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Abstract. Let u(a, b) be a Lucas sequence satisfying the second-order recursion relation
un+2 = aun+1 + bun, where b = ±1, a is an integer, and u0 = 0 and u1 = 1. Let m be a
positive integer, and let π(m) denote the period of u(a, b) modulo m, and ρ(m) denote the
restricted period of u(a, b) modulo m. It is shown that iterates of π(m) and ρ(m) end in
either a fixed point or a cycle of length two, and all these possible fixed points and two-cycles
are explicitly determined.

1. Introduction

In the paper [4], Fulton and Morris studied the iteration of the period of the Fibonacci
sequence modulo m, where m is a positive integer. We will extend their results to certain
second-order linear recurring sequences. We will also obtain similar results for the iteration
of the restricted period modulo m. In [4], the authors showed that the process of iterating
the period modulo m of the Fibonacci sequence always ends in a fixed point. For particular
second-order recurrences, we will demonstrate that the iteration of the period or restricted
period modulo m always terminates in either a fixed point or a cycle of length two.

Let (w) = w(a, b) denote the sequence satisfying the second-order linear recursion relation

wn+2 = awn+1 + bwn, (1.1)

where the initial terms w0 and w1, and the parameters a and b are all integers. We distinguish
two recurrences satisfying (1.1), the Lucas sequence of the first kind (LSFK) (u) = u(a, b)
with initial terms u0 = 0 and u1 = 1, and the Lucas sequence of the second kind (LSSK)
(v) = v(a, b) with initial terms v0 = 2 and v1 = a.

Associated with the recurrence w(a, b) is the characteristic polynomial

f(x) = x2 − ax− b (1.2)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn, if D 6= 0, (1.3)

whereas
un = nαn−1, vn = 2αn, if D = 0, (1.4)

where α is an integer if D = 0.
Throughout this article, p will denote a prime and m will denote a positive integer. In

this paper, we will extend the results given in [4] from the Fibonacci sequence u(1, 1) to the
LSFK u(a,±1). It is known (see [3, pp. 344–345]) that if gcd(m, b) = 1, then w(a, b) is purely
periodic modulo m.

Clearly, if w(a, b) is purely periodic modulo m, then w(a, b) is purely periodic modulo p
for each prime divisor p of m. It is easy to see that if u(a, b) is purely periodic modulo p,
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then gcd(p, b) = 1. It now follows that u(a, b) is purely periodic modulo m if and only if
gcd(m, b) = 1. From here on, we always assume that

gcd(m, b) = 1.

The (least) period of w(a, b) modulo m, denoted by πw(m), is the least positive integer r
such that

wn+r ≡ wn (mod m)

for all n ≥ 0. We will usually consider the period πu(m) of the LSFK u(a, b). Because we
desire u(a, b) to be purely periodic modulom for all m, we will frequently only consider LSFK’s
u(a, b) for which b = ±1. The (least) restricted period ρw(m) of w(a, b) modulo m is the least
positive integer s such that

wn+s ≡ Mwn (mod m) (1.5)

for all n ≥ 0 and some integer M such that gcd(M,m) = 1. Here, M = Mw(m) is called the
multiplier of w(a, b) modulo m. Because u(a, b) is purely periodic modulo m and has initial
terms u0 = 0, u1 = 1, it is easily seen that πu(p) is the least positive integer r such that

ur ≡ 0, ur+1 ≡ 1 (mod m), (1.6)

whereas ρu(m) is the smallest positive integer s such that

us ≡ 0 (mod m). (1.7)

It is proved in [3, pp. 354–355] that ρw(m) | πw(m). Let

Ew(m) =
πw(m)

ρw(m)
. (1.8)

Then by [3, pp. 354–355], Ew(m) is the multiplicative order of the multiplier Mw(m) modulo
m. By repeated applications of (1.5), we see that if ρ = ρw(m), then

wn+ρi ≡ M iwn (mod m) (1.9)

for all n ≥ 0 and i ≥ 1.
It is clear that if π∗

w(m) is a general period of w(a, b) modulom and ρ∗w is a general restricted
period of w(a, b) modulo m, then

πw(m) | π∗
w(m) and ρw(m) | ρ∗w(m). (1.10)

We say that π′(m) is a fundamental period of w(a, b) modulo m if π′(m) is the least posi-
tive integer that is a general period for all recurrences w′(a, b) modulo m. The fundamental
restricted period ρ′(m) of w(a, b) modulo m is defined similarly.

The following proposition gives a relation between the period and restricted period of u(a, b)
modulo m and the corresponding arithmetical functions of w(a, b) modulo m.

Proposition 1.1. Consider the recurrence w(a, b) and the LSFK u(a, b) modulo m. Then,
πu(m) is the fundamental period of w(a, b) modulo m, and ρu(m) is the fundamental restricted
period of w(a, b) modulo m.

Proof. It follows by induction that

wn = bun−1w0 + unw1 (1.11)

for all n ≥ 0. The result now follows. �
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By virtue of Proposition 1.1, we see that results about iterations of the period and restricted
period of the LSFK u(a, b) modulo m also give results about iterations of the fundamental
period and fundamental restricted period of the general recurrence w(a, b) modulo m. Accord-
ingly, we will largely consider only the LSFK u(a, b) in this paper. When the LSFK u(a, b)
is understood, we will frequently write π(m), ρ(m), and E(m), rather than πu(m), ρu(m),
and Eu(m). Given the LSFK u(a, b), we let π2(m) = π(π(m)) and πi+1(m) = π(πi(m)) for
i = 2, 3 . . . . We define ρi(m) similarly for i ≥ 2.

Lemma 1.2 below follows from the Binet formulas (1.3) and (1.4).

Lemma 1.2. Consider the LSFK u(a, b) and the LSSK v(a, b).

(i) u2n = unvn.
(ii) u2n+1 = bu2n + u2n+1.

(iii) v2n = v2n − 2(−b)n.

For future reference, we list the first few terms of u(a, b) and v(a, b):

v0 = 2, v1 = a, v2 = a2 + 2b, v3 = a(a2 + 3b), v4 = (a2 + 2b)2 − 2b2. (1.12)

u0 = 0, u1 = 1, u2 = a, u3 = a2 + b,

u4 = u2v2 = a(a2 + 2b), u5 = bu22 + u23 = a2b+ (a2 + b)2, (1.13)

u6 = u3v3 = a(a2 + b)(a2 + 3b), u7 = bu23 + u24 = b(a2 + b)2 + a2(a2 + 2b)2.

The LSFK u(a, b) with characteristic roots α and β is said to be degenerate if αβ = 0 or
α/β is a root of unity. It follows from (1.3) that un = 0 for n > 0 only if u(a, b) is degenerate.
Theorem 1.3 characterizes the degenerate LSFK’s u(a, b) when b = ±1.

