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Abstract. We give further combinatorial proofs of identities related to the Fibonacci num-
bers squared by considering the tiling of an n-board (a 1 × n array of square cells of unit
width) with half-squares ( 1

2
× 1 tiles) and ( 1

2
, 1
2
)-fence tiles. A (w, g)-fence tile is composed

of two w × 1 rectangular subtiles separated by a gap of width g. In addition, we construct a
Pascal-like triangle whose (n, k)th entry is the number of tilings of an n-board that contain
k fences. Elementary combinatorial proofs are given for some properties of the triangle and
we show that reversing the rows gives the (1/(1 − x2), x/(1 − x)2) Riordan array. Finally,
we show that tiling an n-board with ( 1

4
, 1
4
)- and ( 1

4
, 3
4
)-fences also generates the Fibonacci

numbers squared.

1. Introduction

In [6], we showed that the number of ways to tile an n-board using half-squares (12 × 1 tiles,

denoted by h) and (12 ,
1
2)-fences (denoted by f) is F 2

n+1, where Fn is the nth Fibonacci number
(F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn). A (w, g)-fence tile is composed of two pieces (referred
to as posts) of size w × 1 separated by a gap of size g × 1. We used these tilings to formulate
combinatorial proofs of identities relating the Fibonacci numbers squared to themselves and
to other number sequences. Here, after proving the main theorem of [6] another way, we
give combinatorial proofs of further identities, again drawing in part on methods described in
[4]. We then construct a Pascal-like triangle whose rows sum to give the Fibonacci numbers
squared and show that it is closely related to a Riordan array. Finally, we present an alternative
combinatorial interpretation of the Fibonacci numbers squared, this time by tiling with (14 ,

1
4)-

and (14 ,
3
4)-fences.

We begin by proving Theorem 3.2 of [6] in a more combinatorial manner. The proofs of
this and Identity 3.2 require the following lemma.

Lemma 1.1. There is a bijection between the tilings of an n-board using half-squares and
(12 ,

1
2)-fences and the tilings of an ordered pair of n-boards using squares and dominoes.

Proof. For each h (f) occupying the left side of a cell, place a square (domino) on the first of
the pair of n-boards. For each h (f) occupying the right side of a cell, place a square (domino)
on the second n-board to be tiled with squares and dominoes. Note that each fence occupies
two consecutive left sides or right sides of a cell and each fence corresponds to one domino.
The process is clearly reversible and so the mapping is a bijection. �

Theorem 1.2. Let An be the number of ways to tile an n-board using half-squares and fences.
Then An = F 2

n+1.

Proof. There are Fn+1 ways to tile an n-board using squares and dominoes [4]. From Lemma 1.1,
An is the same as the number of ways to tile an ordered pair of n-boards using squares and
dominoes, which is F 2

n+1. �
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2. Identities

It is generally advantageous to describe tilings that involve fences in terms of metatiles,
which are groupings of tiles that cover an integral number of cells and cannot be split to make
smaller metatiles [5]. When tiling an n-board with h and f , the possible metatiles are ff
(two interlocking fences we call a bifence), and the families h(ff)jh, fh(ff)jh, h(ff)jfh, and
fh(ff)jfh, where j ≥ 0, which have lengths of 2j + 1, 2j + 2, 2j + 2, and 2j + 3, respectively
[6]. Notice that because all metatiles contain 0 or 2 half-squares, all tilings contain an even
number of half-squares. The fh at the start of the second family, at the end of the third
family, and at both ends of the fourth family is referred to as a filled fence (a fence with its
gap filled by a half-square). If a half-square is inside (outside) a fence, it is said to be captured
(free). On tiling a board, a tile of either type may always follow a tile of either type before the
final h is placed. After the final h is placed, the remainder of the board must be filled with
bifences, if anything. In other words, in the symbolic representation of the tiling as a string of
f and h, these symbols may be placed in any order before the final h. After this, there cannot
be an odd number of f because this would imply an unfilled fence at the end.

Identity 2.1. For n ≥ 0,

F 2
n+1 =

{∑n
k=1 kF

2
n+1−k, n odd,

1 +
∑n

k=1 kF
2
n+1−k, n even.

