 = γ4, and γ+ has
the form:

γ+(A0) = γ+(A1) = A0B1C1D0A0B0C0,

γ+(B0) = γ+(B1) = A0B1C1D0,

γ+(C0) = γ+(C1) = A0B1C1D0A0B0C0,

γ+(D0) = γ+(D1) = A0B1C1D0A0B0C0A0B1C1D0.

Here, the B1C1 in γ+(Aj) is coming from the first couple of 1’s in d2(N) occurring in the
interval Λ2 = [L2, L3] = [3, 4].

We claim that (T+(N))N≥2 is the unique fixed point of γ+. We will prove this in a manner
similar to the proof of Theorem 5.3.

Claim.
⊞ a) T+(2) · · · T+(L4n+1) = γn+(A0) for n ≥ 1.

⊞ b) T+(L4n+2) · · · T+(L4n+1+1) = γn+(B0) for n ≥ 1.

⊞ c) T+(L4n+1+2) · · · T+(L4n+2+1) = γn+(C0) for n ≥ 1.

⊞ d) T+(L4n+2+2) · · ·T+(L4n+3+1) = γn+(D0) for n ≥ 1.

⊞ e) T+(L4n+3+2) · · · T+(L4n+4+1) = γn+(A0B0C0) for n ≥ 1.

Proof of the Claim. This will be done by induction, with an unexpected twist.

First the case n = 1.

By definition, one has ⊞ a) T+(2) · · · T+(L4+1) = γ+(A0), ⊞ b) T+(L4+2) · · · T+(L5+1) =
γ+(B0), ⊞ c) T+(L5+2) · · ·T+(L6+1) = γ+(C0), and ⊞ d) T+(L6+2) · · · T+(L7+1) = γ+(D0).

What remains is ⊞ e) T+(L7+2) · · · T+(L8+1) = γ+(A0B0C0), which can be proved using
Lemma 4.2:

the central part of β(L7+k) equals β(L5+k) for k = 1, . . . L4−1, yielding T+(L7+2) · · · T+(L7+
L4−1) = γ+(C0)C

−1
0 B−1

0 . Similarly, T+(L7+L5+1) · · · T+(L8−1) = D0γ+(C0)C
−1
0 B−1

0 . In

between, we have T+(L7+L4) · · · T+(L7+L4+L3) = B0C0γ+(B0)D
−1
0 . Pasting these three

words together, and adding the two letters T+(L8) = B0 and T+(L8+1) = C0, we obtain the
word γ+(C0B0C0) = γ+(A0B0C0).

Next, we make the induction step n→ n+ 1.

⊞ a) Here, one splits T+(2) · · · T+(L4(n+1)+1) into five subwords T+(L4n+j+2) · · · T+(L4n+j+1+
1), j = 0, . . . , 4. The induction hypothesis then gives

T+(2) · · · T+(L4(n+1)+1) = γn+(A0)γ
n
+(B0)γ

n
+(C0)γ

n
+(D0)γ

n
+(A0B0C0) = γn+1

+ (A0).
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⊞ b) From Lemma 4.1, one obtains, from the induction hypothesis again with a splitting,

T+(L4(n+1)+2) · · ·T+(L4(n+1)+1+1) = T+(2) · · · T+(L4n+3+1) =

γn+(A0)γ
n
+(B0)γ

n
+(C0)γ

n
+(D0) = γn+1

+ (B0).

⊞ c) This is more involved, as we have to use Lemma 4.2. This lemma yields

T+(L4(n+1)+1+2) · · · T+(L4(n+1)+1+L4n+2 − 1)

= T+(L4(n+1)−1+2) · · · T+(L4(n+1)−1+L4n+2 − 1)

= T+(L4n+3+2) · · · T+(L4n+4 − 1)

= γn+(A0B0C0)C
−1
0 B−1

0 ,

where we used part e) of the induction hypothesis in the last step. For the ‘middle part’,
Lemma 4.2 yields

T+(L4(n+1)+1+L4n+2) · · ·T+(L4(n+1)+1+L4n+3)

= T+(L4n+2) · · ·T+(L4n+3) = B0C0γ
n
+(D0)D

−1
0 .

The last part is similar to the first part. Pasting the three parts together, and adding B0C0

at the end, we obtain

T+(L4(n+1)+1+2) · · ·T+(L4(n+1)+2+1)

= γn+(A0B0C0)C
−1
0 B−1

0 B0C0γ
n
+(D0)D

−1
0 D0γ

n
+(A0B0C0)C

−1
0 B−1

0 B0C0

= γn+(A0B1C1)γ
n
+(D0)γ

n
+(A0B0C0)

= γn+1
+ (C0).