Theorem 1.3. Consider the LSFK u(a, b), where b = ±1.

(i) u(a, b) is degenerate if and only if (a, b) = (0, 1), (0,−1), (1,−1), (−1,−1), (2,−1),
or (−2,−1).

(ii) If (a, b) = (0, 1), then u2n = 0, u2n+1 = 1 for n ≥ 0.
(iii) If (a, b) = (0,−1), then u4n = u4n+2 = 0, u4n+1 = 1, u4n+3 = −1 for n ≥ 0.
(iv) If (a, b) = (1,−1), then u6n = u6n+3 = 0, u6n+1 = u6n+2 = 1, u6n+4 = u6n+5 = −1 for

n ≥ 0.
(v) If (a, b) = (−1,−1), then u3n = 0, u3n+1 = 1, u3n+2 = −1 for n ≥ 0.
(vi) If (a, b) = (2,−1), then α = β = 1, D = 0, and un = n for n ≥ 0.
(vii) If (a, b) = (−2,−1), then α = β = −1, D = 0, and un = (−1)n+1n for n ≥ 0.

Proof. Part (i) follows from [7, p. 613]. Parts (ii)–(v) follow by induction. Parts (vi) and (vii)
follow from (1.4). �

2. The Main Theorems

The following theorems present results about the iterations of the functions ρ(m) and π(m)
given the LSFK u(a,±1). We say that m is a fixed point of π if π(m) = m. Thus in this case,
πi(m) = m for all i ≥ 1. Fixed points of ρ are defined similarly. Theorem 2.1 treats the case
in which u(a,±1) is degenerate.

Theorem 2.1. Suppose that u(a, b) is degenerate, where b = ±1.

(i) If (a, b) = (0, 1), then the only fixed points of both ρ and π are 1 and 2. Moreover,
ρ(m) = π(m) = 2 for m ≥ 2.
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(ii) If (a, b) = (0,−1), then the only fixed points of ρ are 1 and 2, whereas the only fixed
points of π are 1, 2, and 4. Further, ρ(m) = 2 for m ≥ 2, and π(m) = 4 for m ≥ 3.

(iii) If (a, b) = (1,−1), then the only fixed points of ρ are 1 and 3, whereas the only fixed
points of π are 1 and 6. Moreover, ρ(m) = 3 for all m ≥ 3. Further, π(2) = 3 and
π(m) = 6 for all m ≥ 3. In particular, if m ≥ 2, then πi(m) = 6 for all i ≥ 2.

(iv) If (a, b) = (−1,−1), then the only fixed points of both ρ and π are 1 and 3. Moreover,
ρ(m) = π(m) = 3 for all m ≥ 2.

(v) If (a, b) = (2,−1), then ρ(m) = π(m) = m for m ≥ 1. In particular, each positive
integer m is a fixed point of both ρ and π.

(vi) If (a, b) = (−2,−1), then ρ(m) = m for m ≥ 1. Further, π(m) = m if m = 1 or m
is even, and π(m) = 2m if m ≥ 3 is odd. In particular, m is a fixed point of ρ for
m ≥ 1, and m is a fixed point of π if and only if m = 1 or m is even. Furthermore,
πi(m) = m for all i ≥ 1 if m = 1 or m is even, whereas πi(m) = 2m for all i ≥ 2 if
m ≥ 3 is odd.

Theorem 2.1 follows immediately from Theorem 1.3.
From now on, we will always assume that the LSFK u(a, b) is nondegenerate. Given the

LSFK u(a, b) and the positive integer m, we let ω = ω(m) denote the least positive integer k
such that πk+1(m) = πi(m) for some i such that 1 ≤ i ≤ k. We similarly define δ = δ(m) to
be the least positive integer ℓ such that ρℓ+1(m) = ρj(m) for some j such that 1 ≤ j ≤ ℓ. In
Theorems 2.4 and 2.5, we will see that ω(m) and δ(m) exist for all m ≥ 1 and that

ρδ+1(m) = ρδ(m) or ρδ−1(m), (2.1)

whereas

πω+1(m) = πω(m) or πω−1(m). (2.2)

Thus, the process of iterating ρ(m) or π(m) always ends in either a fixed point or a cycle of
length 2.

In Theorems 2.2–2.5, given the LSFK u(a,±1) with discriminant D, we let R ≥ 1 denote
an arbitrary integer for which all of its prime divisors are greater than or equal to 5 and divide
D. Moreover, given the LSFK u(a,−1) with discriminant D = a2 − 4 = (a − 2)(a + 2), we
let S ≥ 1 and T ≥ 1, be arbitrary integers such that each prime divisor of both S and T is
greater than or equal to 5 and divides D, and additionally, p | S implies that p | a−2, whereas
p | T implies that p | a + 2. Furthermore, ε will denote an element in {0, 1}. The proofs of
Theorems 2.2–2.5 will be given in Section 4.

Theorem 2.2. (Fixed-point theorem for u(a, 1).) Let u(a, 1) be a nondegenerate LSFK.
Then the following hold:

(i) If a ≡ ±1 (mod 6), then the only fixed points of ρ are 12εR, R ≥ 1, whereas the only
fixed points of π are 1 and 24R, where R ≥ 1.

(ii) If a ≡ 3 (mod 6), then the only fixed points of ρ are 6εR, R ≥ 1, whereas the only
fixed points of π are 6ε and 12R, where R > 1.

(iii) If a ≡ 2 (mod 4), then the only fixed points of ρ are 2iR, where i ≥ 0 and R ≥ 1,
whereas the only fixed points of π are 2ε and 2jR, j ≥ 2, R > 1.

(iv) If a ≡ 0 (mod 4), then the only fixed points of ρ are 2εR, where R ≥ 1, whereas the
only fixed points of π are 2ε and 4R, where R ≥ 1.

Theorem 2.3. (Fixed-point theorem for u(a,−1).) Let u(a,−1) be a nondegenerate
LSFK. Then the following hold:
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(i) If a ≡ 5 or 11 (mod 18), then the only fixed points of ρ are 3iR, where i ≥ 0 and
R ≥ 1, whereas the only fixed points of π are 3iS, i ≥ 0, S ≥ 1, and 2 · 3jST , j ≥ 1,
S ≥ 1, T > 1.

(ii) If a ≡ 7 or 13 (mod 18), then the only fixed points of ρ are 3iR, where i ≥ 0 and
R ≥ 1, whereas the only fixed points of π are S ≥ 1 and 2 · 3jST , where j ≥ 1, S ≥ 1,
and T ≥ 1.

(iii) If a ≡ 17 (mod 18), then the only fixed points of ρ are 3εR, R ≥ 1, whereas the only
fixed points of π are 3εS, S ≥ 1, and 6ST , S ≥ 1, T > 1, R ≥ 1.