Proof. How many tilings of an n-board contain at least two half-squares? Answer 1 : An when
n is odd, and An − 1 when n is even because the all-bifence tiling only occurs for even n.
Answer 2 : Following the method introduced in [2], we condition on the location of the second
h. Because the symbolic representation of all non-bifence metatiles end in h, if the kth cell in
the n-board contains the second h, the symbolic representation of the tiling of the first k cells
must end in h. This leaves one h that may be placed anywhere among the k−1 fences and so,
there are k ways to tile these first k cells. There are An−k ways to tile the rest of the board.
Summing over all possible k gives

∑n
k=1 kAn−k. After equating this to Answer 1, the identity

follows from Theorem 1.2. �

To generalize Identity 2.1 we first need the following definition and lemma. Let B
(q)
n be the

number of tilings of an n-board that contain exactly 2q half-squares. Thus for n ≥ 1, B
(0)
n = 1

if n is even (the all-bifence tiling) and is 0 if n is odd. Evidently, B
(q)
n = 0 if n < q and for

convenience, we set B
(0)
0 = 1.

Lemma 2.2. For n ≥ q > 0,

B(q)
n = B

(q)
n−2 +

(
n+ q − 1

2q − 1

)
. (2.1)

Proof. The symbolic representation of a tiling must end in either h or ff . If it ends in h, we
are free to place the remaining 2q − 1 half-squares and n − q fences in any order; this gives(
n+q−1
2q−1

)
possibilities. If it ends in ff , there are B

(q)
n−2 ways to tile the remaining cells. �

As will be shown at the end of Section 3, B
(q)
n is, for n ≥ q ≥ 0, the (n, q)th entry of a

Riordan array and the generating function for it is known.

Identity 2.3. For p > 0,

F 2
n+1 =

p−1∑
q=0

B(q)
n +

n∑
k=p

(
k + p− 1

2p− 1

)
F 2
n+1−k.
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Proof. How many tilings of an n-board contain at least 2p half-squares? Answer 1 : The total
number of tilings minus the tilings that contain less than 2p half-squares, i.e.,

An −
p−1∑
q=0

B(q)
n .

Answer 2 : We condition on the location of the 2pth half-square. If it occurs in the kth cell,
the symbolic representation of the tiling up to that cell must end in h. There are

(
k+p−1
2p−1

)
ways

to order the remaining 2p− 1 half-squares and k − p fences and An−k ways to tile the rest of
the board. Summing over all possible k and equating the result to Answer 1 gives

An −
p−1∑
q=0

B(q)
n =

n∑
k=p

(
k + p− 1

2p− 1

)
An−k,

and the identity follows from Theorem 1.2. �

Identity 2.4. For n > 0,

F 2
n+1 = 2n− 1 +

n−1∑
m=2

(2m2 − 2m− 1)F 2
n−m.

Proof. How many tilings of an n-board use at least two fences? Answer 1 : An − 1− 2(n− 1)
because the all-h tiling uses no fences and there are 2(n− 1) ways to place a single filled fence
on an n-board otherwise filled with half-squares. Answer 2 : We condition on the position of
the start of the first metatile that contains the second fence. If the first k cells are filled with
half-squares and cell k + 1 is the start of a metatile of length j = 2, . . . , n − k containing at
least two fences, on summing over all possible j and noting that there are two such metatiles

for j > 2 but only one for j = 2, we have
∑n−k

j=2 (2 − δj,2)An−k−j ways to tile from cell k + 1

onwards. If the first k cells contain exactly one fence, there are 2(k − 1) ways to place this
fence. The metatile of length j starting at cell k + 1 needs to contain one or more fences.

Hence, there are
∑n−k

j=2 (2 + δj,2)An−k−j ways to tile the remaining cells. Combining these
possibilities, summing over all possible k, and then equating to Answer 1 gives

An − 2n+ 1 =
n−2∑
k=0

n−k∑
j=2

(2− δj,2)An−k−j + 2
n−2∑
k=1

(k − 1)

n−k∑
j=2

(2 + δj,2)An−k−j


=

n∑
j=2

(2− δj,2)An−j +

n−2∑
k=1

An−k−2 + 2

n−3∑
k=1

n−k∑
j=3

An−k−j

+ 2

n−2∑
k=2

(k − 1)An−k−2 + 4

n−2∑
k=2

(k − 1)

n−k∑
j=2

An−k−j

= An−2 + 2
n−1∑
m=2

An−m−1 +
n−1∑
m=2

An−m−1 + 2
n−1∑
m=3

(m− 2)An−m−1

+ 2(An−4 + · · ·+A0 +An−5 + · · ·+A0 + · · ·+A0)