⊞ d) From Lemma 4.1, one obtains

T+(L4(n+1)+2+2) · · · T+(L4(n+1)+3+1)

= T+(2) · · · T+(L4n+5+1)

= T+(2) · · · T+(L4n+4+1)T+(L4n+4+2) · · · T+(L4n+5+1)

= γn+1
+ (A0) γ

n+1
+ (B0) = γn+1

+ (D0).

Here, we could not use the induction hypothesis, but can apply part a) and b) that were
already proved.

⊞ e) Again, we have to use Lemma 4.2. This lemma yields

T+(L4(n+1)+3+2) · · · T+(L4(n+1)+3+L4n+2 −1)

= T+(L4(n+1)+1+2) · · · T+(L4(n+1)+1+L4n+4 −1)

= T+(L4n+5+2) · · · T+(L4n+6 − 1) = γn+1
+ (C0)C

−1
0 B−1

0 ,

where we used part c) that was already proved. For the ’middle part’, Lemma 4.2 yields

T+(L4(n+1)+3+L4n+4) · · ·T+(L4(n+1)+3+L4n+5)

= T+(L4n+4) · · ·T+(L4n+5) = B0C0γ
n+1
+ (B0)D

−1
0 ,

where we used part b), that was already proved above.
The last part is similar to the first part. Pasting the three parts together, we obtain

T+(L4(n+1)+3+2) · · · T+(L4(n+1)+4+1) = γn+1
+ (C0)γ

n+1
+ (B0)γ

n+1
+ (C0) = γn+1

+ (A0B0C0).

This finishes the proof of the claim. ✷
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To finish the proof of the theorem for the case k = 2, we note that the situation is almost
identical2 to the appearance of D in γ4(A), . . . , γ4(D) at the end of the proof of Theorem 5.2:
the words B1C1 occur at indices that differ by 7 or 4, and these differences occur as x7,4,
the Fibonacci word on the alphabet {7, 4}. An application of Lemma 2.1 then gives that the
numbers N with d2(N) = 1 occur as N = 3⌊nϕ⌋ + n + r, with two possibilities for r, which
are found to be r = 0 and r = −1.

Consider, in general, the case of an even integer 2k, k = 1, 2 . . . . One first proves that
(T+(N))N≥2 is the unique fixed point of γ+, following the same scheme as in the proof for
the k = 2 case. Next, one has to sort out where the N with d2k(N) = 1 appear with respect
to the γ+(A0), . . . , γ+(D0) in the fixed point of γ+. The first time d2k(N) = 1 appears is
for N = L2k, the first number in Λ2k, and all other N in Λ2k also have d2k(N) = 1. By
Lemma 4.1, these trains of N ’s, with d2k(N) = 1, also appear at the end of Λ2k+2 (excepting
N = L2k+3 + 1). Because they cannot appear in Λ2k+1, this is the second appearance of the
train. Application of Lemma 4.2, and another time Lemma 4.1, then gives that the third
appearance is in Λ2k+3, and the fourth and fifth appearance are in Λ2k+4. Moreover, these
three Lucas intervals correspond – except for one or two symbols at the begin and at the end
– to the intervals used to define γ+(B0), γ+(C0), and γ+(D0), and at the same time, it shows
that γ+(C0) = γ+(A0) and γ+(D0) = γ+(A0)γ+(B0).

This means that the situation is much like the appearance of B1C1 in the words γ+(A0), . . . , γ+(D0)
in the k = 2 case treated above: the trains occur at indices that differ by L2k+2 or L2k+1, and
these differences occur as xL2k+2,L2k+1

, the Fibonacci word on the alphabet {L2k+2, L2k+1}.
An application of Lemma 2.1 then gives that the numbers N in the train occur as ⌊nϕ⌋L2k +
nL2k−1 + r for some r, since

L2k+2 − L2k+1 = L2k, and 2L2k+1 − L2k+2 = L2k−1.

Substituting n = 1, corresponding to the first train, with first element N = L2k, gives r1 =
−L2k−1. The length of the train is |Λ2k|.

The proof for odd integers 2k + 1 follows the same steps, the sole difference being that r1
turns out to be one larger, because Λ2k starts at L2k, but Λ2k+1 starts at L2k+1+1. �

Remark 6.1. Note that we also have |Λ2n| = L2n−1+1, and |Λ2n+1| = L2n−1, the expressions
used in [10]. It can therefore be checked easily that our Theorem 6.1 implies the main result
of [10] (for positive k).

Remark 6.2. A result similar to Theorem 6.1 will hold for digits dN (k) with k negative, but
the situation is somewhat more complex. One has, for example,

digit d−2(N) = 1 if and only if N = 4⌊nϕ⌋+3n+ r for r = 2, 3, or 4 and some nonnegative
integer n.

Here is a proof of this statement. We define the extended coding T+ on {A0,A1,B0,B1,C0,C1,D1}
as before. For j = 0, 1:

T+(N) = Aj if and only if d−2(N) = j, T (N) = A, . . . , T+(N) = Dj

if and only if d−2(N) = j, T (N) = Dj .