(iv) If a ≡ 1 (mod 18), then the only fixed points of ρ are 3εR, R ≥ 1, whereas the only
fixed points of π are S ≥ 1 and 6ST , where S ≥ 1 and T ≥ 1.

(v) If a ≡ 2 or 14 (mod 36), then the only fixed points of ρ are 2i3jR, where i ≥ 0, j ≥ 0,
R ≥ 1, whereas the only fixed points of π are 3jS, j ≥ 0, S ≥ 1, and 2i3jST , where
i ≥ 1, j ≥ 0, S ≥ 1, and T ≥ 1.

(vi) If a ≡ 22 or 34 (mod 36), then the only fixed points of ρ are 2i3jR, where i ≥ 0, j ≥ 0,
R ≥ 1, whereas the only fixed points of π are S ≥ 1 and 2i3jST , where i ≥ 1, j ≥ 0,
S ≥ 1, and T ≥ 1.

(vii) If a ≡ 26 (mod 36), then the only fixed points of ρ are 2i3εR, where i ≥ 0 and R ≥ 1,
whereas the only fixed points of π are 3εS, S ≥ 1, and 2i3εST , where i ≥ 1, S ≥ 1,
and T ≥ 1.

(viii) If a ≡ 10 (mod 36), then the only fixed points of ρ are 2i3εR, where i ≥ 0 and R ≥ 1,
whereas the only fixed points of π are S ≥ 1 and 2i3εST , where i ≥ 1, S ≥ 1, and
T ≥ 1.

(ix) If a ≡ 20 or 32 (mod 36), then the only fixed points of ρ are 2ε3jR, where j ≥ 0 and
R ≥ 1, whereas the only fixed points of π are 3jS, where j ≥ 1 and S ≥ 1, and 2i3jST ,
where i ∈ {1, 2}, j ≥ 0, S ≥ 1, and T ≥ 1.

(x) If a ≡ 4 or 16 (mod 36), then the only fixed points of ρ are 2ε3jR, where j ≥ 0 and
R ≥ 1, whereas the only fixed points of π are S ≥ 1 and 2i3jST , where i ∈ {1, 2},
j ≥ 0, S ≥ 1, and T ≥ 1.

(xi) If a ≡ 8 (mod 36), then the only fixed points of ρ are 2ε13ε2R, where ε1, ε2 ∈ {0, 1}
and R ≥ 1, whereas the only fixed points of π are 3εS, S ≥ 1, and 2i3εST , where
i ∈ {1, 2}, S ≥ 1, and T ≥ 1.

(xii) If a ≡ 28 (mod 36), then the only fixed points of ρ are 2ε13ε2R, where ε1, ε2 ∈ {0, 1},
whereas the only fixed points of π are S ≥ 1 and 2i3εST , where i ∈ {1, 2}, S ≥ 1, and
T ≥ 1.

(xiii) If a ≡ 3 (mod 6), then the only fixed points of ρ are 6εR, R ≥ 1, whereas the only
fixed points of π are S ≥ 1 and 12ST , where S ≥ 1 and T ≥ 1.

(xiv) If a ≡ 6 (mod 12), then the only fixed points of ρ are 2iR, where i ≥ 0 and R ≥ 1,
whereas the only fixed points of π are S ≥ 1 and 2iST , where i ≥ 1, S ≥ 1, and T ≥ 1.

(xv) If a ≡ 0 (mod 12), then the only fixed points of ρ are 2εR, where R ≥ 1, whereas the
only fixed points of π are S ≥ 1 and 2iST , where i ∈ {1, 2}, S ≥ 1, and T ≥ 1.

Theorem 2.4. (Iteration theorem for u(a, 1).) Let u(a, 1) be a nondegenerate LSFK and
let m be a positive integer.

(i) If a 6≡ 3 (mod 6), then ρδ(m) = G1 and πω(m) = G2, where G1 is one of the fixed
points of ρ and G2 is one of the fixed points of π as given in Theorem 2.2.

(ii) If a ≡ 3 (mod 6), then ρδ+1(m) = ρδ−1(m) = 2R and ρδ+2(m) = ρδ(m) = 3R, R ≥ 1;
or ρδ+1(m) = ρδ−1(m) = 3R and ρδ+2(m) = ρδ(m) = 2R, R ≥ 1; or ρδ+1(m) =
ρδ(m) = 6εR, R ≥ 1. Moreover, πω+1(m) = πω−1(m) = 2 and πω+2(m) = πω(m) = 3;
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or πω+1(m) = πω−1(m) = 3 and πω+2(m) = πω(m) = 2; or πω+1(m) = πω(m) = 6ε;
or πω+1(m) = πω(m) = 12R, R > 1.

Theorem 2.5. (Iteration theorem for u(a,−1).) Let u(a,−1) be a nondegenerate LSFK
and let m be a positive integer.

(i) If a 6≡ 3 (mod 6), then ρδ(m) = G3 and πω(m) = G4, where G3 is one of the fixed
points of ρ and G4 is one of the fixed points of π as given in Theorem 2.3.

(ii) If a ≡ 3 (mod 12), then ρδ+1(m) = ρδ−1(m) = 2R and ρδ+2(m) = ρδ(m) = 3R, R ≥ 1;
or ρδ+1(m) = ρδ−1(m) = 3R and ρδ+2(m) = ρδ(m) = 2R, R ≥ 1; or ρδ+1(m) =
ρδ(m) = 6εR, R ≥ 1. Further, πω+1(m) = πω−1(m) = 3S and πω+2(m) = πω(m) =
4S, S ≥ 1; or πω+1(m) = πω−1(m) = 4S and πω+2(m) = πω(m) = 3S, S ≥ 1; or
πω+1(m) = πω(m) = S, S ≥ 1; or πω+1(m) = πω(m) = 12ST , S ≥ 1, T ≥ 1.

(iii) If a ≡ 9 (mod 12), then ρδ+1(m) = ρδ−1(m) = 2R and ρδ+2(m) = ρδ(m) = 3R, R ≥ 1;
or ρδ+1(m) = ρδ−1(m) = 3R and ρδ+2(m) = ρδ(m) = 2R, R ≥ 1; or ρδ+1(m) =
ρδ(m) = 6εR, R ≥ 1. Moreover, πω+1(m) = πω(m) = S, S ≥ 1; or πω+1(m) =
πω(m) = 12ST , S ≥ 1, T ≥ 1.

3. Auxiliary Results

In this section, we provide results that will be needed for the proofs of Theorems 2.2–2.5.

Theorem 3.1. Consider the nondegenerate LSFK u(a, b). Then the following hold:

(i) If p ∤ 2b, then ρ(p) | p− (D/p), where (D/p) is the Legendre symbol and (D/p) = 0 if
p | D.