+ 4(An−4 + · · ·+A0 + 2(An−5 + · · ·+A0) + · · ·+ (n− 3)A0)

= An−2 +

n−1∑
m=2

(2m− 1)An−m−1 + 2

n−4∑
r=0

(n− 3− r)Ar + 4

n−3∑
s=1

(1 + · · ·+ s)An−s−3
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= An−2 +

n−1∑
m=2

(2m− 1)An−m−1 + 2

n−1∑
m=3

(m− 2)An−m−1 + 4

n−1∑
m=3

1
2(m− 2)(m− 1)An−m−1

= An−2 +
n−1∑
m=2

(2m2 − 2m− 1)An−m−1,

where we used r = n−m− 1 and s = m− 2. The identity follows from Theorem 1.2. �

Although the following two identities are certainly already known, we include them as the
method of proof appears to be new.

Identity 2.5. For n > 3, F 2
n+1 = F 2

n + 4F 2
n−1 + F 2

n−2 − F 2
n−3.

Proof. For n > 3, how many tilings of an n-board are there? Answer 1 : An. Answer 2 : We
condition on the end tiles. If the first and last tiles are free half-squares, there are An−1 ways
to tile the remaining cells in between. If the tiling starts and ends with a filled fence, there
are An−3 ways to tile the remaining cells. If the first tile is an h and the last is a filled fence
or vice versa or the tiling starts or ends with a bifence, in each of these four cases there are
An−2 ways to tile the remaining cells. We have counted tilings that start and end in a bifence
(of which there are An−4) twice and so we must subtract these to leave, on equating both
answers, An = An−1 + 4An−2 +An−3 −An−4, and the identity follows from Theorem 1.2. �

Identity 2.6. For n > 2,

F 2
n+1 = F 2

n−2 + 4
n−1∑
j=1

F 2
j .

Proof. How many tilings of an n-board contain at least one fence? Answer 1 : An− 1 because
the only tiling not containing a fence is the all-h tiling. Answer 2 : For n ≥ 4, such a board
can be tiled in the following ways: h[[n− 1]]h, h[n− 2]fh, fh[n− 2]h, f2[n− 2], [n− 2]f2, or
fh[n− 3]fh, where [m] and [[m]] represent an arbitrary m-board and an m-board containing
at least one fence, respectively. Hence, if Cm is the number of tilings of an m-board that
contain at least one fence, then

Cn = Cn−1 + 4An−2 +An−3 −An−4, (2.2)

where the −An−4 term is to compensate for f2[n− 2] with [n− 2]f2 counting the f2[n− 4]f2

tiling twice. This duplication does not occur for n < 4 and so, C3 = C2 + 4A1 + A0 and
C2 = 3 = 4A0 − 1 (because the tilings of a two-board containing a fence are hfh, fhh, and
f2). Using (2.2) to replace the first term on the right side of (2.2) recursively, and equating

the result to Answer 1 gives An − 1 = An−3 − 1 + 4
∑n−2

j=0 Aj , and the identity follows from
Theorem 1.2. �

Identity 2.7. For n ≥ 0,

n∑
k=1

(−1)kF 2
k+1 = (−1)n

F 2
n + 2

bn/2−1c∑
j=0

F 2
n−2j−1

 .

Proof. Following the description-involution-exception (DIE) method of [3], the ‘description’
is all possible positive-length tilings of boards not greater than length n. The sign-reversing
involution I for any metatile x satisfies x = I(I(x)) and the lengths of x and I(x) are of opposite
parity. We make I(h2) = f2, I(h(f2)jfh) = h(f2)j+1h, and I(fh(f2)jh) = fh(f2)jfh with
j ≥ 0. All of these cases give a mapping to a metatile of length one more. The remaining cases
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(which follow from x = I(I(x))) give a mapping to a metatile of length one less. I is applied
to the final metatile of a tiling of a k-board to generate a tiling of a (k− 1)- or (k+ 1)-board.
The exceptions are when an n-board ends in h2, h(f2)jfh, or fh(f2)jh because the involution
would then generate a tiling of an (n+ 1)-board. The number of tilings of an n-board ending
in these metatiles are An−1, An−2j−2, and An−2j−2, respectively. Hence

n∑
k=1

(−1)kAk = (−1)n

An−1 + 2

bn/2−1c∑
j=0

An−2j−2

 ,

and the identity follows from Theorem 1.2. �

The general identity that follows can be used to relate the squares of the Fibonacci numbers
to other sequences. As described in the following lemma, the sequences arise when we consider
tilings that lack one or more types of metatile and specific examples of the general identity
were given as Identities 4.5, 4.7, and 4.9 in [6] (and appear again here as the 2nd, 8th, and