2This observation also leads to a more or less independent proof of Theorem 6.1 for k = 2: B1C1 occurs
always immediately before D0, so the positions of B1, respectively C1, are just those of D in Theorem 5.1,
shifted by -1 and -2.
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The morphism γ+ is more complex now:

γ+(A0) = A0B0C0D0A0B0C0,

γ+(A1) = A1B1C1D0A0B0C0,

γ+(B0) = γ+(B1) = A1B1C1D0,

γ+(C0) = γ+(C1) = A0B0C0D0A0B0C0,

γ+(D0) = A1B1C1D0A0B0C0A1B1C1D0.

Here, the A1B1C1 in γ+(A1) is coming from the first triple of 1’s in d−2(N) occurring in the
interval Λ1 ∪ Λ2 = [2, 3, 4].

We claim that (T+(N))N≥2 is the unique fixed point of γ+. We will prove this in a manner
similar to the proof of Theorem 6.1. Note that although γn+(A0) 6= γn+(A1), one has that
γn+(B0) = γn+(B1) and γ

n
+(C0) = γn+(C1) for all n.

Claim.
⊞ a) T+(2) · · · T+(L4n+1) = γn+(A1) for n ≥ 1.

⊞ b) T+(L4n+2) · · · T+(L4n+1+1) = γn+(B1) for n ≥ 1.

⊞ c) T+(L4n+1+2) · · · T+(L4n+2+1) = γn+(C1) for n ≥ 1.

⊞ d) T+(L4n+2+2) · · ·T+(L4n+3+1) = γn+(D0) for n ≥ 1.

⊞ e) T+(L4n+3+2) · · · T+(L4n+4+1) = γn+(A0B0C0) for n ≥ 1.

Proof of the Claim. This will be done by induction. Except for the change A0 7→ A1 the
case n = 1 is literally the same as in the proof of Theorem 6.1. The induction step n→ n+ 1
can also be performed in the same way as in proof of Theorem 6.1, making the substitutions
γn+(A0) 7→ γn+(A1) and γ

n+1
+ (A0) 7→ γn+1

+ (A1) at the appropriate places. ✷

Obtaining the positions of the 1’s for the case k = −2 is more involved. We can still
compare the situation to the appearance of D in γ4(A), . . . , γ4(D) at the end of the proof of
Theorem 5.2. There, the differences of the indices of positions (Pi) of D’s occur according to
the following pattern:

T (N) : A B C D A B C A B C D A B C D
∆P : 7 4 7 7 4 7 4 7 7 4 7 7 4 7 4 7 7 4
Moreover, it was proved that ∆P = x7,4, the Fibonacci word on the alphabet {7, 4}. In

(T+(N)), the role of D is taken over by the letter A1. Let ∆Q be the sequence of differences of
the indices of positions A1 in (T+(N)). Inspection of the five words γ+(A0), . . . , γ+(D0) leads
to the conclusion that the ∆Q will be 7 or 11. The difference will be 11 if and only if a Bj

is followed by a Cj′, or when a D0 is followed by a A0. Because B1 is always followed by C1,
it is always the case that D0 is followed by A0. It follows that we obtain ∆Q from ∆P by
substituting every 4 7 in ∆P by 11:

T+(N) : A1 B1 C1 D0 A0 B0 C0 A1 B1 C1 D0 A0 B0 C0 D0 · · ·
∆Q : 7 11 7 11 11 7 11 7 11 11 7 · · ·

What is ∆Q? From Proposition 3 in [4], one obtains that the word bxa,b is the fixed point of
the morphism τ : a 7→ baa, b 7→ ba. Consider the morphism ψ : a 7→ 10, b 7→ 0. Then τ induces

10 = ψ(a) 7→ ψτ(a) = ψ(baa) = 01010, 0 = ψ(b) 7→ ψτ(b) = ψ(ba) = 010,

which is equivalent to the morphism 0 7→ 010 and 1 7→ 01, which happens to be σ2, where σ is
the Fibonacci morphism. It follows that ψ(bxa,b) = x0,1. Now take a = 11, b = 7, and replace
0, 1 by 7, 4. Then, ψ can be considered as an inverse of the map 4 7 7→ 11 and 7 7→ 7 from
∆P to ∆Q. It follows that ∆Q = 7x11,7. An application of Lemma 2.1 then gives that the
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numbers N , with d−2(N) = 1 and T+(N) = A1, occur as N = 4⌊nϕ⌋+3n+2 for n ≥ 1, except
that N = 2 is missing. We obtain all occurrences by letting the generalized Beatty sequence
start at N= 2, by adding the index n = 0. This leads to the announced expression.

NOTE ADDED IN PROOF: Using the idea of return words, some of the proofs in this paper
can be streamlined.
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