(ii) If p ∤ 2bD, then ρ(p) | (p− (D/p))/2 if and only if (−b/p) = 1.
(iii) If p ∤ b and (D/p) = 1, then π(p) | p− 1.
(iv) Suppose that p > 2 and p ∤ bD. If q is a prime and q | ρ(p)π(p), then q < p.
(v) Suppose that p ∤ b. Let c ≥ 1 be the largest integer such that ρ(pc) = ρ(p). Then, c

exists. If pc 6= 2, then

ρ(pi) = pmax(i−c,0)ρ(p) (3.1)

for i ≥ 1. If pc = 2, let d be the largest positive integer such that ρ(4) = ρ(2d). Then,
d exists and

ρ(2i) = 2max(i+1−d,1)ρ(2) (3.2)

for i ≥ 2.
(vi) Suppose that p ∤ b. Let e ≥ 1 be the largest integer such that π(pe) = π(p). Then, e

exists. If pe 6= 2, then

π(pi) = pmax(i−e,0)π(p) (3.3)

for i ≥ 1. Let pe = 2 and let g be the largest integer such that π(4) = π(2g). Then, g
exists and

π(2i) = 2max(i+1−g,1)π(2) (3.4)

for i ≥ 2.
(vii) If gcd(mn, b) = 1, then

ρ([m,n]) = [ρ(m), ρ(n)] (3.5)

and

π([m,n]) = [π(m), π(n)], (3.6)

where [m,n] denotes the least common multiple of the positive integers m and n.
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(viii) If gcd(mn, b) = 1, then

ρi([m,n]) = [ρi(m), ρi(n)] (3.7)

and

πi([m,n]) = [πi(m), πi(n)] (3.8)

for i ≥ 1.
(ix) ρ(1) = π(1) = 1.

Proof. Parts (i) and (ii) are proved in [5, pp. 423 and 441]. Part (iii) is proved in [2, pp. 44–45].
(iv) By part (i), ρ(p) | p ± 1. By (1.8) and the following discussion π(p) = E(p)ρ(p) and

E(p) = ordp(M(p)), where ordp(n) denotes the multiplicative order of n modulo p. Hence,
E(p) | p− 1. Thus, π(p) | (p− 1)(p ± 1). The assertion follows.

(v) and (vi) Because u(a, b) is nondegenerate, un 6= 0 for n > 0. It now follows from (1.6)
and (1.7) that c, d, e, and g all exist. The rest of part (v) follows from Theorem X of [2],
whereas the remainder of part (vi) follows from [6, pp. 619–620 and 627–628].

(vii) and (viii) We first note that if gcd(mn, b) = 1, then u(a, b) is purely periodic modulo
mn. Parts (vii) and (viii) now follow from (1.9).

(ix) It is evident that ρ(1) = π(1) = 1. �

Theorem 3.2. Let u(a, b) be nondegenerate LSFK and let m ≥ 2 be an integer such that
gcd(m, b) = 1. Let h = ordm(−b) = 2ch′ and ρ = ρ(m) = 2dρ′, where h′ and ρ′ are odd
integers. Let π = π(m) and H = [h, ρ].

(i) Either π = H or π = 2H.
(ii) Suppose that m = pi, where p is an odd prime and i ≥ 1. If c 6= d, then π = 2H. If

c = d > 0, then π = H.

This is proved in Theorems 3 and 4 of [9].
We have the following immediate corollaries of Theorem 3.2 corresponding to the cases in

which b = ±1.

Corollary 3.3. Consider the nondegenerate LSFK u(a, 1) and let m ≥ 2. Let E = E(m) =
π(m)/ρ(m) = π/ρ. Then the following hold:

(i) E = 1, 2, or 4.
(ii) Suppose that m = pi, where p is an odd prime and i ≥ 1.

(a) If ρ ≡ 2 (mod 4), then E = 1.
(b) If ρ ≡ 0 (mod 4), then E = 2.
(c) If ρ ≡ 1 (mod 2), then E = 4.

Corollary 3.4. Consider the nondegenerate LSFK u(a,−1) and let m ≥ 2. Let E = E(m) =
π(m)/ρ(m) = π/ρ. Then the following hold:

(i) E = 1 or 2.
(ii) Suppose that m = pi, where p is an odd prime.

(a) If ρ ≡ 0 (mod 2), then E = 2.
(b) If ρ ≡ 1 (mod 2), then E = 1 or 2.

Remark 3.5. We show that both possibilities for E can occur in part (ii)(b) of Corollary 3.4.
Consider the LSFK u(3,−1). Then ρ(13) = ρ(29) = 7, whereas π(13) = 14 and π(29) = 7.
Hence, E(29) = 1, whereas E(13) = 2.
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Lemma 3.6. Let u(a, b) be a nondegenerate LSFK, where b = ±1 and let p be an odd prime.
Let e be the largest integer such that ρ(pe) = ρ(p) and let g be the largest integer such that
π(pg) = π(p). Then,

e = g. (3.9)

Proof. We note that ρ(pi) is the least positive integer r such that ur ≡ 0 (mod pi), ur+1 6≡ 0
(mod pi), whereas π(pi) is the least positive integer s such that us ≡ 0 (mod p)i, us+1 ≡ 1
(mod pi). It is now evident that e ≥ g.

We observe by Theorem 3.1(vi) that if π(pe) 6= π(p), then

p |
π(pe)

π(p)
. (3.10)

However, by Corollaries 3.3 and 3.4,

π(pe) = E(pe)ρ(pe) = E(pe)ρ(p)

and

π(p) = E(p)ρ(p),

where E(pe) | 4 and E(p) | 4. Thus,

π(pe)

π(p)
=

E(pe)

E(p)
,

and p ∤ π(pe)/π(p), which is a contradiction to (3.10). Hence, (3.9) holds. �

Theorem 3.7. Let u(a, b) be a nondegenerate LSFK with discriminant D. Suppose that p | D
and p ∤ gcd(a, b). We let νp(m) denote the largest nonnegative integer r such that pr | m. The
following hold:

(i) ρ(p) = p.
(ii) If p ≥ 5, then ρ(pi) = pi for i ≥ 1.
(iii) Suppose that p = 2. Then a ≡ 0 (mod 2). Moreover, if a ≡ 2 (mod 4), then ρ(2i) = 2i

for i ≥ 1.
(iv) Suppose that p = 3. Then, a2 ≡ −b (mod 3). Further, if a2 6≡ −b (mod 9), then

ρ(3i) = 3i for i ≥ 1.

(v) Suppose that p = 2 and ν2(a) = c ≥ 2. Then ρ(2i) = 2 · 2max(i−c,0) for i ≥ 1.