9th identities, respectively, in Table 1). We first define S
(P,m,l0,d)
n to be the number of ways

to tile an n-board using half-squares and (12 ,
1
2)-fences such that only metatiles drawn from

the disjoint sets P and Q are used. Set P contains finitely many metatiles. If m = 0, set Q
is empty. Otherwise, it contains infinitely many metatiles: Q contains m metatiles of each
length l0+jd for j = 0, 1, 2, . . ., where l0 ≥ 3. When tiling with h and f , there are at most two
metatiles of each length l0 + jd and so, m cannot exceed 2. Using this notation, we already

have that S
(P,2,3,1)
n = An, where P = {h2, f2, hfh, fhh} is the set of all possible metatiles

of length less than 3, and the remaining parameters describe the lengths and numbers of all
metatiles of length greater than 2, namely, two of each length 3, 4, . . ..

Lemma 2.8. Writing S
(P,m,l0,d)
n as Sn for brevity,

Sn =

{
δ0,n +

∑|P |
i=1 Sn−li , m = 0,

δ0,n − δd,n + Sn−d +mSn−l0 +
∑|P |

i=1(Sn−li − Sn−d−li), m > 0,
(2.3)

where li is the length of the ith metatile in P and Sn<0 = 0.

Proof. Conditioning on the last metatile gives

Sn = δ0,n +

|P |∑
i=1

Sn−li +m
∞∑
j=0

Sn−l0−jd (2.4)

with Sn<0 = 0. If m > 0, subtracting (2.4) with n replaced by n−d from (2.4) gives (2.3). �

Identity 2.9. For n ≥ 0,

F 2
n+1 = Sn +

∑
i

n∑
k=li

F 2
k−li+1Sn−k,

where li is the length of the ith metatile in the set P ∪Q.

Proof. How many tilings of an n-board contain at least one metatile that is not in the set
P ∪ Q? Answer 1 : An − Sn. Answer 2 : We condition on the location of the last metatile
not in the set P ∪Q. If this metatile has length l, then the number of tilings when it lies on
cells k − l + 1 to k (for k = l, . . . , n) is Ak−lSn−k. Summing over the possible k and possible
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metatiles and equating the two answers gives

An − Sn =
∑
i

n∑
k=li

Ak−liSn−k.

The identity follows from Theorem 1.2. �

Choosing P = {h2, f2} and m = 0 gives Sn = Fn+1. From Identity 2.9, one then obtains
the following identity.

Identity 2.10. For n > 0,

F 2
n+1 = Fn+1 + 2

n∑
l=2

n∑
k=l

F 2
k−l+1Fn+1−k.

Further identities relating the Fibonacci numbers squared to other number sequences are
summarized in Table 1.

Table 1. Particular cases of Identity 2.9 where Sn = δ0,n− (δm,1 + δm,2)δd,n +
c1Sn−1 + c2Sn−2 + c3Sn−3. The OEIS sequence numbers are for each Sn.

P m, l0, d c1, c2, c3 OEIS identity:
sequence F 2

n+1 − Sn =
{f2, hfh, fhh} 2, 3, 1 1, 3,−1 A052973

∑n
k=1 F

2
kSn−k

{h2, hfh, fhh} 2, 3, 1 2, 1, 0 A001333
∑n

k=2 F
2
k−1Sn−k

{h2} 2, 3, 1 2,−1, 2 A007909 3
∑n

k=2 F
2
k−1Sn−k

{f2} 2, 3, 1 1, 1, 1 A001590 Sn−1 +
∑n

k=2(F
2
k + 2F 2

k−1)Sn−k
{h2, f2} 2, 3, 1 2, 0, 1 A052980 2

∑n
k=2 F

2
k−1Sn−k

{hfh, fhh} 2, 3, 1 1, 2, 0 A078008 Sn−1 +
∑n

k=2(F
2
k + F 2

k−1)Sn−k
{h2, f2, hfh} 1, 3, 1 2, 1,−1 A077998

∑n
l=2

∑n
k=l F

2
k−l+1Sn−k

{h2, fhh, hfh, fhfh} 0,-,- 1, 2, 1 A002478
∑n

l=2

∑n
k=l(2− δl,2 − δl,3)F 2

k−l+1Sn−k

{h2} 2, 3, 2 1, 1, 1 A000213
∑bn/2c

j=1

∑n
k=2j(2 + δj,1)F

2
k−2j+1Sn−k

3. Pascal-Like Triangle

n \ k 0 1 2 3 4 5 6 7 8 9
0 1
1 1 0
2 1 2 1
3 1 4 4 0
4 1 6 11 6 1
5 1 8 22 24 9 0
6 1 10 37 62 46 12 1
7 1 12 56 128 148 80 16 0
8 1 14 79 230 367 314 130 20 1
9 1 16 106 376 771 920 610 200 25 0