(vi) Suppose that p = 3 and ν3(a
2 + b) = d ≥ 2. Then, ρ(3i) = 3 · 3max(i−d,0).

Proof. Parts (i), (ii), and (iv) follow from results in [1] or [8] and that u2 = a and u3 = a2 + b.
(iii) By (1.13), we note that u2 = a ≡ 2 (mod 4) and u4 = a(a2 + 2b) ≡ 4 (mod 8). Part

(iii) now follows from Theorem 3.1(v).
(v) Since u2 = a, we see that ρ(2i) = 2 for 1 ≤ i ≤ c and ρ(2c+1) 6= ρ(4). The assertion now

follows from Theorem 3.1(v).
(vi) Since u3 = a2 + b, we find that ρ(3i) = 3 for 1 ≤ i ≤ d and ρ(3d+1) 6= ρ(3). Part (vi)

now follows from Theorem 3.1(v). �

Theorem 3.8. Let u(a, b) be a nondegenerate LSFK with discriminant D, where b = ±1.
Suppose that p | D. If p > 2, let e be the largest integer such that ρ(pe) = ρ(p). Then the
following hold:

(i) If b = 1, then p = 2 or p ≡ 1 (mod 4).
(ii) Suppose that b = −1. Then a ≡ ±2 (mod p). If p > 2 and a ≡ 2 (mod p), then

π(pi) = ρ(pi) = p · pmax(i−e,0) (3.11)
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for i ≥ 1. If p > 2 and a ≡ −2 (mod p), then

π(pi) = 2ρ(pi) = 2p · pmax(i−e,0) (3.12)

for i ≥ 1.
(iii) If p = 2, b = ±1, and a ≡ 2 (mod 4), then π(2i) = ρ(2i) = 2i for i ≥ 1.
(iv) If b = 1 and p ≥ 5, then π(pi) = 4ρ(pi) = 4pi for i ≥ 1.
(v) Suppose that b = −1. If p ≥ 5 and a ≡ 2 mod p, then π(pi) = ρ(pi) = pi for i ≥ 1. If

p ≥ 5 and a ≡ −2 (mod p), then ρ(pi) = pi and π(pi) = 2pi for i ≥ 1.

(vi) If b = 1, p = 2, and ν2(a) = c ≥ 2, then π(2i) = ρ(2i) = 2 · 2max(i−c,0) for i ≥ 1.

(vii) If b = −1, p = 2, and ν2(a) = c ≥ 2, then π(2) = 2 and π(2i) = 4 · 2max(i−1−c,0) for
i ≥ 2.

(viii) Suppose that b = −1, p = 3, and a ≡ ±2 or ±4 (mod 9). If a ≡ 2 or 5 (mod 9), then
π(3i) = ρ(3i) = 3i for i ≥ 1. If a ≡ 4 or 7 (mod 9), then π(3i) = 2ρ(3i) = 2 · 3i for
i ≥ 1.

(ix) Suppose that b = −1, p = 3, and a ≡ ±1 (mod 9). Then |a| > 2. Let d = ν3(a
2 − 1).

Then d ≥ 2. If a ≡ 8 (mod 9), then π(3i) = ρ(3i) = 3 · 3max(i−d,0) for i ≥ 1. If a ≡ 1

(mod 9), then π(3i) = 2ρ(3i) = 6 · 3max(i−d,0) for i ≥ 1.

Proof. (i) Since D = a2 + 4 ≡ (mod p), we see that (−4/p) = 0 or 1. Thus, p = 2 or p ≡ 1
(mod 4) by the law of quadratic reciprocity.

(ii) We note that D = a2 − 4 = (a − 2)(a + 2) ≡ 0 (mod p). Thus, a ≡ ±2 (mod p).
Moreover, by Theorem 3.7(i),

ρ(p) = p. (3.13)

First suppose that a ≡ 2 (mod p). Then by (1.2),

f(x) ≡ x2 − 2x+ 1 ≡ (x− 1)2 (mod p). (3.14)

Thus, by the Binet formula for u(a, b) given in (1.4),

un ≡ n · 1n−1 ≡ n (mod p) (3.15)

for n ≥ 0. Hence, by (3.13) and (3.15),

uρ(p)+1 = up+1 ≡ 1 (mod p). (3.16)

Thus, π(p) = ρ(p) = p. It now follows from Theorem 3.1(v) and (vi) and from equation (3.9)
in Lemma 3.6 that (3.11) holds.

Now suppose that a ≡ −2 (mod p). Then by (1.2),

f(x) ≡ x2 + 2x+ 1 ≡ (x+ 1)2 (mod p). (3.17)

Therefore, by (1.4),

un ≡ n(−1)n−1 (mod p) (3.18)

for n ≥ 0. Consequently, by (3.13) and (3.18),

uρ(p)+1 = up+1 ≡ −1 (mod p). (3.19)

Hence, π(p) = 2ρ(p) = 2p. We now see, by Theorem 3.1(v) and (vi) and by (3.9), that (3.12)
holds.

(iii) By Theorem 3.7(iii), ρ(2i) = 2i for i ≥ 1. Thus, u2 ≡ 2 (mod 4) and u4 ≡ 4 (mod 8).
Moreover, by (1.13), u3 = a2 + b ≡ 1 (mod 2) and u5 = u23 + bu22 ≡ 1+ 4b ≡ 5 mod 8. Hence,
π(2) = 2, π(4) = 4, and π(8) 6= π(4). The result now follows by Theorem 3.1(vi).

(iv) By Theorem 3.7(ii), ρ(pi) = pi for i ≥ 1. The result now follows from Corollary
3.3(ii)(c).
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(v) This follows from Theorem 3.7(ii) and part (ii) of this theorem.
(vi) We note that u2 = a ≡ 2c (mod 2c+1), where c ≥ 2. Moreover, u3 = a2 + 1 ≡ 1

(mod 2c). Thus, ρ(2c) = ρ(4) = π(2c) = π(4) = 2, ρ(2c+1) 6= ρ(2c), and π(2c+1) 6= π(2c). The
result now follows from Theorem 3.1(v) and (vi).

(vii) By Theorem 3.7(v), ρ(2i) = 2 · 2max(i−c,0) for i ≥ 1. Thus, u2 ≡ 2c (mod 2)c+1 and
u4 ≡ 2c+1 (mod 2c+2). Moreover, by (1.13), u3 = a2 − 1 ≡ −1 (mod 22c) and

u5 = u23 − u22 = (a2 − 1)2 − a2 ≡ 1 (mod 22c).

Hence, π(2) = 2, π(4) = π(2c+1) = 4 and π(2c+2) 6= π(2c+1). The assertion now follows from
Theorem 3.1 (vi).

(viii) This follows from Theorem 3.7(iv) and part (ii) of this theorem.
(ix) We note by Theorem 1.3 that |a| > 2, since u(a,−1) is nondegenerate. Part (ix) now

follows from Theorem 3.7(vi) and part (ii) of this theorem. �

Lemmas 3.9 and 3.10 determine ρ(pi) and π(pi) for LSFK u(a,±1) when p = 2 or 3 and
p ∤ D.

Lemma 3.9. Consider the nondegenerate LSFK u(a, 1).

(i) Suppose that a ≡ 1 (mod 2). Then ρ(2) = 3 and ρ(2i) = 6 · 2max(i−3,0) for i ≥ 1.

(ii) Suppose that a ≡ ±1 (mod 3). Let c = ν3(a
2+2). Then c ≥ 1 and ρ(3i) = 4·3max(i−c,0)

for i ≥ 1. Furthermore, π(3i) = 2ρ(3i) = 8 · 3max(i−c,0) for i ≥ 1.

(iii) Suppose that v3(a) = d ≥ 1. Then ρ(3i) = π(3i) = 2 · 3max(i−d,0) for i ≥ 1.

Proof. (i) By (1.13), u1 ≡ u2 ≡ 1 (mod 2), u3 = a2 + 1 ≡ 2 (mod 8), and u4 = a(a2 + 2) ≡ 1
(mod 2). Moreover,

u6 = u3v3 = a(a2 + 1)(a2 + 3) ≡ 8 (mod 16)

and

u7 = u23 + u24 = (a2 + 1)2 + (a(a2 + 2))2 ≡ 22 + 1 ≡ 5 (mod 8).

Hence, ρ(2) = π(2) = 3, ρ(4) = ρ(8) = 6, and ρ(16) 6= ρ(4). In addition, π(4) = 6, whereas
π(8) 6= π(4). Part (i) now follows from Theorem 3.1(v) and (vi).

(ii) By (1.13), un ≡ 0 (mod 3) for 1 ≤ i ≤ 3, whereas ν3(u4) = ν3(a(a
2 + 2)) = c ≥ 1.

Therefore, ρ(3i) = 4 for 1 ≤ i ≤ c and ρ(3c+1) 6= ρ(3). The assertion now follows from
Theorem 3.1(v) and Corollary 3.3(ii)(b).

(iii) By (1.13), u1 = 1 and ν3(u2) = ν3(a) = d ≥ 1. Thus, ρ(3i) = 2 for 1 ≤ i ≤ d and
ρ(3d+1) 6= ρ(3). Part (iii) now follows from Theorem 3.1(v) and Corollary 3.3(ii)(a). �

Lemma 3.10. Consider the nondegenerate LSFK u(a,−1).

(i) Suppose that a ≡ 1 (mod 2). Let c = ν2(a
2 − 1) and d = ν2(a + 1). Then c exists,

c ≥ 3, and ρ(2i) = 3 ·2max(i−c,0). Moreover, d exists and d ≥ 1. If d = 1, then π(2) = 3

and π(2i) = 6 · 2max(i−c,0) for i ≥ 2. If d ≥ 2, then π(2i) = 3 · 2max(i+1−c,0) for i ≥ 1.
(ii) Suppose that ν3(a) = e ≥ 1. Then ρ(3i) = 2 · 3max(i−e,0) and π(3i) = 4 · 3max(i−e,0) for

i ≥ 1.

Proof. (i) We let s ∈ {0, 1}. Since u(a,−1) is nondegenerate, we have that |a| > 2, which
implies that c = ν2(a

2 − 1) exists. Noting that a ≡ 1 (mod 2), we see by (1.13) that u1 ≡
u2 ≡ 1 (mod 2) and ν2(u3) = ν2(a

2 − 1) = c ≥ 3. Hence, ρ(2i) = 3 for 1 ≤ i ≤ c and

ρ(2c+1) 6= ρ(4) = 3. Therefore, ρ(2i) = 3 · 2max(i−c,0) for i ≥ 1 by Theorem 3.1(v). Moreover
ν2(a+ 1) = d ≥ 1.
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Furthermore, if d ≥ 2, then d = c− 1, since a2 − 1 = (a+ 1)(a − 1). We note that

u4 = −u2 + au3 ≡ −a+ a · 0 ≡ −a (mod 2c).

Thus, π(2i) = 3 for 1 ≤ i ≤ d. Further, by (1.13),

u7 = u24 − u23 ≡ (−a+ s2c)2 − (2c)2 ≡ a2 ≡ 1 + 2c mod 2c+1. (3.20)

Hence, by Theorem 3.1(vi), π(2i) = 6 for d+1 ≤ i ≤ c, and π(2c+1) 6= 6. Part (i) now follows
from Theorem 3.1(vi).

(ii) Since u2 = a, we see that ν3(u2) = e ≥ 1. Thus by Theorem 3.1(v) and Corollary

3.4(ii)(a), ρ(3i) = 2 · 3max(i−e,0) and π(3i) = 4 · 3max(i−e,0) for i ≥ 1. �

Lemma 3.11. Let u(a, b) be a nondegenerate LSFK, where b = ±1. Let R, S, and T be as
defined in Section 2 just after formula (2.2).

(i) ρ(R) = R.
(ii) If b = 1 and R > 1, then π(R) = 4R.
(iii) Suppose that b = −1. Then π(S) = S. Moreover, if T > 1, then π(T ) = 2T .

Proof. (i) We observe that ρ(R) = R, if R = 1. Suppose that R > 1 and p | R. Then p ≥ 5
and p | D. It follows from Theorem 3.7(ii) that ρ(pi) = pi for i ≥ 1. The assertion now follows
from (3.5) in Theorem 3.1.

(ii) Suppose that p | R. Then π(pi) = 4pi by Theorem 3.8(iv). The result now follows from
(3.6).

(iii) Suppose that p | S. Then p ≥ 5 and p | a− 2. It now follows from Theorem 3.8(v) that
π(pi) = pi for i ≥ 1. Now suppose that q is a prime and q | T . Then q ≥ 5 and q | a+ 2. We
see by Theorem 3.8(v) that π(qi) = 2qi. The result now follows from (3.6). �

Before presenting Lemma 3.13, we define the radical of m, denoted by rad(m).

Definition 3.12. Let m be a positive integer. Then rad(1) = 1 and for m ≥ 2, rad(m) is the
squarefree integer given by

rad(m) =
∏

p|m

p. (3.21)

Lemma 3.13. Let u(a, b) be a nondegenerate LSFK with discriminant D, where b = ±1.