Figure 1. A Pascal-like triangle with entries [ nk ] (A123521 in [9]).

As in [5], we form a Pascal-like triangle by tabulating [ nk ], the number of tilings of an n-board
that use k fences (Figure 1). The choice [ 00 ] = 1 is justified in the proof of Identity 3.7.
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Identity 3.1. For n ≥ 0,

F 2
n+1 =

n∑
k=0

[
n
k

]
. (3.1)

Proof. The right side of (3.1) is the sum of row n, which gives all possible ways to tile an
n-board. The result then follows from Theorem 1.2. �

Identity 3.2. For n ≥ k ≥ 0,[
n
k

]
=

m∑
j=k−m

(
n− j
j

)(
n− (k − j)
k − j

)
,

where m = min(bn/2c, k).

Proof. From Lemma 1.1, [ nk ] is also the number of square-domino tilings of an ordered pair
of n-boards that use a total of k dominoes. The number of ways to tile an n-board with j
dominoes (and n− 2j squares) is

(
n−j
j

)
. If one of the n-boards has j dominoes, the other will

have k − j dominoes. Hence, there are
(
n−j
j

)(n−(k−j)
k−j

)
ways to tile the n-boards if the first

board has j dominoes. Evidently, j cannot exceed k or bn/2c and so m ≥ j ≥ k−m. We then
sum over all possible values of j. �

Identity 3.3. For n ≥ 0, [ n0 ] = 1.

Proof. This corresponds to the all half-square tiling of an n-board. �

Identity 3.4. For n ≥ 0, [ nn ] is 1 if n is even and is 0 otherwise.

Proof. A bifence is of length 2 (and is composed of two fences) and is the only metatile without
half-squares. Thus, the fence-only tiling can only occur when n is even. �

Identity 3.5. For n ≥ 1, [ n1 ] = 2(n− 1).

Proof. Only the hfh and fhh metatiles contain one fence. Both metatiles are length 2. There
are n− 1 ways to place a length-2 metatile on an n-board (with the remaining cells occupied
by h2 metatiles). �

Identity 3.6. For n ≥ q ≥ 0, [ n
n−q ] = B

(q)
n .

Proof. The result follows from the definition of B
(q)
n because [ n

n−q ] is also the number of tilings
containing 2q half-squares. �

Identity 3.7.[
n
k

]
= δn,0δk,0 − δn,1δk,1 +

[
n− 1
k

]
+

[
n− 1
k − 1

]
+

[
n− 2
k − 1

]
+

[
n− 2
k − 2

]
−
[
n− 3
k − 3

]
, (3.2)

where [ nk ] = 0 if n < k or n < 0.

Proof. We condition on the last metatile. If that metatile is of length l and contains j fences,
there are [ n−lk−j ] ways to tile the remaining cells using k − j fences. Considering all possible
metatiles gives [

n
k

]
= δn,0δk,0 +

[
n− 1
k

]
+

[
n− 2
k − 2

]
+ 2

∞∑
j=1

[
n− j − 1
k − j

]
. (3.3)

If n = l and k = j, there is exactly one way to tile the whole board (i.e., by using that single
metatile) and so, we let [ 00 ] = 1. Replacing n by n− 1 and k by k− 1 in (3.3) and subtracting
the result from (3.3) gives (3.2). �
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A (p(x), q(x)) Riordan array is a lower triangular matrix whose (n, k)th entry is the coeffi-
cient of xn in the series for p(x){q(x)}k [8]. Our triangle has the following simple relation to
the (1/(1−x2), x/(1−x)2) Riordan array (whose entries are the absolute value of the triangle
A158454 in [9]).