(i) If rad(m) | 6, then
rad(ρi(m)πi(m)) | 6 for i ≥ 1. (3.22)

(ii) If rad(m) | D, then
rad(ρi(m)) | D (3.23)

and
rad(πi(m)) | 6D for i ≥ 1. (3.24)

Proof. (i) We see by Theorems 3.7 and 3.8, Lemmas 3.9 and 3.10, and Theorem 3.1(vii) and
(viii) that (3.22) holds for i = 1. It now follows by induction that (3.22) holds for i ≥ 1.

(ii) It follows from Theorem 3.7, Lemma 3.11(i), and induction that (3.23) holds. It fur-
ther follows from Theorem 3.8, Lemma 3.11(ii), the above part (i) of this lemma, (3.6), and
induction that (3.24) holds. �

Lemma 3.14. Consider the nondegenerate LSFK u(a,±1) with discriminant D. Let A > 1
be any integer such that for each prime divisor p of A, we have that p ≥ 5 and p ∤ D. Then
there exists a positive integer N such that if i ≥ N , then

rad(ρi(A)πi(A)) | 6D. (3.25)
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Proof. Suppose that p ≥ 5 and p ∤ D. We see from Theorem 3.1(iv) that if q is a prime such
that q > 3, q ∤ D, and q | ρ(p)π(p), then q < p. Now consider the prime power pk, where
p ≥ 5, k ≥ 2, and p ∤ D. Let σ ≥ 1 and τ ≥ 1 be the largest integers such that ρ(pσ) = ρ(p)

and π(pτ ) = π(p), respectively. Then by Theorem 3.1(v) and (vi), ρ(pk) = pmax(k−σ,0)ρ(p)

and π(pk) = pmax(k−τ,0)π(p). It thus follows from Theorem 3.1(v), (vi), and (viii) that if
i ≥ max(k + 1− σ, 1) and j ≥ max(k + 1− τ, 1), then ρi(pk) = ρi(p) and πj(pk) = πj(p).

It also follows from Lemma 3.13(i) and (ii) and from Theorem 3.1(viii) that if rad(B) | 6D,
then

rad(ρi(B)πi(B)) | 6D

for all i ≥ 1.
Let A = pk11 pk22 · · · pkrr , where p1 < p2 < · · · < pr. Let σr and τr be the largest positive

integers that ρ(pσr

r ) = ρ(pr) and π(pτrr ) = π(pr). By our above argument, we see that if
i ≥ max(kr + 1 − σr, 1) and j ≥ max(kr + 1 − τr, 1), then q < pr for every prime q dividing
ρi(pr)π

j(pr) for which q ≥ 5 and q ∤ D. It now follows by an inductive argument that there
exists a positive integer N such that (3.25) holds for all i ≥ N . �

Corollary 3.15. Let u(a,±1) be a nondegenerate LSFK and let m be a positive integer. Then
there exists a positive integer N such that if i ≥ N , then

rad(ρi(m)πi(m)) | 6D.

Proof. This follows from Lemmas 3.14, 3.13, and Theorem 3.1(viii). �

Lemma 3.16. Let u(a, 1) be a nondegenerate LSFK.

(i) Suppose that a ≡ ±1 (mod 6). Then 12 is a fixed point of ρ and 24R is a fixed point
of π, where R ≥ 1.

(ii) Suppose that a ≡ 3 (mod 6). Then 6 is a fixed point of both ρ and π, whereas 12R is
also a fixed point of π, where R > 1.

(iii) Suppose that a ≡ 2 (mod 4). Then 2iR is a fixed point of π, where i ≥ 2 and R > 1.
(iv) Suppose that a ≡ 0 (mod 4). Then 4R is a fixed point of π, where R > 1.

Proof. This follows from Theorems 3.1(vii) and 3.8(iii), and Lemmas 3.9 and 3.11(ii). �

Lemma 3.17. Let u(a,−1) be a nondegenerate LSFK.

(i) Suppose that a ≡ 5 or 11 (mod 18). Then 2 · 3jT is a fixed point of π, where j ≥ 1
and T > 1.

(ii) Suppose that a ≡ 7 or 13 (mod 18). Then 2 · 3jT is a fixed point of π, where j ≥ 1
and T ≥ 1.

(iii) Suppose that a ≡ 17 (mod 18). Then 6T is a fixed point of π, where T > 1.
(iv) Suppose that a ≡ 1 (mod 18). Then 6T is a fixed point of π, where T ≥ 1.
(v) Suppose that a ≡ ±2 or ±14 (mod 36). Then 2i ·3jT is a fixed point of π, where i ≥ 1,

j ≥ 0, and T ≥ 1.
(vi) Suppose that a ≡ ±10 (mod 36). Then 2i · 3εT is a fixed point of π, where i ≥ 1 and

T ≥ 1.
(vii) Suppose that a ≡ ±4 or ±16 (mod 36). Then 2i3jT is a fixed point of π, where

i ∈ {1, 2}, j ≥ 0, and T ≥ 1.
(viii) Suppose that a ≡ ±8 (mod 36). Then 2i3εT is a fixed point of π, where i ∈ {1, 2} and

T ≥ 1.
(ix) Suppose that a ≡ 3 (mod 6). Then 6 is a fixed point of ρ, whereas 12T is a fixed point

of π, where T ≥ 1.
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(x) Suppose that a ≡ 6 (mod 12). Then 2iT is a fixed point of π, where i ≥ 1 and T ≥ 1.
(xi) Suppose that a ≡ 0 (mod 12). Then 2iT is a fixed point of π, where i ∈ {1, 2} and

T ≥ 1.

Proof. This follows from Theorems 3.1(vii) and 3.8(iii), (vii), (viii), (ix), and Lemmas 3.10
and 3.11(iii). �

Lemma 3.18. Let u(a, 1) be a nondegenerate LSFK. Let c = ν3(a
2 + 2), d = ν3(a), and

e = ν2(a).

(i) If a ≡ 0 (mod 2), then πj(R) = 4R for j ≥ 1 and R > 1.
(ii) Suppose that a ≡ ±1 (mod 6). Then c = ν3(u4). Moreover, c = 1 if a ≡ ±1 or ±2

(mod 9), whereas c ≥ 2 if a ≡ ±4 (mod 9).
(a) If j ≥ max(4, ⌈(i − 4)/2⌉ + 1), then ρj(2i) = 12 for i ≥ 1.
(b) If j ≥ max(3, i− c), then ρj(3i) = 12 for i ≥ 1.
(c) If j ≥ max(4, i− 3), then πj(2i) = 24 for i ≥ 1.
(d) If j ≥ max(3, i− c), then πj(3i) = 24 for i ≥ 1.
(e) If j ≥ 1, then πj(R) = 24R for R > 1.

(iii) Suppose that a ≡ 3 (mod 6). Then d = ν3(u2) and d ≥ 1.
(a) ρ2j−1(2) = π2j−1(2) = 3 and ρ2j(2) = π2j(2) = 2 for j ≥ 1.
(b) If j ≥ 1 and 1 ≤ i ≤ d, then ρ2j−1(3i) = π2j−1(3i) = 2 and ρ2j(3i) = π2j(3i) = 3.
(c) If j ≥ ⌈(i− 1)/2⌉, then ρj(2i) = 6 for i ≥ 2.
(d) If j ≥ i− d, then ρj(3i) = πj(3i) = 6 for i ≥ d+ 1.
(e) If j ≥ i− 1, then πj(2i) = 6 for i ≥ 2.
(f) If j ≥ 2, then πj(R) = 12R for R > 1.

(iv) Suppose that a ≡ 0 (mod 6). Then d = ν3(u2) and d ≥ 1. If j ≥ max(i + 1 − d, 1),
then ρj(3i) = πj(3i) = 2 for i ≥ 1.

(v) Suppose that a ≡ ±2 (mod 12). Then c = ν3(u4) and c ≥ 1. If j ≥ max(i+ 1− c, 1),
then ρj(3i) = 4 and πj(3i) = 8 for i ≥ 1.

(vi) Suppose that a ≡ 0 (mod 4). Then e = ν2(u2) and e ≥ 1. If j ≥ max(i + 1 − e, 1),
then ρj(2i) = πj(2i) = 2 for i ≥ 1.

(vii) Suppose that a ≡ ±4 (mod 12). Then c = ν3(u4) and c ≥ 1. If j ≥ max(i+ 3− c, 3),
then ρj(3i) = πj(3i) = 2 for i ≥ 1.

Proof. This follows from (1.13), Theorem 3.1(viii), Theorem 3.7(v), Theorem 3.8(iii) and (vi),
and Lemmas 3.9, 3.16, and 3.11(ii). �

Lemma 3.19. Let u(a,−1) be a nondegenerate LSFK. Suppose that d = ν3(a), e = ν2(a),
g = ν3(a

2 − 1), and ℓ = ν2(a
2 − 1).

(i) Suppose that a ≡ 0 (mod 2). Then πj(T ) = 2T for j ≥ 1 and T > 1.
(ii) Suppose that a ≡ 0 (mod 4). Then e = ν2(u2) and e ≥ 1.

(a) If j ≥ max(i+ 1− e, 1), then ρj(2i) = 2 for i ≥ 1.
(b) If j ≥ max(i− e, 1), then πj(2i) = 4 for i ≥ 2.

(iii) Suppose that a ≡ ±1 (mod 6). Then ℓ = ν2(u3) and ℓ ≥ 3.
(a) If j ≥ 2, then πj(T ) = 6T for T > 1.
(b) If j ≥ max(i+ 1− ℓ, 1), then ρ2j(2i) = 3 for i ≥ 1.

(iv) Suppose that a ≡ 3 (mod 6). Then d = ν3(u2) ≥ 1 and ℓ = ν2(u3) ≥ 3.
(a) If j ≥ 3, then πj(T ) = 12T for T > 1.
(b) ρ2j−1(2i) = 3 and ρ2j(2i) = 2 for j ≥ 1 and 1 ≤ i ≤ ℓ.
(c) ρ2j−1(3i) = 2 and ρ2j(3i) = 3 for j ≥ 1 and 1 ≤ i ≤ d.
(d) If j ≥ i− ℓ, then ρj(2i) = 6 for i ≥ ℓ+ 1.
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(e) If j ≥ i− d, then ρj(3i) = 6 for i ≥ d+ 1.
(v) Suppose that a ≡ 5 or 11 (mod 18). If j ≥ max(i+2− ℓ, 2), then πj(2i) = 3 for i ≥ 1.
(vi) Suppose that a ≡ 7 or 13 (mod 18). If j ≥ max(i+1− ℓ, 2), then πj(2i) = 6 for i ≥ 1.
(vii) Suppose that a ≡ 4 or 7 (mod 9). If j ≥ 1, then πj(3i) = 2 · 3i for i ≥ 1.
(viii) Suppose that a ≡ 8 (mod 9). Then g = ν3(u3) and g ≥ 2. If j ≥ max(i + 1 − g, 1),

then πj(3i) = 3 for i ≥ 1.
(ix) Suppose that a ≡ 1 (mod 9). Then g = ν3(u3) and g ≥ 2. If j ≥ max(i + 1 − g, 1),

then πj(3i) = 6 for i ≥ 1.
(x) Suppose that a ≡ 3 (mod 12).

(a) π2j−1(2i) = 3 and π2j(2i) = 4 for j ≥ 1 and 1 ≤ i ≤ ℓ− 1.
(b) π2j−1(3i) = 4 and π2j(3i) = 3 for j ≥ 1 and 1 ≤ i ≤ d.
(c) If j ≥ max(i− ℓ, 2), then πj(2i) = 12 for i ≥ ℓ.
(d) If j ≥ i− d, then πj(3i) = 12 for i ≥ d+ 1.

(xi) Suppose that a ≡ 9 (mod 12).
(a) If j ≥ max(i− ℓ, 4), then πj(2i) = 12 for i ≥ 1.
(b) If j ≥ max(i− d, 3), then πj(3i) = 12 for i ≥ 1.

(xii) Suppose that a ≡ 0 (mod 6). Then d = ν3(u2) and d ≥ 1. If j ≥ max(i + 1 − d, 1),
then ρj(3i) = 2 and πj(3i) = 4 for i ≥ 1.

Proof. This follows from (1.13), Theorem 3.1(viii), Theorem 3.8(iii), (vii), (viii), and (ix), and
Lemmas 3.10, 3.11(iii), and 3.17. �

4. Proofs of the Main Theorems

Proof of Theorems 2.2 and 2.3. We suppose that u(a, b) is a nondegenerate LSFK, where
b = ±1. Let m1 and m2 be positive integers. It follows from Corollary 3.15, Theorem 3.1(viii)
and (ix), Theorem 3.8(iii) and (vi)–(ix), Lemma 3.11 (i)–(iii), and Lemmas 3.16–3.19 that
the process of integrating ρ(m1) and π(m2) terminates in the fixed points r1 and r2 if and
only if r1 and r2 are each one of the fixed points given in Theorems 2.2 and 2.3, respectively,
depending on the value of a. �

Proof of Theorem 2.4. This follows from Corollary 3.15, Theorem 3.1(viii) and (ix), Theorem
3.8(iii) and (vi), Lemma 3.11(i) and (ii), Lemma 3.18, and Theorem 2.2. �

Proof of Theorem 2.5. This follows from Corollary 3.15, Theorem 3.1(viii) and (ix), Theorem
3.8(iii) and (vii)–(ix), Lemma 3.11(i) and (iii), Lemma 3.19, and Theorem 2.3. �
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