Theorem 3.8. If R(n, k) is the (n, k)th entry of the (1/(1− x2), x/(1− x)2) Riordan array,
then [

n
k

]
= R(n, n− k). (3.4)

Proof. Let p = 1/(1− x2) and q = x/(1− x)2. Then R(n− l, k − j) is the coefficient of xn in
the expansion of xlpqk−j . Multiplying the identity q = xq + x+ x2q + x2 − x3q by pqk−1 and
taking the coefficient of xn gives R(n, k) = R(n− 1, k) +R(n− 1, k− 1) +R(n− 2, k) +R(n−
2, k − 1)−R(n− 3, k) for n > 2, k > 0. Taking R(n < 0, k) = R(n < k, k) = 0 and including
terms to arrive at a relation that is also compatible with the values of R(k, n) for 0 ≤ n ≤ 2
and k = 0 gives

R(n, k) = δn,0δk,0−δn,1δk,0+R(n−1, k)+R(n−1, k−1)+R(n−2, k)+R(n−2, k−1)−R(n−3, k),
(3.5)

which is then valid for all n and k. Substituting (3.4) into (3.2), replacing k by n − k, and
noting that δn,0δn−k,0 − δn,1δn−k,1 can be rewritten as δn,0δk,0 − δn,1δk,0 gives (3.5). �

As an immediate consequence of Theorem 3.8, we see that F 2
n+1 =

∑n
k=0R(n, k) for n ≥ 0

(which was also noted in [1]), and from Identity 3.6, R(n, k) = B
(k)
n . In other words, a

combinatorial interpretation of R(n, k) is the number of half-square, (12 ,
1
2)-fence tilings of an

n-board that use 2k half-squares. Then from Lemma 2.2, we have, for n ≥ k ≥ 0,

R(n, k) = R(n− 2, k) +

(
n+ k − 1

2k − 1

)
. (3.6)

4. Tiling with (14 ,
1
4)- and (14 ,

3
4)-fences

There is a bijection between the tiling of an n-board with half-squares and (12 ,
1
2)-fences and

an n-board tiling using (14 ,
1
4)- and (14 ,

3
4)-fences. Hence, the latter tiling gives an alternative

combinatorial interpretation of the Fibonacci numbers squared. To see the bijection, we
construct directed pseudographs (or ‘digraphs’) for both types of tiling (Figure 2). These
allow one to determine all the possible metatiles systematically [7]. Each arc corresponds to
the addition of a tile or tiles to the yet-to-be-completed metatile at the next available gap.
The 0-node represents the starting configuration (an empty board) and the end configuration
(a completed metatile, which means that an integral number of cells have been filled with no
gaps). The names of the other nodes indicate the configuration of the remaining cells on the
board, starting from the first gap in the tiling so far. The digit 0 (1) represents an empty
(filled) sub-cell of width w (when tiling with (w, g)-fences). A bar over the first 0 indicates
that the left side of the gap does not coincide with a cell boundary. Each walk, starting and
ending at the 0-node without visiting it in between, corresponds to a distinct metatile. Hence,
if there is a cycle that does not include the 0-node (e.g., the one connecting nodes 0̄ and 01
in Figure 2(a)), there will be an infinite number of metatiles because a walk can follow the
cycle an arbitrary number of times before returning to the 0-node. The crucial property of a
metatile is its length. This is obtained by summing the lengths corresponding to each arc on
the walk. For the half-square and (12 ,

1
2)-fence tiling, h and f contribute lengths of 1

2 and 1,

respectively. For the (14 ,
1
4)- and (14 ,

3
4)-fence tiling, both types of fence contribute lengths of 1

2 .
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Figure 2. Digraphs for generating all possible metatiles when tiling with:
(a) half-squares (h) and (12 ,

1
2)-fences (f); (b) (14 ,

1
4)-fences (ϕ) and (14 ,

3
4)-fences

(F ).

There is a bijection between the two types of tiling because, other than the labels on the arcs
and nodes, the two digraphs are identical and any walk on one graph and the corresponding
walk on the other generate metatiles of the same length. More explicitly, the possible metatiles
for the ϕ-F tiling are F 4 (represented by the F arc from the 0 node to the 0̄001 node and
the F 3 arc back), and for all j ≥ 0, where j is the number of times the cycle composed of the
two F 2 arcs is traversed, ϕ(F 4)jϕ, FϕF (F 4)jϕ, ϕ(F 4)jF 2ϕ, and FϕF (F 4)jF 2f , and their
respective lengths are 2, 2j + 1, 2j + 2, 2j + 2, and 2j + 3.
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